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portion of Fig. 9. If all the perturbations are small
enough, so that no large changes in the eigenvectors
are induced, the effective F'® hyperfine interaction for
CoF approximates that for CoF; as follows. Denote
the states for CoF; in an uncoupled representation
| M sMcoM v1iMw2)** and consider, for example, the
states with Mco=—%5. Then |3 —% —% —3) is per-
turbed both by |3 —%% —%) and by |3 —% —% 1) by
the same amount as |} —3 —3) is perturbed by
|3 —% %) because the energy denominators as well as
the matrix elements are the same for CoF; as for CoF.

“1In this paragraph, eigenkets with three quantum numbers

belong to the CoF problem; those with four quantum numbers
to the CoF; problem.
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Also, since both |3+ —% —%1 1) and |3 —5 1 —1) suffer
the same perturbation from |3 —231), their de-
generacy is not split, but the levels are shifted only half
as far as |3 —§ —% —3). So the perturbations do not
disturb either statistical intensities or the relative
spacings in the group of lines for any Mg¢,, but the
hyperfine spacing changes from the first-order pertur-
bation prediction. All the perturbations indicated in
Fig. 9, and the smaller ones not indicated, are additive.
Therefore, to a good approximation, fluorine hyperfine
separations calculated by diagonalizing the 3232
Hamiltonian for CoF may be transferred to the spec-
trum of CoF,, and, by the same argument, to the
Hamiltonian [Eq. (1)] for (CoFg)*.
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An analysis of some approximations common in the treatment of many-body systems indicates that the
inclusion of large numbers of uncancelled exclusion-principle-violating (EPV) processes leads to meaningless
results. We therefore propose as a criterion for the validity of many-body approximations that there should
be no such large-scale inclusion of EPV processes. The graphs generated in the BCS theory are analyzed

from this point of view.

INTRODUCTION

N a recent paper, Fukushima and Fukuda! attempt
to calculate the ground state of the BCS (Bardeen,
Cooper, Schrieffer) reduced Hamiltonian in the strong-
coupling limit by summing a subset of the totality of
graphs generated by this Hamiltonian. The graphs
chosen—ladder graphs—seem to dominate all others
since they are of order ° whereas the neglected graphs
are of order 7! or lower. (The volume of the system
is ©.) As the ground-state energy of this system is
known, it is possible to determine that the accuracy of
their result is very poor and, what is worse, the asymp-
totic behavior of such functions as the vacuum expecta-
tion value of the U matrix is entirely incorrect. Since
the subset of connected graphs chosen is a common one,
and since its choice in their case seems particularly well
justified, it seemed worthwhile to attempt to seek out
the source of the difficulty. We state our conclusions in
the language of the strong-coupling model although
some are valid in general.
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In the first part we summarize and analyze some of
the results of Fukushima and Fukuda. This leads us to
propose in Part IT a criterion for the validity of many-
body approximations. The third part contains an
analysis of the BCS reduced Hamiltonian according to
the proposed criterion.

1. THE LADDER APPROXIMATION

In the strong-coupling limit the kinetic-energy
operator is replaced by its constant expectation value 7'.
For convenience this constant is set equal to zero by a
shift in the zero of the energy. The BCS reduced
Hamiltonian in this limit is then

H=T+H1=V ¥ cittc_ss’C_11Cr1t,

kk!

(1.1)

where the sums over momenta are limited to a narrow
shell around the Fermi surface. One of the authors has
analyzed such strongly coupled systems for a general
interaction?; some of the results are given below for
reference.

The vacuum expectation value of the resolvent
operator R(z), where z is a complex variable, can be

2L. N. Cooper, Phys. Rev. 122, 1021 (1961).
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expanded in a power series in V':
1
H 1—2

)

=_£§) @n(owl»m). (1.2)

<0|R(z>10>=<0

The vacuum state |0) is defined as the state in which
half of the available unperturbed levels are occupied
from the bottom; the total number of levels of both
spins is assumed to be 4N, 2N being the total number
of particles. The above series has a nonzero radius of
convergence if the spectrum is bounded above and
below.

Using S, to denote the sum over all connected
vacuum to vacuum graphs of order %, (0| H,*|0) can be
decomposed into products of connected graphs as
follows:

O|H*|0)=V"[Sa+ X Cap"SaSs

atf=n
+ 2 Copy"SaSpSyt---
atpft+y=n
+Cr..®(S)™], (1.3)
where
1 n!
Cal---aan=—

S! a1!a2!- . ‘as!
A U matrix can then be defined such that

U(—it)=exp(—H4). (1.4)

It follows that
0| U (—=it)|0y=3m | (0] m)|2eEmt

=exp[Bo(— V1)1, (1.5)
where s
Bo(— Vt)=i‘,1;—7:(— Viyn, (1.6)

and (0|m) is the matrix element between the “un-
perturbed” vacuum and the mth eigenstate of the exact
Hamiltonian. The asymptotic behavior of Bo(—V?)
must be dominated by a term linear in ¢, as t —

Bo(— Vt)N -al )

where « is the lowest eigenvalue of H.

Fukushima and Fukuda (FF) have chosen to
approximate S by the sum of all ladder graphs resulting
from (1.1), neglecting all other contributions since they
are at most of order @1 The sum over all these con-
nected ladder graphs of order #» is

SaFF= (n—1)IN". 1.7
Inserting this into (1.6) they find that
Bo(—Vi)=—In(14+NV?). (1.8)

This gives an incorrect ground state for attractive
potentials and displays the wrong asymptotic behavior;
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thus the answer has been completely distorted by the
approximation.

We observe first that using their approximation for
S and the decomposition (1.3), gives the inequality

l(OIHI"lOMFF approx. > { VI "Sa'F

=(N|V])rr—1)1. (1.9)
On the other hand we have in general
O[H:|0)=(0|[V X Cit'Cis'C_rr4Cir1 17| 0)
kk’
= Vn Z <OI CklfTC—-kllTC—kl’lel’ |
e
Crwet|0). (1.10)

Further, the vacuum expectation value of products of
fermion operators satisfies the inequality

l(o]...c...ct...i())isl. (1.11)

Such vacuum expectation values will usually be zero.
In any case we may write

OIECOIS|V] T 1=4 V[N (1.12)

ki« ok’

The introduction of a similar upper limit was essential
in the proof? that the expansion of (R(2)):; in powers of
the coupling constant has a finite radius of convergence.
If one compares Fukushima and Fukuda’s result with
this upper limit we see that for higher order terms

[0 H1"|0)| FF approx.>4*| V|"N?",  (1.13)

which means that the subset of graphs they have
selected in their approximation does not correspond to
an actual Hamiltonian.

A somewhat closer look at the diagrammatic analysis
reveals what is wrong. The evaluation of (0| H,*|0) by
means of Wick’s theorem® makes it necessary to carry
out summations over indices attached to the inter-
mediate particle or hole lines disregarding the restriction
imposed by the exclusion principle. We are therefore
obliged to include a large number of processes appar-
ently violating this principle so that the violation may

(a (b)

Fi16. 1. Some fourth-order graphs which may violate
the exclusion principle in intermediate states.

3 G. C. Wick, Phys. Rev. 80, 268 (1950).
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be cancelled out as a whole. This point has been
stressed by Goldstone* as extremely important if the
linked-cluster expansion is used.

In the fourth order, for example, we see that the
graphs shown in Fig. 1, which are included in S,F¥ may
violate the Pauli exclusion principle in the intermediate
states. However, since all the graphs included in S,*F
are positive there is no possible way they can be
cancelled. A diagram that contributes to the wanted
cancellation, Fig. 2, is neglected in their approximation.
This diagram gives a contribution — N? compared with
N* for a ladder diagram, but the number of this type
increases rapidly with ». This is probably most easily
seen as follows. The number of ladder graphs that may
violate statistics in intermediate states is (n—1) |—272,
a rapidly increasing number. For each of these there
will usually be several nonladder graphs of opposite
sign, all adding up to a contribution which cannot be
neglected.

This is however not the only way the exclusion
principle can be violated. Following Katz® and Mehta,®
the ladder graphs may be divided into the following

F16. 2. One of the graphs neglected by
Fukushima and Fukuda which contrib-
utes to the cancellation of EPV processes
contributed by the graphs in Fig. 1.

subgroups; ascending, descending, mixed, and general-
ized ladder graphs. An example of the ascending ladder
graphs which represent only particle-particle scattering,
is shown in Fig. 3. These graphs never violate statistics
in intermediate states. Suppose now we made the rough
approximation of setting S, equal to the ascending
ladder graph. We then obtain

S ,ascending ladder _ 77 n (1.14)

which leads to

By(—=VH)=eVVt—-1, (1.15)

a result which is (if a comparison can be made) even
worse than (1.8).

The reason for this is that the formula (1.3) counts
combinations of disconnected graphs such as shown in
Fig. 4. One here counts a disconnected graph violating
statistics and neglects the connected graphs which in a
proper treatment would cancel the violation. As the
order » increases, the number of combinations of this
type grows rapidly and again can no longer be neglected.

4 J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).
5 A. Katz, Nucl. Phys. 20, 663 (1960).
S M. L. Mehta, Nucl. Phys 20, 533 (1960).
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Fi1c. 3. The fourth-order ascending
ladder graph.

II. A CRITERION FOR THE VALIDITY OF
MANY-BODY APPROXIMATIONS

The results obtained above show that the difficulties
encountered by Fukushima and Fukuda arise from the
inclusion of a very large number of exclusion-principle-
violating (following Kelly,” hereafter abbreviated EPV)
processes in higher order terms of the expansion. This
suggests further that any approximation used in many-
body systems which leads to the inclusion of large
numbers of EPV processes, in the absence of evidence
to the contrary, should be regarded with suspicion. We
are thus led to propose a new criterion for the validity
of approximations in many-body systems.

The energy levels (and in particular the ground-state
energy of many-body systems) can be obtained from
the vacuum expectation value of the U matrix. Now
{0|U(—1it)|0) contains no contributions from EPV
processes. This is meant in the following sense. The
anticommutation properties of C and C' guarantee
that any process which violates the Pauli exclusion
principle will be exactly cancelled if all of the graphs
are included.

In order actually to calculate anything one usually
makes some approximation to .S,, based possibly on a
parameter which is small. Let us call such an approxi-
mation S,©® where it is understood that S,© is a sum
over a subset of the graphs contained in S,.

SOCS.. 2.1)
To obtain information from S,©® (e.g., energy levels)

(a) (b)

Fi16. 4. Some of the fourth-order disconnected graphs composed
ofJconnected ascending ladder graphs. These disconnected graphs
contain contributions due to processes which violate the exclusion
principle.

7H. P. Kelly, Phys. Rev. 131, 684 (1963).
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these are recombined as in (1.5) to give an approxi-
mated form of (0| U(—1z)|0)

O|U(—it)|0)®=exp[Bo@(—V1)], (2.2)
where
w S,
By (=VH=> : (=Vin. (2.3)
n=1 1!

However, in doing this the higher order combinations
of S,©@ (to form disconnected graphs) include large
numbers of EPV processes—so large that often no
recognizable results are obtained. (Our experiments, in
addition to those in the previous section, with com-
monly chosen subsets such as ascending, descending,
and mixed ladder graphs in various soluble models yield
a wide variety of results bearing little relation to the
correct solutions.) The difficulty occurs because we
write (0|U(—i£)|0)® as the seme function of the
approximated set of connected graphs {S:®S;®- ..},
as the original (0| U (—it)|0) of the exact set {S1Ss- - - }.
We are therefore led to define a new function

© S,®

0] U(—1it)] 0>EP(°’ECXPI: >

n=l n,!

- W),,]

— [contribution from all EPV processes]. (2.4)

The subscript EP indicates that the new function con-
tains no EPV processes. We note that 0| U (— 1) | 0)p©@
becomes (0| U(—iz)|0) when S,@ becomes S,, since
for the exact set .S, no EPV processes contribute to the
final result. In that case the subtracted term [ ]in
(2.4) is zero.

This function is of course harder to calculate than the
original, but we propose that it is the function one

O] (&)

Fic. 5. Some fourth-order EPV graphs. Contributions from
graphs (a) and (d) are —N® and from graphs (b) and (c) N
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should at least attempt to calculate. If there is a choice,
it seems preferable to exclude from an approximation
terms which are not present in the exact result, just as
it usually seems preferable to preserve exact symmetries
in each order of an approximation.

If we now adopt the attitude that a reasonable subset
of the connected graphs (that is one, for example, which
is characterized by an expansion in some small param-
eter) will give us a good approximation if it is inserted in
the new function defined above (2.4), the problem be-
comes to devise a method for calculating this function.
One method of obtaining (0| U (—i£)|0)gp® from the
set {S,®}, is described below.

Suppose we are given the set of graphs {S,©®}. Let us
add to this another set {S,®}. We require that {S,®}
has the following properties:

(a) Every process represented by these graphs
violates the exclusion principle.

(b) The result obtained when the sum {S,®+4S,®}
is inserted into (2.2) and (2.3) contains no EPV
processes.

It then follows that

0 S, O4S,®
exp[ Z_:l — =V "]

n:

=(0|U(—1t)|0)ep®. (2.5)
This means that we can calculate in the usual manner
with the new set of graphs. We call the set {S,®} the
proper completion of {S,®}. In the strong-coupling
limit the proper completion, if it exists, is unique.

We are led then, having chosen {S,®} possibly on
the basis of a small parameter, to add to this a subset
{S.M} as defined by (2.5) with no reference to this
parameter. When this is done the properly completed
subset {S,®-+S,®} will yield a U matrix by the usual
formula (1.5).

Any set of connected graphs generated by a Hamil-
tonian (nomatter how truncated) will have the property
of yielding a U matrix which contains no EPV processes.
Thus we may view the process of proper completion as
a process which converts an arbitrary set of graphs into
one which might come from a Hamiltonian. Though
there is no guarantee that the process can always be
carried out, the BCS reduced Hamiltonian can, as we
will show in the next section, be viewed as resulting
from the proper completion of the ladder graphs.

III. ANALYSIS OF THE BCS REDUCED
HAMILTONIAN

The graphs generated by the BCS reduced Hamil-
tonian may be divided into two disjoint sets:

(S35 = (SPUN (S, M), @)
where {S.®} is defined by (3.1) as the set of all non-
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ladder BCS graphs. In what follows we show that
{S.™} so defined is the proper completion of {5,244} ;
thus the BCS Hamiltonian may be viewed as resulting
from the proper completion of the set of ladder graphs.

To do this we must show that {S,™} satisfies the two
criteria for a proper completion stated in Sec. II.

The second requirement follows immediately from
the fact that the totality of BCS graphs is generated by
the BCS reduced Hamiltonian, thus guaranteeing that
no contributions from EPV processes occur.

We next show that the graphs {.S,®} represent only
EPV processes. They are thus distinguished from the
ladder graphs which only occasionally contain EPV
processes. Thus the only role of the nonladder graphs
generated by the BCS Hamiltonian is to compensate
for violations of statistics. Some fourth-order examples
are shown in Fig. 5.

We first discuss graphs which do not necessarily in-
volve scattering processes with zero momentum
transfer. It is observed that all graphs start and end
with a pair creation and a pair annihilation vertex. If
the only other vertices used are particle-particle and
hole-hole scattering vertices, we obtain mixed ladder
graphs. This group includes ascending and descending
ladder graphs plus graphs representing both hole-hole
and particle-particle scattering processes. All these
graphs have only two particles and two holes with
different spin indices in the intermediate states. Hence

A A

Fic. 6. Exclusion- @
principle-violating parts
of nonladder BCS
graphs. ]
k| \K k
)
®)
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F16. 7. BCS graphs
with bubbles.

()

these graphs will never violate the Pauli exclusion
principle. Other ladder graphs (i.e., some generalized
ladder graphs) which are not of this type and nonladder
graphs cannot be obtained in this way. In order to find
them we must introduce at least one additional pair
creation and one pair annihilation vertex. We further
notice that if we wish to obtain vacuum to vacuum
graphs, these vertices must be introduced in pairs.

A nonladder BCS graph is characterized by the fact
that the spin-up and spin-down particle or hole lines
are not connected in the same way. A nonladder graph
must therefore contain, aside from forward and back-
ward scattering vertices, a pair creation and a pair
annihilation vertex connected in one of the ways shown
in Fig. 6. Changing the arrow direction in the spin-up
part of Fig. 6(a) or reversing the spin-up and spin-down
parts give additional possibilities which for the purpose
of this discussion are identical to the ones in Fig. 6.
Due to the pairing condition, the Pauli exclusion
principle is seen to be violated in both these parts. The
most general nonladder graph which does not neces-
sarily involve scattering processes with zero momentum
transfer, will consist of these parts with particle-particle
and hole-hole scattering vertices connected between
these two vertices. However this does not alter the fact
that these parts of the graph will violate statistics as it
is impossible to remove from these parts the repetition
of one index by the addition of forward- and backward-
scattering vertices.

Scattering processes with zero momentum transfer
allow another class of nonladder graphs—those in
which a hole line goes back to the same vertex from
which it started. Such a part comes from the con-
tractions [/roh,.']. Goldstonet calls such a loop a
passive unexcited particle loop; we will call it a bubble.
The sign of a bubble is seen to be positive. Some
examples of graphs containing such bubbles are shown
in Fig. 7. Some part of these graphs always comes from
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Fic. 8. (a) Characteristic part of
______________ a graph containing bubbles. (b)
% “]% Violation of statistics in this part.

()]

a scattering process with zero momentum transfer.
Other graphs, e.g., a descending ladder, may also
contain such a process, but this is only for special values
of the indices. Excluding the first-order graph, Fig. 7 (a),
which we may classify as a ladder graph, we see that the
characteristic part of such a connected graph is the one
drawn in Fig. 8(a). However, the hole line labeled %
must also be connected to another hole line labeled —%
as shown in Fig. 8(b). We see that this results in a
violation of the Pauli exclusion principle. Just as for the
previous class of nonladder graphs, it is impossible to
remove the repetition of indices by using hole-hole
scattering vertices. Hence we may conclude that all
nonladder BCS graphs violate statistics. The BCS
graphs may therefore be classified as either ladder or
EPV graphs. It may be further noted that this is a strict
graphical property, which does not depend upon the
choice of the strong-coupling model. It will be equally
valid if energy denominators were included.
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IV. CONCLUSION

Our analysis of the application of various approxima-
tions, common in the treatment of many-body systems
to the graphs generated by the BCS reduced Hamil-
tonian, indicates that when used to yield such informa-
tion as the ground-state energy, large numbers of EPV
processes remain uncancelled leading to meaningless
results. Since the physical properties of a many-fermion
system do not depend upon processes which violate the
exclusion principle, if such processes occur (as they do
in the usual graphical analysis), they can only play the
role of cancelling other EPV processes. We have there-
fore attempted to arrive at the notion of the “physical
graphs” generated by an approximation procedure—
those graphs which when combined to produce functions
such as (0| U (—1t)|0) do not result in any uncancelled
EPV processes.

A possible procedure for obtaining these physical
graphs from an arbitrary subset of graphs generated
through some approximation (based possibly on a small
parameter) is proposed. In this one adjoins to the set
generated by the approximation another set of graphs
called the proper completion. This proper completion,
if it exists, is unique and is no¢ characterized by the
small parameter. Thus the dependence of the total set
of graphs on the small parameter is obscured. It is
shown that the graphs generated by the BCS reduced
Hamiltonian can be regarded as the sum of the ladder
graphs and their proper completion.

The easiest method of guaranteeing that a particular
set of graphs does not generate any uncancelled EPV
contributions and thus does not run into the difficulties
we have dealt with is, of course, to generate this set of
graphs from a Hamiltonian (no matter how truncated).
We observe that two important existing approximate
sets of graphs used in the treatment of many-body
systems, those used to deal with the long-range part of
the Coulomb interaction, and those in the theory of
superconductivity can be generated by Hamiltonians.
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