
NUCLEcAR-SPIN PUMPING

Fig. 1 are incorrect. The correct expressions are
&=Ate &*—oeA~s and 44=4 st2 a—'t'eP its. S. L. Segel
and R. G. Barnes LPhys. Rev. Letters 15, 886 (1965))
have observed the v12=2v~ transition for 8=90' in
several polycrystalline samples including sodium bro-
mate. It should be possible to enhance or invert this
signal by pumping, although special attention must be
given to the direction of the pump H1 for 0=90' to
ensure nonzero induced transition probabilities. How-

ever, we do not expect to obtain Wi/Wa by spin-

pumping a polycrystalline sample because for 8=90'
the P;; for the pump transitions diGer only by small
terms proportional to e.
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The wave-vector-dependent spin susceptibility of an electron gas is calculated taking dynamically
screened electron interactions into account. A quasiparticle approach is developed to deal with the self-
energy and screening e8ects o$ the electron correlations, and the energy and mass of a quasiparticle at the
Fermi surface are calculated for a wide density range. The susceptibility is found using a linearized self-
consistent-field treatment of the quasiparticles and numerical solution of the resulting integral equation.
It does not show singular or anomalous behavior at large wave vector as in the Hartree-Pock approximation.
The density dependence of the zero-wave-vector susceptibility is found to be in better agreement with experi-
ment than that of previous calculations. Statically screened interactions are also used in a series of
calculations, and it is shown that a long- but Rnite-range interaction can lead to anomalies in the suscepti-
bility at large wave vectors.

1. INTRODUCTION

'HE eGect of the Coulomb interaction on the
magnetic properties of the electrons in a simple

metallic conduction band has received a good deal of
attention recently. One of the authors has shown that
it renders the paramagnetic plane-wave state of the
free-electron-gas model unstable within the Hartree-
Fock (HF) approximation, an antiferromagnetic spin-
density wave (SDW) state having lower energy. ' The
long-range components of the Coulomb interaction are
most important in creating this instability. Correlation
corrections to the HF approximation for the paramag-
netic electron gas have been studied extensively, and it
is agreed that the long-range components of the
Coulomb interaction make a major contribution to the
correlation energy, especially at high densities. There-

*The portion of this research, which was performed at the
Massachusetts Institute of Technology, was sup orted by the
Ofhce of Naval Research, Contract No. Nonr-1841 72).

t Now at Bell Telephone Laboratories, Murray Hill, New
Jersey.' A. %'. Overhauser, Phys. Rev. 128, 1437 (1962).' For a review of much of this work, see D. Pines, The Macy
Body Problem (+.A. Benjamin, Inc., New York, 1961).

fore it is apparent that correlation corrections should
be applied to a calculation of the SOW instability. The
evaluation of the energy of a SD% state with correla-
tion is an extremely dificult undertaking, however, and
our goal in this paper is more modest. By calculating the
wave-vector-dependent spin susceptibility of the
paramagnetic state and including correlations, the
stability of this state under in6nitesimal deformations
can be investigated, and this is the calculation we shall
discuss.

The wave-vector-dependent spin susceptibility is
de6ned by the following thought expeiiment: A static
magnetic field H(x)=Heecos(Q x) is applied to the
electrons, and the spin magnetization is measured. For
the free-electron gas and for sma11 Ho, it has the
same spatial dependence and polarization, M(x)
=Mpe cos(Q x). The susceptibility is defined as
X(Q) =cVo/He in the limit as He goes to zero. In the
approximation we shaO consider, neglecting 6eld-orbit
spin-orbit, and dipolar spin-spin couplings, X does not
depend on the angle between e and Q. The change in
internal energy associated with the magnetization is
proportional toMo'/&(Q). Therefore, if the paramagnetic
state is unstable, we should expect to calculate a nega-
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tive X for certain Q values, and for the negative regions
to be separated from the positive regions (correspond-
ing to deformations which increase the energy) by
singularities. Of course such a result would not be
physical, since the stable ground state must be used as
the starting point for a meaningful calculation of X,
but it would yield important information about the
paramagnetic state.

In the event that the correlations do stabilize the
paramagnetic state relative to small deformations, a
significant interaction effect upon & might remain. This
could modify the strength and spatial dependence of
indirect exchange interactions between localized mag-
netic moments in metals. The widely known theoretical
treatments of indirect exchange by Ruderman and
Kittel' and others' ' neglect electron interactions.
Recent measurements of the spatial dependence of the
s-band polarization near nonmagnetic impurities in iron
do not agree with the Ruderman-Kittel result. ' These
measurements might be interpreted by assuming that
X(Q) is strongly peaked near Q=2kF (where kp is the
Fermi momentum) as a result of the electron inter-
actions, ~ a reasonable form to consider since X has
singularities near Q=2kF in the HF approximation. ' It
has also been suggested that these measurements can
be explained by using more realistic electronic wave
functions in computing the s-d interaction and neglect-
ing s-band electron interactions. ' The present calcula-
tion should aid in resolving this point.

The effect of interactions on X(Q) was previously
treated by Wolff in an approximation equivalent to
linearized HF theory. ' He solved the pertinent integral
equation for a fermion gas with delta-function inter-
actions, and found that no SOW instability occurred in
this system. We shall rederiveWo16's results in Sec. 2 by
an alternative method which will permit us to give a
physical interpretation to the unknown function appear-
ing in his integral equation. Several workers have
investigated the stability of the paramagnetic state in
this approximation without introd. ucing X(Q),'o-" and
have obtained results similar to those discussed.

The uniform susceptibility, X(0), is amenable to
calculation using the techniques developed for the elec-
tron gas correlation energy, and several calculations of

3 M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
T. Kasuya, Progr. Theoret. Phys. (Kyoto) 16, 45 (1956).

' K. Vosida, Phys. Rev. 106, 893 (1957).
6 M. 3. Stems and S. S. Wilson, Phys. Rev. Letters 13, 313

(1964).
~ A. W. Overhauser and M. B. Stearns, Phys. Rev. Letters

13, 316 (1964).
T. A. Kaplan, Phys. Rev. Letters 14, 499 (1965);R. E. Watson

and A. J. Freeman, ibid. 14, 695 (1965).
' P. A. Wolff, Phys. Rev. 120, 814 (1960).
' K. Sawada and N. Fukuda, Progr. Theoret. Phys. (Kyoto)

25, 653 (1960).
"A. Yoshimori, Phys. Rev. 124, 326 (1961).
~ F. Iwamoto and K. Sawada, Phys. Rev. 126, 887 (1961); ¹

Fukada, F. Ivramoto, and K. Sawada, ibid. 135, A932 (1964),
Appendix A.

this sort have been carried out. " "X(0) is also more
accessible experimentally, since the Knight shif t"
provides a measure of it. The zero-wave-vector limit of
the present results will be compared with the other cal-
culations and with experimental results for the alkali
metals.

Correlation effects were incorporated in the X(Q) cal-
culation using a quasiparticle approach and Sec. 3 is
devoted to this development. In Sec. 4, the method of
solution of the integral equation giving X(Q) is discussed.
Before calculating X(Q) using realistic correlation cor-
rections, a series of calculations based on Wolff's
approximation and using a statically screened inter-
action were performed, and their results are given in
Sec. 5. The results of the realistic calculation are given
in Sec. 6.

2. HARTREE-FOCI THEORY OF THE
SUSCEPTIBILITY

If a perturbing magnetic Geld of the form discussed in
Sec. 1 is introduced, with the polarization vector taken
in the s direction, the perturbing Hamiltonian represent-
ing the Zeemann interaction is

H'= IJ~HD g (S,); cos—Q x;, (2)

where p~ is the Bohr magneton, and IIO is the amplitude
of the applied magnetic field. The matrix elements of

(2) between single-particle plane-wave states are

In order to Gnd the ground state of the perturbed
system in the HF approximation, the simplest procedure
is to guess a form for the single-particle Hamiltonian,
Gnd its eigenstates, and then examine the validity of
our guess by computing the self-consistent Geld. It is

physically reasonable to expect the self-consistent Geld

to have a form similar to the applied perturbation. The
only simple generalization of (3) is to make the ampli-
tude of the nonzero matrix elements of the self-consist-
ent Geld a function of it instead of a constant. Based on
this consideration, let us assume that the single-

"D. Pines, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., New York, 1955), Vol. 1, p.
367.

"M. Shimizu, J. Phys. Soc. Japan 15, 376 (1960).
5 S. Silverstein, Phys. Rev. 130, 1703 (1963).

~6 W. D. Knight, Phys. Rev. 76, 1259 (1949).
» See, for example, A. Messiah, QNantunz Mechanics, translated

by J. Potter (North-Holland Publishing Company, Amsterdam,
1962l, Vol. 2, pp. 773—gt.

In this section, WolG's theory of the susceptibility'
will be rederived using standard HI theory'~ rather
than equation-of-motion or Geld-theoretic methods. The
fermion system we shall consider has the Hamiltonian

H=P p;2/2m++ V(x;—x;).
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particle HF Hamiltonian has the form

(k'o'~ a»
~
k~) =skulk. ,kb....+-,'(S,)...

~LU(k+Q/2)bk. k+a+U(k —Q/2)&k. k-oj, (4)

where we have attempted to represent the total CGec-

tive Geld by a single real function U, whose arguments
have been written in the indicated manner to make
HHp Hermitian.

Since the susceptibility is de6ned as the linear
response, it is only necessary to consider the limit of
small applied Gelds. As long as the paramagnetic plane-
wave state is stable, the oft-diagonal portion of the
self-consistent Geld must go to zero as the applied 6eM
goes to zero, and such stability is a basic assumption of
this calculation. Therefore it is valid to Gnd the per-
turbed single-particle states (which go over into plane-
wave states as H2 goes to zero) to 6rst order in perturba-
tion theory. If q k, and pk, , denote the unperturbed and
perturbed wavefunctions, we 6nd

-', (S,).,U(k+Q/2)

EQ+Q EQ

2 (~.)-U(k —Q/2)
(5)

Since the single-particle energies are unchanged to Grst
order in U, except for a negligible number (~ U') of
states near the energy gaps associated with the vanish-
ing of energy denominators in (5), the perturbed state
may be taken to be simply a Glled Fermi sphere of

k, os

The plane wave matrix elements of the interaction
contribution to Hap are given by

(k'o'i Viko)

d Kid $2{Pk~~~ (XlSl) Pk~(X2$2)

)( V(Xl—X2)leak» &" (X2$2)4'k«e» (X2$2)—Pk» r" (XlSl)

X 22k~(X1$1)V(xl X2) yk'err (X2$2)4'k"~"(X2$2)}~ (6)

In substituting the wave functions (5) in (6), terms of
second order in U must be neglected to be consistent
with the linearization previously imposed on the wave
functions. When the spin sums in (6) are carried out, it
is found that the direct term makes no contribution,
since there is no density perturbation to Grst order.
The exchange term has both diagonal and oG-diagonal
elements, and it is found. that the guessed form (4)
is correct if we make the identi6cations

Ek ——k2/2' —p o(k —k') 22k,

(we take i2=1), and

+&'—0/& +&'+0»
U(k) = ysP2+Q s—(k—k') U(k'), (8)

&' &~+~»—&~ -~»

where s(q) is the Fourier transform of V(22), and 22k is
the occupation number,

Expression (7) is the usual HF single-particle energy.
Equation (8) can be considered simply as a statement
that the self-consistent Geld is equal to the sum of the
applied and average exchange contributions. It forms
an integral equation determining U. The integral in (8)
is well de6ned, since the volume factor in the numerator
vanishes when the energy denominator vanishes in
such a manner that the ratio approaches a finite limit
[for a nonsingular v(q) j.

The spin density in the ground state of the perturbed
system is given by

9'.(X))= Z A,"'(~*)"A.' (10)

After substituting the wavefunctions (5) into (10), it is
found that the magnetization does, in fact, have the
same spatial variation as the applied magnetic 6eld. To
obtain the susceptibility, we note that (8) is a linear
integral equation, so that U is proportional to the
inhomogeneous term —p, WHO. The magnetization is a
linear functional of U, so if U is deGned as the solution
to (8) with psH2 replaced —by unity, X is given by

Equations (8) and. (11) are equivalent to Wolff's (12)
and. (13).'

In the limit of vanishing interaction U=1, and (11)
gives the susceptibility of a noninteracting electron gas.
In the case of a repulsive interaction, the kernel in (8)
mill be positive, so that a positive feedback mechanism
will increase the effective 6eld each electron sees, and
hence enhance the susceptibility. If the feedback is
stronger than necessary to make the magnetization self-
sustaining for some values of Q, a formal solution of (8)
wiII still be obtained, but the X computed mill be
negative, indicating that the deformed ground state has
a lower energy, and that the assumption of the stability
of the paramagnetic state was incorrect.

3. QUASII2ARTICLE FORMULATION

The derivation of the last section demonstrated that
calculating &(Q) consists essentially of finding the new
ground state of the electron gas in the presence of a
stationary perturbation. In seeking a means of including
corrclatlon wc dcclded to cxplolt this simplifying fcatul c
of the problem, and avoid the artiGcial introduction of
time dependence frequently made to derive a many-
body perturbation expansion. ' This can be done using
an approach similar to that of I.andau's Fermi-liquid
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theory, ' but distinct in several respects. Following
Landau, we use a Fermi sphere of independent quasi-
particles to represent a much more complicated ground
state of the electrons. Landau's theory is designed to
cope with dynamic situations in which real excitations
occur, and since single-particle excitations far from the
Fermi surface decay rapidly, the quasiparticle model of
such an excited state is not a good one. For this reason
his theory conhnes itself to low-frequency and long-
wavelength external forces, which can only create ex-
citations near the Fermi surface. In the X(Q) calcula-
tion, however, we do not deal with excited states. The
applied magnetic field causes an electron in state k to
spend some of its time in lr+Q, but this simply de-
scribes the modification of the ground state. The fact
that an electron injected into the electron gas with
k&Q would lose energy rapidly if this state were far
from the Fermi surface is immaterial. We shall use a
quasiparticle model to treat our static problem for
large Q as well as small, since only the dressing of the
bare electrons, which changes their energy-momentum
relation and screens their interactions, is important.

The frequently employed quasiparticle models
postulating Thomas-Fermi-screened" or delta-function
interactions were considered inadequate because of the
importance of dynamic effects in electron-gas screening.
Consider a classical point change moving through an
electron gas with velocity v. The potential produced by
the q Fourier component of this charge distribution is
proportional to [p(q, rl v)] ', where p(q, a&) is the wave
vector and frequency-dependent retarded longitudinal
dielectric function. If the self-consistent 6eld approxima-
tion for p(q, a&) is used, 'p it is found that Rep(q, a&) changes
sign near ~=qv~, where v~ is the Fermi velocity. Thus
if the classical charge is moving with v near ep, the
screened potential will be highly anisotropic, and any
static approximation extremely poor. Since electrons
near the Fermi surface are most important for the SOW
instability in HF theory, ' it was considered that the
dynamic screening effects were likely to be of importance
in the X(Q) calculation.

The effective Hamiltonian describing the quasi-
particles is derived by finding the average effect of an
electron gas in its ground state on a few distinguished
"test electrons. " The reasonable hypothesis is then
made that all the electrons can be described by this
Hamiltonian, and exchange symmetry among the
quasiparticles is reintroduced. The fact that we average
over coordinates and then present a Hamiltonian which

appears to have access to a full electron-gas Hilbert
space makes this approach nonrigorous. The screening
fluctuations having been taken into account should

'SL. D. Landau, Zh. Eksperim. i Teor. Fiz. BO, 1058 (1956)
t English transl. : Soviet Phys. —JETP 3, 920 (1956}j.

~ C. Kittel, The QNeetlm Theory af 5olids (John %iley 8z Sons,
Inc. , New York, 1963), p. 106.

~ J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 2&, No. 8 (1954).

H=Hp+Hg+Hp. (12)

The erst includes the kinetic energy of the test elec-
trons, which will be represented by their creation and
destruction operators u~ and a, and the total Hamil-
tonian for the dielectric,

Hp=Z pkA ~t+k ~+Hd,
ko

wher~ pk
——k'/2'. H& will not be written out, but will be

represented by its eigenstates
~ e) with eigenvalues pp„.

The energy scale will be chosen so that its ground state
~
0) has energy zero. The second term in (12) is the test

electron-dielectric interaction,

%=2 &(g}P pok+p, ~tok—,~,
hagio

where p, is the —q Fourier component of the dielectric
particle density, and. v(q) =4me'jq'. The third term is
thc direct interaction bctwccn test electrons,

H2 2 Zr &(g)~k+p, s +k' —p, o'teak', u'+k, n ~ (15)

Following Kittel, wc construct a canonical trans-
formation to decouple the two systems to lowest order.
We shall consider the test electrons to be extremely
dilute and assume that we can ignore B2 in constructing
the transformation, so that the eigenfunctions of the
test electron system are plane waves, The transforma-
tion can be written

II=e ~Hrs=H+[H, S]+', [[H„S],S]+ ~,-(16)
where 8 is an anti-Hermitian operator. VVc may remove
H» to lowest order by requiring that

Hg+ [Hp, S]=0. (17)

The matrix elements of 5 may be found directly from
(17) using the plane-wave representation for the test
electrons and the

~
I) representation for the gas. Having

decoupled the systems, we wish to average over the
ground state of the dielectric. The effective Hamil-

2' D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953).
"See Ref. 19, p. 151.

result in a restriction on the states available to the
quasiparticle system, similar to the subsidiary condition
in Bohm and Pines' early treatment of screening. "
However, we shall use the effective Hamiltonian to
treat a spin-density disturbance, and it is eminently
reasonable that this mode of deformation would not
violate the restrictions of a rigorous theory. (Using it to
calculate density Quctuations, however, might be
questionable. )

The formal techniqueused to derive the effectivc
Hamiltonian for the test electrons in the electron-gas
dielectric medium is similar to that used by Kittel for
electrons in a phonon gas."Wc write the Hamiltonian
in three parts,
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tonian for the screened test electrons is then given by bolic identity
1/(x+iq) =P/xWis b(x),

+ &olCa„s]lo)yo("). (18)

It is easily shown that the average value of CH2, 8) is
zero, since it contains one factor of p~ only. The average
value of CII~,Sj in the dielectric ground state contains
an interaction between test electrons and a diagonal
operator,

+(&k' &k' q~—n) (&k' &k' q+—&n) j)

It is now necessary to consider the fact that (19) is
not a well-defined expression because the eigenvalues co„
form a continuum, and the energy denominators will,
in general, vanish somewhere in the range of the e sums.
Since the eigenstates

I n& are unknown, in fact, and since
their degeneracy is in6nite at any energy, this question
cannot be decided by recourse to exact expressions asmay
be done to decide similar problems which arise in onc-
particle scattering theory. For lack of a better alterna-
tive, we will argue as follows: The dressed electron
states we wish to describe are to be approximately
stationary, neither growing nor decaying in time. For
this to be true, the bare test particles must be scattered
out of and back into their initial state at the same rate
by the virtu aj. cxcltRtloQ RQd de-excitation of thc
dielectric. This process suggests the analogy of standing
wave states in one-partide scattering theory, which are
superpositions of incoming and outgoing wave scatter-
ing solutions. Thc lntegrals ovcI' singular cQcI'gy de-
nominators are treated as principal values in the ex-
pansion of these standing wave solutions, and wc shall
do the same. It should be noted that it is not this ap-
proximation, but the fact that we average over the
ground state of the dielectric that forbids test electron-
dielctric energy exchange and requires the test electron
efFective Hamiltonian to be Hermitian.

As it stands, (19) is of little use since it contains un-
known exact energies and matrix elements. However,
this same combination occurs in an exact eigenstate
treatment of the electron gas response to a time-depend-
ent external potential as

where e(q, &o) is the retarded dielectric function and g is a
positive in6nitcsima1. 23 Utilizing the well-known sym-

"P.Nozieres and D. Pines, Nuovo Cimento 9, 470 (j.958}.

where I' denotes the Cauchy principal value, we can
easily show that

=or 'P dt(a) —t)-'I Ime-'{q, t) I . (22)

Relations (20) and (22) enable us to identify all the
unknown elements of (19) in terms of the electron gas
dielectric function, which can be calculated approxi-
mately. It is found that the interaction term in (19)
contains a long-range part which exactly cancels the
direct Coulomb interaction between the test electrons,
H2, and that the remainder is short range.

If we now apply the test electron effective Hamil-
tonian to a Fermi sea of quasiparticles, and remove the
diagonal exchange portion from the two-particle inter-
action by expressing the Hamiltonian in terms of normal
products, 24 we obtain

Hop=+:cg ~tcg ~'. 6g—P 'v(q)tEg ~ Ree (q, 6g—eg ~}

e(q, (o) =1+2'(q) P
++~—6g—40—$g

(24)

Since (23) is to be employed at metallic densities, ex-
change corrections to (24) are undoubtedly signi6cant
for large q.' However, it is the small q interactions that
are of most importance in the question of the SD%
instability.

An alternative derivation of the test electron CGective
Hamiltonian was carried out in which the transforma-
tion generator 5 was found by solving (17) approxi-
mately as an operator equation instead of introducing
the eigenstate representation of B~.The key step in this
approach was a form of the random-phase approxima-

"The normal product of a set of 6eld operators is indicated by
enclosing the operators between colons. It is an ordered product
defined in terms of some particular vacuum state (in this case
the Fermi sphere) so that operators which annihilate excitations
of the vacuum stand to the right. For %'ick's theorem relating
normal products to ordinary products, see ¹ Bogoliubov and
D. Shirkov, IrItroduction to the Theory of QNueti2'ed Fields, trans-
lated by G. Volkoff (Interscience Publishers Inc., Neve York,
1959},p. 159.

+Q v{q)s-'P dh{eg—eg,—t) 'lime —'(q, t) I

0

+4 2 {:ox+a,~t+e—q, e' t~a', n'+t, ~:&(q)
kk'ti' o o'

&& CRee '(q, eg —eg,)+Res '(q, eg —eg. ,)j) . (23)

The self-consistent-6CM approximation to the dielectric
function" is then used,
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tion, "' replacing pairs of operators in a four operator
expression by their expectation value. It was necessary
to take principal values at two stages in this derivation,
both corresponding to degenerate-state matrix elements
of (17). This derivation yielded a form similar to (23)
for POI but with Re(v/e) replaced by v/Ree in the
screened interaction, and some corresponding changes
in the diagonal part (the self-energy). The self-consist-
ent field approximation to e occurred directly in this
second derivation.

In a treatment of the interaction between "minority
carriers" (similar to our test electrons) in the presence
of an electron gas, Nozieres and Pines obtained a
screened interaction similar to our second result" using
the Bohm and Pines collective coordinate method. "In
a later paper, Nozieres and Pines derived a screened
interaction between two classical test charges similar
to our 6rst result. "They argue that this I Re(e/e) j is
more correct than their earlier result (v/Res). The
quasiparticle energy given by our first method is identi-
cal to that obtained using the simplest self-energy
diagram with the screened interaction in the Green's-
function formalism, an approximation first used by
Quinn and Ferrell. "This equivalence is demonstrated
in the Appendix.

Despite these arguments, it was not entirely dear
(to us) that the retarded dielectric function should

appear in a quasiparticle theory designed to treat a
static problem. The damped screened interaction,
Re(v/e), and the undamped, v/Res, display considerable
differences, the latter being singular for electrons near
the Fermi surface. Therefore it was decided to carry out
the susceptibility calculation using both forms.

4. SOLUTION OF THE SUSCEPTIBILITY
INTEGRAL EQUATION

The same linearized self-consistent field technique
described ln Sec. 2 can be used with V@I to find X(Q)
for the quasipartide gas. It can be verified that the
perturbing magnetic field interacts with the quasi-
particles as if they were bare electrons by applying the
canonical transformation (16) to (2), and observing
that the average value in the dielectric ground state of
the first-order term vanishes. Physically, this reflects
the fact that the screening charge is not coupled to the
spin of the screened electron in our approximation. It is
more convenient to use a momentum representation
throughout in this X(Q) calculation rather than a form

such as (6), since the interaction in HOI is velocity-
dependent. Because the physics is the same, however,
we will not write out this calculation. The integral
equation for the amplitude of the exchange potential is

j' Ei, +.q/2 —Eg. q(2

XLV(k—k', k'+0/2)+ V(k' —k,k—Q/2)1, (25)

and the susceptibility is given by

~(Q) =2I s' E U(k) (26)
& ~v+q(2 —~g—q(c

In (25) and (26), EI, is the bracketed expression in the
diagonal part of (23), and

V(q,k) =Res(q) a-l(q, eI,—eI,+,) . (27)

For the case of the alternative derivation of H@I, the
right side of (27) would have the undamped form of the
interaction, and EJ, would be appropriately modified.
It is easily seen that (25) and (26) reduce to the result
of Sec. 2 when e(q, ~) is set equal to unity, and EI, to
the one-electron HF energy.

One assumption underlying this entire treatment is
that changes in the dielectric function caused by the
infinitesimal applied magnetic field produce only higher
order corrections to the magnetization than the linear
contribution retained. This would obviously be true if
all the one-electron wave functions were perturbed only
an infinitesimal amount. However, those for which
~~=~~+@ are perturbed a finite amount, and we are
forced to assume that the number of such states is not
significant. It is not possible to prove this point within
the context of the present treatment.

II1 consldcllng tllc Illcalls of solllfloll of (25), wc de-
cided to use an effective mass approximation for EI„
E&=k'/2m*, choosing m~ it give the correct density of
states at the Fermi surface. This approximation is
exact Rt snlRll Q, Rnd should Ilot modify Rlly cffcc'ts

of the SDW instability at large Q, since these involve
states near the Fermi surface. EI„. is evaluated numeri-

cally at several points near ky to obtain m* for each
density of interest.

It can be shown that U(k)= U( —k), enabling the
sum to be "folded" into half the volume. Changing from
summation to integration and using the dimensionless
VRI'lRblcs q=0/kp, x=k/kp, Rnd x =k /kp, tllc cqlla-
tion to be solved is

U(x) =1+(m*/4~'maokI ) d'x'(N, ,)2(1—e,.+,p) (x'. q)
—IRCL

I
x—x'

I

—'e-'(I x—x' I,x'—x"—q (x—x'))

+ I
x—x'I " '(lx+x'l, ~'—*"+q (*—*'))+lx+x'I " '(lx+x'I, *'—*"—q (x+*'))

+Ix+x'I '~ '(IX+X'I x'—s"+q {x+x'))jU(x')) (2g)

~' P. Nozihres an(I D. Pines, Phys. Rev. 109, 762 |,'1958).
"J.Quinn and R. Ferrel1, Phys. Rev. 112, 812 (1958).
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where ao is the hrst Bohr radius. In terms of these same
variables, the susceptibility is

X(Q)= (xi m*/2~m) d'x n, ,~2(1 sx+q/Q) U(x)/x q,

(29)

l.O-

0 0
0

0

Ql kF= I.O

where X~=3ep& /2E& is the Pauli susceptibility, ii
being the electron density and 8&=k p'/2m.

The dielectric function (24) can be evaluated ana-
lytically, but is sufFiciently complicated that the
analytic solution of (28) was not considered. It can be
shown from (28) that U(k) possesses axial symmetry
about Q. Therefore only a two-dimensional integral
equation must be solved, and this was considered a
feasible numerical calculation. Equation (28) qualifies
as an inhomogeg. eous Fredholm equation of the second
kind if a small amount of damping of the plasma zero
of e(q, ~) is added. As such, it possesses unique solutions
for all but isolated values of m*/aokp (Q being fixed).
It seemed probable that the iterative expansion of V
would not converge when an instability existed, so this
method was rejected. Instead, it proved practical to use
the Fredholm expansion" "by exploiting the fact that
only X,, a particular integral of the unknown function,
was desired rather than the unknown function itself.

Before discussing the method of solution, we will
describe the numerical method used to perform in-
tegrals such as occur in (28) and (29), since this will

lead to an economical notation. Spherical coordinates
were chosen, with the s axis parallel to 0, since these
will concentrate mesh points in the region where the
energy denominator is small and where presumably
U will be large. A mesh of points in a plane containing
the s axis is chosen, a typical example being shown in
Fig. 1, and numbered consecutively. A weighting factor
w; containing the Jacobian, the energy denominator
and numerical weighting factors" is assigned to each
point (0;,x;). In terms of this scheme, (28) can be
represented as

0.5- 0 0

0
0

0
0

0
0

0
0

0
o 4

0

I

0.5

0
0 0

I

I.O

o o
0

I

l.5

Fro. 1. A typical mesh used in numerical integrations per-
forrned in solving the susceptibility integral equation. The abscissa
is the s axis, and the ordinate is any line in the x-y plane.

their difference p, and is symmetric under the inter-
change of x and x'.

Since it is desirable to deal with a symmetric kernel,
the substitutions

~.—(w.)i/2

E''=( ')"'E'( )'",
g = U;(w;)'I'

were made in (30), giving

g~=&i+2 Eij gj ~

(32)

(33)

These same steps can be carried out for (29), giving

X=constg n,g;. (34)

It is now possible to explain the Fredholm method
and its application to this problem very simply. Re-
writing (33) without the indices, and introducing the
"interaction strength" parameter X which will eventu-
ally be set equal to unity,

U;=1+ Q Egw;U;,

where U;= U(e, ,x~), and

dip E(8;,x;;H, ,x, ;y) .

(30)

(31)

g = i+RE'g. (35)

[This might be regarded as an abstract representation
of (28) instead of a result of the numerical integration
scheme. ]The solution may be formally written

~ 0

E(x;x') is the bracketed expression in (28), which
depends on the polar angles of x and x' only through

g=(1—XE') 'v

and the susceptibility

X=const s(1—XE')—'i,

(36)

(37}
~' R. Courant and D. Hilbert, 3lethods of Mathematical Physics

(Interscience Publishers Inc. , New York, 1953), Vol. 1, p. 142.
28 P. Morse and H. Feshbach, 3IIethods of Theoretical Physics

(McGraw-Hill Book Company, New York, 1953) Vol. 2, p. 1018."A numerical integration scheme was employed in which
erst the x and then the 8 integration is carried out, using one-
dimensional parabolic interpolation for each, but overlapping the
parabolas so that the interior points are weighted equally and
curvature corrections occur at the ends of the range only. The
"numerical weighting factors" contain these curvature factors
and factors proportional to the spacing of the mesh points.

where e indicates the transpose of the one-column
matrix n. The resolvent kernel (or Green's function)
(1—XE') ' for (35) is known to exist for all but certain
isolated values of X, the eigenvalues of the homogeneous
equation, which are real in this case since E is sym-
metric. The iterative solution corresponds to an ex-
pansion of (1—XE') ' in a power series in X, whose
radius of convergence is determined by the eigenvalue
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IO The series (42) would be very difFicult to compute;
however, we do not need the matrix for (38), but
merely its "expectation value in the state e." The
susceptibility can be expanded

. =O. I

a kF~ 0.39

X=const(g a„X"/ P b„X"),
e=o n=o

(44)

- IO 0.5 I.O

0/kF

t

I.5 2.0 2.5

c„=v(K') "u,

(45)

Fxo. 2. Numerical susceptibility results using the inter-
action (46) showing stable but anomalous behavior.

closest to the origin of the complex I, plane. The
Fredholm solution corresponds to writing

1 q (lt)/(1 —l~K')
(38)

—in(tp(X)) = tr L
—K'/(1 —lI E')j,

dX

where tr denotes trace. The des~red power series ex-
pansion for y is found to be28

where ao ——1, and

(p(X) = g a„lt",
n=o

where q is a scalar function. If q is an entire function
with zeros of the proper order at each eigenvalue, the
numerator and denominator on the right in (38) will

be entire functions, and thus possess convergent power
series expansions for all 6nite P. One conveneint way to
choose such a q is to have it satisfy

as may be seen from (37) and (43). The quantities a

and c„may be computed quite easily once the matrix
E' is known.

In practice, the coeScients u and b„converge quite
rapidly, and if we define the Eth Fredholm ap-
proxirnant to X as the expression given by (44) with the
sums terminated at N=E, E usually need not be too
large. The entire procedure described above must be
performed for each value of Q and apkp (and its col'-

responding effective mass) for the dynamically screened
interaction. For the statically screened" interaction
4tre'/(q'+ntkt '), however, it is possible for each Q and
n to execute the entire solution for just one value of
apk p and then use (44) with X= ttt*'apk&/apk p'ttt* for
each other coke' desired, instead of setting X equal to
unity. For this reason, it was practical to compute X(Q)
for a wide range of n and aokp with this interaction. In
addition, the pp integration in (31) can be performed
analytically in this case.

The procedure described in this section was pro-
grammed for execution on a Philco 212 computer. The
program was designed to utilize a maximum mesh of
130 points, and to compute at most the 20th Fredholm
approximant. The most lengthy stage of each execution
of the entire computation was finding the matrix E'.

0 0

S. K3 K2 Ky

K& i Kn—2 Kn-3

a o ~ 0 Kg

0

0 trt . (41)

0 K4

+0
X

In (41), z„ is the trace of the ttth power of E'. The ex-
pansion of the numerator in (38) is c=O. I

a kF=O. M

(42)=g a„x-
1—)K I.O

0/k F

l.50.5 2.0

where the B„are matrices, 80 being the unit matrix I,
and I"xo. 3. Numerical susceptibility results using the interaction

(46) shouting an antiferromagnetic instability. At small Q, the
8„=(E')"+at(E')" i+ +a„ tE: +a„I (43) curve be.nds over and hits the ordinate at x/xi =12.



ELECTRON —GAS SP I N SUSCEPTI BI LI TY

S. SUSCEPTIBILITY FOR A STATICALLY
SCREENED INTERACTION

Before carrying out the solution of (28), &(Q) was
calculated using the theory of Sec. 2 and the interaction

IO

5-

This "statically screened" interaction was not intended
to represent the electron gas, but rather to provide a
simple adjustable-range interaction with which to
develop an understanding of the classes of behavior to
be expected from X(Q) results. The screening parameter
is chosen to be a fixed fraction of kg rather than a
constant, so that changing kp simply changes the
relative importance of potential and kinetic energy,
and not the "packing" of the particles. The Thomas-
Fermi approximation for the screened electron inter-
action corresponds to"

n= L4pr/apk p]'". (47)

The effective mass approximation for Ep /given by
(7) in this case] can be evaluated analytically using
(46), yielding

(m*/m) = (1—(1/2prapk p)L4 —(2+n') ln(1+4/n')]) '
(48)

In addition, the integral equation may be solved ex-
actly in the small Q limit (ferromagnetic deformation),
in which the eA'ective mass approximation is exact. The
critical density for the onset of ferromagnetic instability
(as the density is decreased) is

apk p ——(1/pr) $1—(n'/4) in(1+4/u')]. (49)

This can be verified by examining the dependence of
the HF energy on an in6nitesimal number of fUpped
spins, an approach which appears different but in fact
involves the same physical picture as the small-Q limit
approach. It should be noted that in the o.=0 limit
(bare Coulomb interactions), (49) predicts apkp= 1/pr as
the critical value. Bloch, however, derived the critical
value apkp=1. 1/pr by comparing the energies of the

IO

5

0
K

a ~O. I

ao" F~ 0.25

-IO p

0.5
I

I.O

Q/k F

l.5
I

2.0 2.5

FIG. 4. Numerical susceptibility results using the interaction
(46) showing disjoint ferromagnetic and antiferromagnetic un-
stable regions.
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FxG. 5. Numerical susceptibility results using the interaction
(46) showing a single unstable region with instability maxima
at Q=o and near Q=2kr.

unpolarized and fully polarized states. "Thus for apk p
between these values, the paramagnetic state is stable
with respect to infinitesimal ferromagnetic deforma-
tions, but is in fact ferromagnetically unstable (in the
HF approximation). Equation (49) also provided a
useful and nontrivial check on the numerical methods
discussed in the last section.

The only other limit which can be investigated
analytically is that of large 0,, that is, delta function
interactions. Wolff gave the results for this case, ' and we
shall describe them briefly for completeness. For weak
8 interactions, X(Q) is a monotonically decreasing func-
tion of Q, but enhanced in magnitude over the X of the
noninteracting gas. For the strength greater than a
critical value, X has a negative region peaked at Q=O,
a singularity, and is positive and monotonically de-
creasing above the singularity. From the discussion in
the introduction, we would infer that such behavior in-
dicates a maximum instability for Q=O deformations.

The x(Q) results for a rather long-range case, n= 0.1
are shown in Figs. 2—5. At high densities, X(Q) shows
no interesting structure. As apk~ is descreased, a peak
develops near Q= 2k~ (Fig. 2). Further decrease
produces a negative region peaked near Q=2k~, and
separated by singularities from the low-Q and high-Q
positive regions (Fig. 3). This indicates that the gas
is antiferromagnetically unstable, the Q of maximum
instability occurring at the peak of the negative region.
At still lower densities ferromagnetic and antiferro-
magnetic unstable regions occur (Fig. 4), and Qnally
the intermediate-Q stable region disappears (Fig. 5).

Investigations were carried out using the interaction
(46) for n=0.1, 0.2, 0.3, 0.4, 0.6, 1.0, and 2.0. The
results in these cases displayed the same qualitative
forms of behavior as have been discussed. For shorter
range interactions, however, the ferromagnetic in-
stability seemed dominant.

For n=0.3, for example, the high-density results were
monotonically decreasing. As the density was lowered,

~ P. Bloch, Z. Physik 57, 545 (1929).
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FIG. 6. Diagram in-
dicating the values of
aoky and n for which
instabilities are Grst
observed. P-A stands
for paramagnetic-anti-
ferromagnetic and P-F
for paramagnetic-fer-
romagnetic.
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a negative region 6rst appeared near Q=O and peaked
there, and a sharp peak formed in the positive region
near 2k'. At a lower density, peaked negative regions
were present around 0 and 2k', with a stable positive
region between. Finally at suKciently low densities this
stable region vanished, and the single negative portion
of the curve continued to display peaks at 0 and near
2k /pe

For shorter range interactions, two distinct negative
regions no longer appeared. Instead, the negative region
initially formed around Q=O, and then moved out
toward 2k' and formed a second peak as the density
was lowered. The shorter the range the lower the
density at which such a peak formed. For the shortest
range interaction investigated, 0,=2.0, it was no longer
possible to discern with certainty whether or not such
peaking occurred at large wave vector. The limiting
behavior, of course, is that of the 8 function, where only
the Q=O peak exists in the negative region.

The results of this investigation are best summarized
through a type of "phase diagram, "which is shown in
Fig. 6. Each point on this diagram represents a partic-
ular value of n and aokg. The location of the point
relative to the two lines labeled "phase boundaries"
indicates the qualitative nature of the susceptibility
curve for these values. Toward the upper right, the

2.0

I.8

Fn, 8. The electron quasiparticle self-energy at the Fermi
surface as a function of density. Ezo is the unperturbed Fermi
energy, ky /2m.

paramagnetic state is stable. Below the P-A (para-
magnetic-antiferromagnetic) boundary, the paramag-
netic state is unstable and the negative portion of the
X, curve shows a peak toward 2k~. The numerical
accuracy obtained was not sufFicient to decide unam-
biguously whether this curve should terminate on the
abscissa or approach it asymptotically. For small o.,
the curve is shown to approach the ordinate asymptotic-
ally since the HF antiferromagnetic instability is present
at all densities. ' The P-F (paramagnetic-ferromagnetic)
boundary is based on the analytic result (49), and the
paramagnetic state is unstable relative to ferromagnetic
deformations below it. This plot cannot be regarded as
a phase diagram in the true sense since it only rejects
the instability of the paramagnetic state relative to
infinitesimal deformations. The relative stabilities of
the ferromagnetic and antiferromagnetic states in the
area near the lower left-hand corner cannot be compared
by this method. Also, as shown by example earlier in
this section, the consideration of inhnitesimal deforma-
tions only is not a sufhcient criterion to establish the
stability of a state.

It may be seen from (4/) and Fig. 6 that the Thomas-
Fermi screened interaction would not predict an

TAaLE I. The self-energy and effective mass of a dressed
electron quasiparticle at the Fermi surface.

I.2
C

j.o
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O. I 0.5 I.O

I I r t I i

5 IO

FIG. 7, The electron quasiparticle eBective mass, chosen
to give the correct Fermi surface density of states, as a function
of density.
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FIG. 9. The electron-gas susceptibility in the metallic density region calculated using the damped dynamically screened
interaction. The vertical scale is in units of the Pauli susceptibihty.

antiferromagnetic instability for the electron gas at
metallic densities.

%e note that it was necessary to go to the fifteenth
Fredholm approximant for the small n cases. Extensive
tests indicated an over-all accuracy of the numerical
computation of about 1%%u~.

6. THE ELECTRON-GAS SUSCEPTIBILITY

A necessary preliminary to the actual calculation of
the susceptibility within the quasiparticle framework is
the evaluation of the quasiparticle energy-momentum
relation. The form derived along with the damped
screened interaction, given by the bracketed coefficient
of the diagonal term in (23), was evaluated numerically
in the vicinity of k= k& for a number of densities span-
ning the metallic range. "The resulting values of the
effective mass and the self-energy of an electron at the
Fermi surface are shown in Figs. 7 and 8 and in Table I.
The quasiparticle mass increases rapidly at low den-
sities, but is close to the bare electron mass in the
metallic region. In the high-density region, the quasi-

"The dimensionless density parameter apkz, where ap is the
first Bohr radius, proved more convenient in this work than the
customary r, . The two are related by apkz=(9m/4)'~'r, '. The
met, allic density range is roughly 0.3(apkp'(0. 7.

particle mass approaches the electron mass in a manner
similar to the high-density approximation to the same
mathematical form calculated by Quinn and Ferrell. "
The energy shift at the Fermi surface is large in the
metallic region, of the order of the kinetic energy. Its
magnitude, which is almost a straight line on the log-log
plot shown, varies approximately as aok& to the —1.1
power. Thus the (dimensionless) Fermi energy shift
comes close to being proportional to the (dimension-
less) interaction strength, which is reasonable but un-
expectedly simple. The self-energy expression derived
with the quasiparticle Hamiltonian having undamped
screened interactions was not evaluated, since an effec-
tive mass close to unity was anticipated on the basis of
the previous calculation.

The susceptibility calculated using the damped
screened interaction is shown in Fig. 9 for a series of
densities spanning the metallic range. The correspond-
ing results using the undamped screened interaction
(but eBective masses from Fig. 7) are shown in Fig. 10.
The results computed using both methods are compared
with the noninteracting electron-gas susceptibility in
Fig. 11 at one density well above the metallic range,
where the quantitative errors introduced by the use of
the self-consistent-6eld dielectric function should be
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PIG. 10. The electron-gas susceptibility in the metallic density region calculated using the undamped dynamically screened
interaction. The vertical scale is in units of the Pauli susceptibility.

small. It is seen that in all cases the susceptibility is
positive and monotonically decreasing. The electron
interactions have no significant qualitative effect, and
simply enhance the magnitude of X. It should be noted
that the vertical scale in these figures is in units of X~,
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Pro. 11. The electron gas susceptibility for aokz=2, computed
using both forms of the dynamically screened interaction and
compared to the noninteracting gas susceptibility.

the Pauli susceptibility. Since Xp=3nys2/2E~, where I
is the electron density, p~ the Bohr magneton, and
Ep= kI '/2m, the scale in absolute units is diferent for
each curve, and the graphs show the relative enhance-
ment of X caused by the interaction at each density.

Considering the the complexity of the dynamically
screened interaction, it was surprising that no more
complex structure was obtained in the & curves, and
that the use of the damped or undamped form made so
little difference. It was also observed that the Fredholm
approximants converged rapidly, the fourth usually
being within the estimated over-all numerical ac-
curacy of 1'Pq. This suggested that the self-consistent
6eld U in (28) was not a rapidly varying function, in
contrast with the case of the long-range interaction
examples in Sec. 5, where the lower order Fredholm
terms did not converge, and it is expected from related
calculations that U should vary rapidly. ' U being a
slowly varying function would account for much of the
detail of the dynamically screened interaction being
"averaged out" in the integral equation. In fact, a fair
portion of this averaging may take place in the angular
integration (31) arising simply from the axial symmetry
of U.
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TAsr, E II. Calculated zero vive-vector susceptibilities
in the metallic density region.

TmLE III. Knight-shift data used in I'ig. 12.
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FIG. 12. The ratio of the paramagnetic susceptibility of the
interacting electron gas to that of the noninteracting electron
gas, compared to Pines' theoretical result and experimental
+night-shift results for Li, Na, K, Rb, and Cs (right to left).

In carrying out the numerical integrations, a small
constant imaginary term (O.h) was added to p(q, tp)

where e was real as an expeditious way of dealing with
the plasma pole. In addition, a similar device was used
in the undamped screening case (so that it was in fact
"slightly damped"). It was shown in Sec. 5 that a
singular interaction is not necessary to obtain struc-
tured X(Q) curves and an antiferromagnetic instability.
Therefore it is not expected that a more careful treat-
ment of the relatively weak singularities in the dynamic
screening calculation would change the results.

The dependence of the uniform susceptibility X(0)
on density has been calculated by several authors. ""
These treatments, based on modern calculations of the
correlation energy, Qnd the change in the total energy of
the electron gas caused by an inhnitesimal uniform
polarization. This makes it extremely difFicult to corn-
pare the approximations made in these treatments with
those of our Q-dependent approach. However, calculated
values of X(0) may be compared with observed Knight-
shift results. Since all the calculations are based on the
free-electron gas model, a difhculty attending this com-
parison is that of including band structure. Following
Pines, " all the other calculations incorporated the
band-structure effective mass in the kinetic energy
contribution to the polarization, and gave the other
terms their free-electron gas value. While Pines'
arguments are plausible, the separation seems a some-

ss Ref. 32.
b From Pines' value for r&, Ref. 13.

what arbitrary one on which to base quantiative com-
parisons, especially since this approximation makes the
susceptibility strongly dependent on the effective mass.
Lacking quantitative arguments on how to include band
structure effective masses in the present theory, we
have chosen to compare the theoretical results with each
other and with experimental results for the alkali metals
on a strictly free-electron gas picture.

The Knight shift, E is related to the susceptibility
(of s-band electrons) by

E= (Ss./3)XP p, (50)

~T. Muto, S. Kobayasi, and H. Kosima, J. Phys. Chem.
Solids g3, 1303 (19(ig).

where P'& is the squared magnitude of the conduction
electron wave function at the nucleus, averaged. over the
Fermi surface. Experimental values for E and theoreti-
cal values for P~ were taken from Muto et al. ," and
the reader is referred to their paper for the original
sources. The values of X/Xp obtained from our theory,
from Pines' theory, and from the Knight-shift data are
plotted as a function of uokp in Fig. 12. Plotting this
particular quantity reveals the discrepancies most
clearly. In cases in which several calculated values of Pp
were available, the value selected was that which made
the experimental points for Na through Cs form the
smoothest curve. The two forms of the screened inter-
action gave identical susceptibilities in the small Q
limit within the numerical accuracy of the calculations.
These calculated values are given in Table II for the
metallic density range, and the Knight-shift data used
and susceptibilities obtained from (50) are given in
Table III.

The results of Silverstein" and those of Shimizu"
were expressed in terms of X/X~ and plotted as a func-
tion of upks. Qualitatively these functions were quite
similar to Pines', Silverstein's 1ying somewhat below
and Shimizu's somewhat above on a plot similar to
Fig. 12. Only Pines' was shown for clarity, and because
it is representative. These results all show a slope in the
metallic density region opposite to that of the present
calculation and of the experimental results for Na, K,
Rb, and Cs. Li gives a susceptibility quite out of line
with the other alkali metals, and undoubtedly band
structure corrections are important in this case.
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7. CONCLUSIONS

It is apparent from the results of Sec. 6 that, within
the approximations used, the screening effect of the
electron gas correlations renders the paramagnetic state
stable relative to infinitesimal deformations. In fact,
not even a remnant of the HF instability, which might
have been expected to add structure to the X(Q) curves,
is evident. This result might have been anticipated
from the study of the simplified interaction in Sec. 5,
through which it became apparent that the antiferro-
magnetic instability was quite fragile, since any sub-
stantial reduction of the range of the interaction made
the ferromagnetic instability dominant.

As noted previously, the absence of instabilities with
respect to in6nitesimal deformations does not establish
the stability of the paramagnetic state. The HF SDW
state should be used as a starting point for the calcula-
tion of the correlation energy to explore this point
further.

The resemblance of the susceptibility functions ob-
tained to that of the noninteracting gas indicates that
the explanation of anomalously large oscillations in the
indirect exchange interaction" should be sought
elsewhere. '

The density dependence of the zero wave-vector
susceptibility predicted by the present theory is in
better qualitative agreement with experiment than that
of previous theories. Although it is tempting to interpret
such agreement as an indication that the reliability of
the present calculation extends to lower electron den-
sities than previous ones, the possible importance of
band structure eBects, which we have not included,
leaves considerable doubt. We suggest that the low-

density behavior we have calculated iridicates the need
for further investigation of the possibility of a ferro-

magnetic instability at lower density.

ACKNOWLEDGMENTS

tions of Abrikosov et gl. ,33 and the reader is referred to
their text for the development of the Green's function
method.

In the particle-field formalism, the dressed Coulomb
propagator is s(q)/e(q, re), where e is the dielectric
function for causal boundary conditions. The bare
one-electron Green's function is

G'(k, ce) = [(0—((k)+ib sgn&(k) j, (A&)

where b is a positive in6nitesimal, sgn indicates "sign
of) and

&(k) = eg esr— (A2)

The simplest self-energy term, corresponding to the
emission and reabsorption of one dressed field quantum,
1S

Z(k, ro) = i(2s.) 4 d'q dro'G'(k q, ro—ro')—s(q)/e(q, ro') .

(A3)

In the nonrelativistic approximation we are using, the
Coulomb propagator does not have the proper form for
a true boson propagator, since e(q;,ro) approaches unity
as co approaches in6nity. Therefore we must make the
decomposition

s(q)/e(q, ~)=n(q)+D(q, ~), (A4)

where D(q, co) approaches zero as r0 approaches infinity,
and thus possesses a Lehmann spectral representation,

D(q, (u) = dt's(q, t)[(&e—t+ib) '—((v+t —ib)
—'].

(AS)

Substituing (AS) into (A4), we break Z into two terms,

Z(k, c0) =Z'"(k, (o)jZ"'(k,M), (A6)
where

Z"'(kro) , i(2=rr) ' d'gdh0's(q) [ro—su' —$(k—q)
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discussions. Z&'&(k, a&) = —(2tr) ' d'ps(q)tsar „ (AS)

+i»gn&(k —«)3-' (A&)

ln cases such as (A7) where the contribution to the ro'

integration from the circle at in6nity does not vanish,
we know from causality that the contour should be
closed in the lower half co' plane. The pole is only within
the contour when ~k —

q~ (k~, so

APPENDIX: GREEN'S FUNCTION DERIVA-
TION OF THE SELF-ENERGY

The simplest screened interaction contribution to
the dressed electron energy will be computed using the
green's function formalism, We will use the conven-

which is the ordinary exchange energy, as might have
been anticipated.

~ A. Abrikosov, I.. Gorkov, and I, Dzyaloshinski, Methods of
QNantuw Field Theory in Statistical Physics, translated by R.
Silverman (Prentice-Hall Inc. , Englewood CliBst New Jersey,
1963).
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