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Coupled-Channel Schrodinger-Equation Model for High-Energy Peripheral Collisions

JoHN G. WILLB, DAvID ELLIs,f ANn D. B. LIcHTENBERG

Physics Department, Indiana University, B/oomington, Indiana

(Received 15 October 1965)

We have considered a model for high-energy pion-nucleon scattering in which there are 3 (or 4) open
channels —rf9; pflr, rrftf" (and pftf*) an—d in which the scattering is determined by coupled Schrodinger
equations with Yukawa potentials corresponding to exchange of a single 2f- or p meson. All particles are con-
sidered spinless for simplicity, and relativistic kinematics are used. The calculations are done numerically
on a CDC-3600 computer, in the partial-wave representation, for all values of the orbital angular momentum
that contribute signi6cantly to the cross sections. The results are compared with those of 4 other approxi-
mations: (1) simple Born approximation, (2) Born approximation modified by absorption parameters taken
from elastic scattering, (3) the unitary S matrix obtained by identifying the Born approximation with the X
matrix, (4) Born approximation modiaed by absorption parameters determined in a self-consistent way from
the optical theorem. We Gnd that none of the approximate methods agree in detail with the coupled-channel
Schrodinger-equation results, but that methods (2), (3) and (4) agree qualitatively with the coupled-channel
method for the reaction 21-$ -+pS near the forward direction.

I. INTRODUCTION

HEN two strongly interacting particles collide
at high energy, a great many different things can

happen: The number of possible 6nal states increases
rapidly with the energy. Because there are many
strongly coupled channels, a calculation of the scatter-
ing into any one channel is not likely to be successful
if it ignores the effects of all the others. The most
obvious e6ect is that of absorption: The competition
of the other processes reduces the incident wave, and
so decreases the amplitude in question.

Fortunately, some simplifying features are also
present in many high-energy reactions. One such feature
is the tendency for multiparticle 6nal states to contain
resonant combinations of particles. This leads to the
approximation of considering only two-body 6nal
states, in which either or both of the particles may be
unstable. A second simplifying feature is that the
angular distributions of these two-body final states are
often sharply peaked in the forward direction. This
leads to the use of the peripheral model, in which only
one-particle exchange is considered, so as to account for
the long-range part of the interaction.

In addition to providing qualitative agreement with
the observed forward peaking of the production cross
sections, the peripheral model, calculated in lowest
order Born approximation, also gives, in many cases, an
approximately correct prediction for the decay angular
distributions of the unstable particles. However, these
calculations do not agree quantitatively with exper-
iment. In a number of cases the total cross sections
calculated by the Born approximation have come out
far too large. In almost all cases the observed angular
distribution is much more peaked in the forward direc-
tion than the angular distribution calculated from the
single-particle exchange diagrams. While there are
many explanations which might be given for these
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quantitative failures of the model, probably the most
obvious criticism is that the existence of all the other
competing processes has been ignored. Evidence that
such a procedure can not be right is provided by the
fact that if one makes a partial-wave expansion of the
Born-approximation amplitude one finds that the
partial-wave amplitudes often exceed the unitarity limit
in the lower partial waves. When several such strong
processes are going on at once, they cannot be treated
independently.

The idea of combining the simple peripheral model
with the fact of many competing reaction channels has
led to much of the recent work in analysis of high-energy
inelastic scattering —particularly in the production of
meson and baryon resonances. One method of taking
into account the effects of competing channels on any
given reaction is to use the distorted-wave Born
approximation with a complex potential in the elastic
channel. Summerfield' has applied this method to
production of hyperon-antihyperon pairs in nucleon-
antinucleon annihilation. An even simpler way to
reduce the Born-approximation results so as to account
for the competition of other open channels, is to
multiply the Born amplitude by initial-state and
6nal-state absorption parameters, which are deduced
from elastic-scattering experiments. An approximation
of this kind was 6rst used in high-energy physics by
Sopkovich. Subsequently, similar or identical approx-
imations have been used by Durand and Chiu, ' Ross
and Shaw, ' Gottfried and Jackson, ' and many others.
Gottfried and Jackson have pushed this method further
than any one else and have obtained quite good agree-
ment with many experiments, especially in those cases
involving exchange of pseudoscalar mesons. Since the
absorption parameters are always less than one, the

' G. C. Summerfield, Nuovo Cimento 23, 86/ (1962).». J. Sopkovich, Nuovo Cimento 26, 186 (1962).
~ L. Durand and Y. Chiu, Phys. Rev. Letters 12, 399 (1964).
4 M. Ross and G. Shaw, Phys. Rev. Letters 12, 627 (1964).
~K. Gottfried and J. D. Jackson, Nuovo Cimento 34, 735
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metho'd of Sopkovich is a way of lessening the extent of
violation of unitarity by the Born approximation. This
technique will be described in a little more detail later.

Of course the Sopkovich method, although currently
one of the most popular methods of partially unitarizing
the Born-approximation result, is not the only method
for doing this. There is also, for example, the so-called
E-matrix approximation, used by Arnold' and by
Dietz and Pilkuhn, 7 among others, in which the Born-
approximation amplitude is identified with the E
matrix. Using this approximation, one can construct
S-matrix elements which satisfy unitarity exactly.
Another method devised by Williams and one of us
(DBL)s makes use of the Sopkovich formula but does
not take the absorption parameters from experiment.
Rather, the method allows one to calculate them, using
the unitarity condition of the Smatrix. This is a method
which makes the magnitudes of the S-matrix elements
unitary but does not make the 5 matrix completely
unitary. Other methods make use of dispersion relations,
using for example the so-called N/D method. ' All these
approximation methods are designed to improve the
unitary properties of the lowest order Born approxima-
tion. But making the Born approximation unitary is
certainly not a unique prescription. Thus, although a
nonunitary approximation must be wrong, a unitary
one is not necessarily right.

Both the modified and the unmodified peripheral
models give much better agreement with experiment in
cases which seem to involve the exchange of a spinless
meson, than in reactions where it is reasonable to assume
that a meson of higher spin is exchanged. In particular,
the one vector meson exchange diagram predicts the
wrong energy dependence of the cross section. The
calculated value of the cross section increases as the
energy of the incident particle increases, whereas in
the actual experiment the cross section decreases rather
rapidly as the energy increases. This difFiculty is con-
nected with the well-known difficulties of field theoiies
of particles of spin 1 or greater, when calculated in
perturbation theory. We shall confine our considerations
to spinless particles, and shall have nothing to say
about this particular problem.

A diferent way of modifying the peripheral model
has been to postulate that form factors must be
introduced into the one-particle exchange diagrams. A
Dumber of people have had some success in this ap-
proach. In particular, Ferrari and Selleri" have been
able to obtain rather good agreement with a wide

variety of data using a single phenomenological form
factor which is a function of the square of the four-
momentum transfer. However, the use of a form

6 R. C. Arnold, Phys. Rev. 136, S1388 (1964).
~ K. Dietz and H. Pilkuhn (to be published).
' D. B.Liehtenberg and P. K. Williams, Phys. Rev. 139, S179

(1965).' P. Coulter, A. Seotti, and G. Shaw, Phys, Rev. 36, 1399 (1964).
"E. Ferrari and F. Selleri, Nuovo Cimento Suppl. 24, 453

(1962).

factor is rather unsatisfactory because it is hard to give
physical significance to parameters in the expression
assumed for the form factor.

A number of theoretical papers have been written
attempting to justify the validity of many of the
approximations discussed, in particular those based
on the method of Sopkovich. "These papers have shown
that under certain conditions the approximations are
indeed good ones. However, in general, it is easiest to
show that the improvements on the Born approximation
are good when the Born approximation elements
themselves are small and also give rather good agree-
ment with the predictions of an exact calculation. There
are certain other conditions under which the approxima-
tion also can be justified. We shall not go into a technical
discussion of these conditions. However, we think it is
fair to say that the use of these approximations has
not been fully justified under the conditions that are
believed to hold in high-energy collisions. For this
reason, we have devised a potential model which we
can solve numerically to.any desired accuracy and which
incorporates many of the features believed to hold in
the actual high-energy problem. We then compare the
prediction of some of the approximation methods to
the predictions of our model when solved numerically.
A comparison of various approximation methods with
some exactly solvable models has been carried out by
Kantor. " Kantor considered only scattering in /=0
states, whereas we consider all the parti. al waves
necessary (more than 20) to produce the forward peak
in high-energy scattering.

It is the main purpose of this paper to describe the
model and its numerical solution, and to give a compar-
ison of the approximation methods with the predictions
of this model. The model is as follows: We consider only
states in which two particles go in and two particles
come out. Each state of two particles is considered a
channel. All particles are taken to be spinless. We
assume that the interaction between particles is of the
form of a Yukawa potential, which, for an e-channel
problem, is an m-by-rs potential matrix. This potential
matrix can lead to scattering from a given initial channel
to any final channel which conserves energy. We assume
that. the exact solution to our model is the S matrix
that is obtained by putting our n-by-e potential matrix
into a Schrodinger equation, and solving the resulting e
coupled equations. Although these equations are basi-
cally nonrelativistic, we use the relativistic connection
between the momentum of any channel and its energy.
We also use reduced energies rather than reduced masses
in the equations. In other words, we use a nonrelativistic
Schrodinger equation with relativistic kinematics.
This coupled-channel Schrodinger equation is then

"L. Durand and Y. Chin, Phys. Rev. 139, B428 (1965);
R. Omnes, ibid. 137, B649 (1965); E. J. Squires, Nuovo Cimento
34, 1328 (1964); J. Sall and W. Frazer, Phys. Rev. Letters 14,
746 (1965).

"P.B. Kantor, Ann. Phys. (N. Y.) 33, 196 (1965).
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solved numerically and the S matrix elements and
differential cross sections are obtained.

To make the model as realistic as possible, we use
dimensionless coupling constarits for the Yukawa
potentials of the order of unity, corresponding to the
strengths of potentials to be expected in strong interac-
actions. For the ranges of the Yukawa potentials we take
ranges equal to the Compton wavelengths of mesons.
For the masses of incoming and outgoing particles, we
use masses equal to the masses of the observed strongly
interacting particles. All this can be done without
needlessly complicating the coupled-channel equations.
However, we take the particles to be spinless because the
inclusion of spin adds additional channels and therefore
complicates the equations. We wanted to take a model
as realistic as possible without unduly increasing the
time needed to solve the equations numerically.

In addition to the Born approximation result, we
compute the approximate predictions of the model of
Sopkovich, the E-matrix approximation method, and
the method of I.ichtenberg and Williams. We have not
used any of the methods based on dispersion relations.
We compare the results of the approximate methods
with the coupled channel calculation to test the validity
of the various approximations in our particular model.
The numerical calculation of the coupled-channel
Schrodinger equation can be thought of as a computer
experiment.

We make no comparison of any of our calculations
with experiment, as our model is not realistic enough to
warrant such a comparison. Rather, our purpose is to
test the rather widely used approximation methods
against a model which can be calculated precisely.

In Sec. II we describe the model and discuss how it is
solved exactly by numerical solution of a coupled-
channel Schrodinger equation. We also describe the
various approximation methods to be tested. In Sec.
III, we describe certain interesting features of the
5-matrix elements and diGerential cross sections, as
calculated by the coupled-channel Schrodinger equation
method. The reader who is interested only in a compar-
ison of the exact predictions of the model with the
approximation methods may skip Sec. III and go on to
Sec. IV, where this comparison is made. Our conclusions
are given in Sec. V.

II. DESCRIPTION OF THE CALCULATIONS

We shall now discuss the parametrization of the
S matrix and formulas for scattering amplitudes and
cross sections in an e-channel problem. The differential
cross section for scattering from channel n to channel P
is given by

(&~/&It)-s= I f-s(~&) I', (I)
where the scattering amplitude is related to the partial-
wave S matrix S p&" as follows:

00

f.s(0) = —P (2t+1)LS.s"'—S.,3',(cosa). (2)
2ip» E 0=

The wave function 4 s(r) describes scattering from
channel n to channel P. We use relativistic kinematics,
so that instead of the reduced mass, there appears X

the reduced total energy in channel n: X =E«E&»/
(E~»+E2»), where E&» and E2» are the energies of the
two particles in the center-of-mass system. Also E
=p '/2X takes the place of the kinetic energy, where

p is the momentum of either particle in the center of
mass system, computed relativistically. The potential
energy is assumed to be of the form

I «»(r)= g«sr 'exp( p»r)

where the g p are strength parameters and the p, p are
range parameters (A=c= 1). The scattering amplitude
from channel n to channel P appears in the asymptotic
behavior of the wave function for large r:

1/2

~'-s(r)-&«s~*"+ — f.s(~)r ' exp(ipsr) (6)
Pp

where s is the relative velocity s =p /X .
A partial wave analysis gives the diBerential equa-

tions to be solved

4& p(r) =P r-'N s&»(r)P&(coso)
L

d2 t(ty1)-
,~-s'"(r)+ ps'

dr' r'
u s&'&(r)

—2X» P V» (r)e &"(r) =0. (8)

Here 8» is the Kronecker delta, p is the center-of-mass-
system momentum in channel n, and 8 is the center-of-
mass-system scattering angle. A number of authors' 6

have used the so-called impact-parameter representa-
tion in which the scattering amplitude is written as an
integral over impact parameters rather than as a sum
over partial waves. This approximation is useful at
high energy when large numbers of partial waves
contribute, and in some cases makes for simpler calcula-
tions. However, we shall concern ourselves exclusively
with the partial wave representation.

The 5-matrix elements can be parametrized either in
terms of their real and imaginary parts or, more
commonly, in terms of absorption parameters p p&"

and real phase shifts 8 p"):

S s&' =&e»»»"& exp(2ib»&»), c s=1 if n=P
= i if n~P. (3)

For simplicity, we sometimes drop the superscript l, or
write it as a subscript when the indices n and P are
absent.

The set of coupled Schrodinger equations which we
use is as follows:
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We obtain the S-matrix elements from the following
boundary conditions:

2)+1 Pp(pI p&')(r) ri'
2 P.«& p

&&LS ("& "'(P )+& & ")(Pp )j (9)

where h~&'& and h~(') are spherical Hankel functions of
the 6rst and second kind, respectively. Equations (8)
were solved by direct numerical integration on the
Indiana University CDC 3600 computer, using a
modification of the program which one of us (JGW)
had previously written for calculations of low-energy
n-particle scattering. This procedure gives us what we
call the exact coupled-channel result.

We now describe the approximation methods. The
Born-approximation scattering amplitude is calculated
in the usual way. We denote this result by f&(e),
suppressing the channel indices n and P. We can expand
the Born approximation amplitudes in partial waves,
obtaining

f (e)=(1/2p)Z(2i+1)B 1' ( o 9) (1o)

The Born approximation for the S matrix is denoted by
S&(B)=1+iB&, or in more detail,

S p"'(B)=& p+l 2'g p/(&) "p)"'3Q&(k p) (11)

where Q& is the Legendre function of the second kind,
and

&-p= (I -p'+P-'+P p')/2P-P p (12)

The approximation 6rst used by Sopkovich' is a
method to obtain only the nondiagonal elements of the
S matrix. The prescription is that the nondiagonal
S-matrix elements are given by the following formula:

S p(&) (SF)= i(S (o)&/2B p(&) (Spp(&))&/2 o+P (]3)

where the SF attached to the symbol for the S matrix
stands for Sopkovich's formula. In this formula the
diagonal elements S &'& and Spy('& are supposed to be
given by experiment. In our model we have no actual
experiment, but we do have our computer experiment.
Therefore in (13) we use the S &') and Spp") as
determined from the results of the coupled channel
calculation.

The E-matrix method' ~ starts from the Born
approximation J3& but obtains a unitary S matrix from
8& by the following matrix equation:

S&(E)= (1+-',iB&) (1—-', iB&) '.. (14)

Since in this formula the relation between S~ and 8~
is the conventional relation between S~ and the E
matrix, we call this the E-matrix approximation.

The method developed by I ichtenberg and Williams'

again starts with the formula given in Eq. (13), but
the elastic S-matrix elements are not determined from

the computer experiment. Rather, they are given by
the following formulas:

S &" (LW) =))„,('&, (15)

S~p(') (LW) =i(g~~(")'~'B p(') (r)p &'))'~' for 0«B, (16)

where

(o L1+ P B (l)&j-1/2 (17)

See Ref. 7 for a discussion of these formulas.
In deciding what energy, what potential, and how

many channels to use, we try to consider a realistic
problem and at the same time try to minimize the
computing time. First of all, the computing time in
doing a coupled-channel calculation goes approximately
as the cube of the number of channels. Therefore it is
to our advantage to try to keep the number of channels
as small as possible. Unfortunately, at high energy the
number of channels in a realistic calculation is rather
large and increases with increasing energy. Therefore
we did not go to too high an energy. Another factor
working against going to too high energy is that the
value of the relative momentum increases with increas-
ing energy and the wave function oscillates with a higher
frequency. This means that smaller integration steps
are needed for a given accuracy. Also, the number of
partial waves which must be calculated increases with
energy. Again, high-energy increases the length of
computing time needed. However, if we go to too low
an energy, the peripheral model is likely not to be valid
at all. We compromise at taking incident laboratory
momenta p between 1.6 and 4.0 BeV/c.

We considered three- and four-channel problems.
For the four-channel problem the channels considered
were

~+1K~ s.+1V,
—& p+E,
~m+6,
~ p+1I&,

(18)

where ~ is the x-E resonance at a mass of 1238 MeV.
For the three-channel problem the ph. channel was
omitted. We found that there was not very much
qualitative difference between doing a four- and a
three-channel problem.

The choice of the strengths and ranges of the Yukawa
potentials presented a few difficulties. In addition to
ignoring spin in the problem, we did not include isospin.
Therefore, even in those cases in which the actual
coupling constants are known, we have no valid criteria
for obtaining the signs of the Yukawa potentials. We
tried different choices of signs of the potentials to see
what effect this would have. In some of the physical
reactions shown in Eq. (18), one-pion exchange proc-
esses are allowed, and in other cases they are forbidden

by G parity conservation. We used for the ranges of the
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potentials the pion Compton vravelength if a pion is
allowed to be exchanged, and a p-meson Cornpton vrave-

length if pion exchange is forbidden by G-parity
conservation. To be precise, the model to which vre

gave the most attention is the 3-channel problem vrhere
channels 1, 2, and 3 represent xE, pX, and xA states,
respectively. The range parameters of the potentials
/see Eq. (5)j are then given by

5$p

p~p= SSg

l fop mp»

For most of our calculations, we assumed that all
dimensionless coupling constants are equal to one.
We considered various combinations as follows: All
potentials negative (attractive), all potentials positive
(repulsive), potentials with range equal to the pion

brompton vravelength positive and potentials vrith p
Compton vravelength negative, and vice versa. Of
course the effect of a positive nondiagonal potential is
not necessarily repulsive. For example, in a two-channel
problem a nondiagonal potential has the same attractive
CRect independent of the sign of the potential. Also,
since the range of the m-exchange potential is so much
longer than that of the p-exchange potential, vre also
calculated the case in vrhich oddly x exchange is con-
sidered; that is, the p-exchange coupling constants
vrere set equal to zero.

DI. GENERAL CHAIUL. CTER OF THE
COUPLED-CHANNEL RESULTS

The peripheral nature of the scattering is clearly
shovrn in the coupled channel cmss sections. In all
channels (elastic scattering and production of particles)
the differential cross section shows a sharp peaking in
the forward direction, dropping one or two orders of
magnitude for momentum transfers &3 times the pion
mass. At larger momentum transfers the behavior of
the coupled channel cross section depends on details.
The results depend on vrhich channel we are considering
and on whether the potentials are positive or negative.
The coupled channel cmss section may continue to fall
as the angle increases, or there may be an abrupt change
of slope and the angular distribution may become
fairly Qat at larger angles. Hovrever, the cross section at
large angles is so small compared to the cross section in
the forvrard angles that one would tend not to believe
the model at these angles. In other words in actual
high-energy reactions, CGects such as exchange of
heavier particles, CR'ects of crossing symmetry, and
many-body 6nal stRtcs will make contrlbutlons to thc
cross section at angles which are large compared to the
contributions from x exchange.

Although the model is unrealistic at the large angles,
it is amusing to look at v hat the predictions are. If all
potentials are attractive the elastic scattering cross
section becomes relatively Bat at large angles. However,

a.o- ~+K-&+N

FIG. i. Real and imag-
inary parts of the cal-
culated pion-nucleon for-
vrard elastic scattering
amplitude as a function
of incident pion center-of-
mass momentum p&. The
solid line showers the imag-
inary part, and the circles
shou& the real part. 9'e
give the real part at only
taro momenta, because a
large amount of comput-
ing time is necessary to
obtain suQicient precision.
See text for further ex-
planation.
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if the one-pion-exchange potentials are attractive,
vrhereas the p-exchange potentials are repulsive, there
is a rapid drop in the elastic scattering cross section
all the way to cos8= —i. The cross section drops 6vc
orders of magnitude in this case between cos8=+I
and —1.It is only on a semilog plot, hovrever, that the
di8erence between the two cases can be seen. On a
linear scale the cmss sections at n1omentum transfers
&3 pion masses are negligible, compared to the cross
sections in the forward direction, in both cases.

A notevrorthy feature of the coupled channel results
is that the real part of the elastic scattering amplitude
is irnportRnt. Even lf there ls no p cxc11angc, so that
all elastic scattering results from the indirect CGect of
pion exchange, there is a large real part of the clastic
scattering amplitude. In our problem, the real part
often turns out to be greater than thc imaginary part,
even in the forward peak. This feature shows that our
model is not completely realistic, because it is known
that at high energy the imaginary part of the scattering
amplitude is greater than the real part. However, we
do 6nd the imaginary part becoming relatively more
important as the energy is increased. Figure 1 shows
the real and imaginary parts of the zem-angle elastic-
scattering amplitude, for the case of all attractive poten-
tials, as a function of p~, the incident center-of-mass
momentum.

The real part of the forward elastic amplitude is very
sensitive to errors in the elastic scattering phase shifts
at high /. To get an accurate measure of Reft(0),
especially at high energy, w e must go to a much sn1aller
step size in the numerical integration, than is necessary
for the rest of our results. For this reason vre have only
two good calculations of Refn(0) —at 1.6 and 3.15
BeV/c lab momentum.

In addition to looking at the cross sections it is
instructive to examine the behavior of the 8-matrix
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FIG. 2. The behavior of the calculated S-matrix element as a
function of orbital angular momentum l for pion-nucleon elastic
scattering at an incident pion laboratory momentum of 3.15
BeV/c. The calculations were done only at integral values of l,
and the curve is merely drawn to aid the eye.

elements as a function of l. Of course we compute the
S-matrix elements only for integer values of /. However
we can draw smooth curves between the S-matrix
elements for different values of l to aid the eye. Presum-
ably, if we solved the radial Schrodinger equation for
these intermediate values of l, the S-matrix elements
would follow a path not too diferent from the one we
draw. Besides graphs of g versus l, and 8 versus l, we
have drawn curves directly showing the motion of S
in the complex plane, as l is varied. It has proved
necessary to make these plots in order to try to get
information about the absolute phase of the S matrix.
The coupled-channel calculation gives the phases b~ of
the S matrix only modulo s- (i.e., 180'). This fact does
not lead to any ambiguity in the cross sections, since
the expression for the cross sections contains the phases
only in the factors e"".However, in the approximation
given by the Sopkovich formula, the square root of
the S matrix enters. Thus, if a phase is altered by x, a
real change occurs in the cross section predicted by
Sopkovich's formula.

In a one-channel problem, the complex number Sg
(the 1-by-1 S matrix) will move along on the unit

".8
o.sI

I I I I I

-.4 -.2 0 .2 .4 .6 .8

ReS z
(OI

FIG. 4. The calculated s-wave S-matrix element for p-nucleon
elastic scattering (S~2&0)) as a function of the coupling strength g
of the Yukawa potentials.

circle as the parameters of the problem, such as energy,
coupling strength, or angular momentum /, are varied.
Scattering is strongest when S~= —1, and a resonance
corresponds to S~ moving rapidly, counterclockwise,
through the value —1 as the energy is increased. The
behavior of the individual S-matrix elements S p& ~ in a
coupled-channel problem is only qualitatively similar.
Figures 2 and 3 show the traces in the complex plane
made by some representative S-matrix elements at a
given energy (incident pion momentum 3.15 BeV/c)
as the parameter / is varied. We also found some very
similar curves by plotting S p( ) as a function of g,
the over-all strength of our potential matrix. One of
these is shown in Fig. 4. Here we are not handicapped
by a discrete independent variable, and can obtain
the curve in as much detail as necessary.

With a stretch of the imagination, all these curves
might be regarded as distorted circles, the motion being
counterclockwise (increasing phase shifts) as the
strength of the coupling is increased, or, equivalently,
as / is reduced. Figures 3 and 4 show the S-matrix
elements for p-nucleon scattering rather than for

90o

ISQo Qo

I80'

270

Fzo. 3. The calculated S-matrix elements for p-nucleon elastic
scattering versus l at the same energy in the c.m. system as in
Flg. 2.

270'

FrG. 5. Path of S11&'& (the s-wave S-matrix element for pion-
nucleon elastic scattering) as the coupling constant g is varied
from 0.2 to 1.0.
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x-nucleon scattering because the p-nucleon curves are
more distorted from circles. To get a feeling for
this behavior of S, we looked at a case in which the
Schrodinger matrix equation can be diagonalized. If
the Schrodinger equation is diagonalizable, the solution
to an e-channel problem can be written in terms of the
solution to a single channel problem, in which the paths
of S-matrix elements are circles.

The Schrodinger equation can be diagonalized if the
kinematics are the same in all channels and the elements
of the potential matrix all have the same range. A
detailed discussion of this problem in a four-channel
case is given in the Appendix. A three-channel case can
be done analogously. The S matrix turns out to be

1 1 1
S=1+-'(e"'—1) 1 1 1

.1 1 1-
(19)

where 5 and e"~ are the phase shift and S-matrix,
respectively, for a one channel case. Here 8 is just the
eigenphase shift for this simple diagonalizable case.
From Eq. (19) we see that the elastic S-matrix elements
are all alike,

S =-', +-'se' s

and the inelastic elements are

r+ resis

(20)

(21)

v+N~m+N
3 CHANNEI S

ISO' —ATTRACTIVE POTE E=o

I60O—

Equations (20) and (21) represent circles in the
complex plane of radius ~~. If 8 is monotonically increas-
ing, S and S p will circulate counterclockwise.
Resonant effects will show up here if S moves
rapidly downward across the real axis at 3. The extent
to which it is a mistake to neglect the diGerences in
ranges and masses, is shown by the extent to which

H

I

~+W- ~+N(S„~
-8-

p (Lab) = 1.6 8eV/c
3 CHANNELS

.6 — ATTRACTIVE POTENTIALS

NO fs EXCHANGE
qPHYSICAL MASSES

O—
fA

E

-4—

~s
.8 EQUAL MAS

t.s~s
I.O

g =0.2

these simple circular curves are distorted in the actual
coupled channel results.

In Fig. 5 is illustrated the dilemma mentioned above
about the choice of phase for use in Sopkovich's formula.
At low energy the path followed by S»&'~, as the
strength g is increased, encircles the origin, while at
high energy, it does not. Since the square root in
Sopkovich's formula introduces a branch point at the
origin, it would seem that some procedure such as this
is necessary to discover which branch to take. This
criterion requires 5»&'~ to be positive at low energy and
negative at high energy. However, this seems very
arti6cial since the behavior of S~~&'& as a function of the
energy is very smooth (Fig. 6) and no special significance
seems to attach to the question of whether or not the
curve has encircled the origin. For this reason we have
kept both cases, and in the cross section graphs, the
curves labeled SF result from the assumption b~~&'&&0,

and those labeled SF from the assumption b~~t'&&0.

I I I I I I I

-.6 -.4 -.2 0 .2 .4 .6 .8
(0)
Il

FIG. 7. The behavior of Su&'& (calculated elastic pion-nucleon
s-wave S-matrix element) as a function of the coupling strength.
Yo show the e6'ects of kinematics, we compare the case in which
all particles have their actual masses (marked physical masses)
with the case in which the incident particle has the pion mass
and the target particle the nucleon mass in all three channels
(marked equal masses).

FIG. 6. Calculated
pion-nucleon elastic
scattering phase shifts
bii~~& as a function of
laboratory pion momen-
tum.
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p+ N -p+ N (S„)
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5 CHANNELS
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g ~.2

40—

20—
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I I
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I I I I

-.2 ' 0 .2 .4 .6 .8
to)

Re S»
I I I I

I 2 5 4
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Fro. 8. The behavior of Sss&'& (calculated elastic p-nucleon
s-wave matrix element as a function of the coupling strength).
See caption to Fig. 7.
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IO'
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+IP I

b'0

~+8-~+I
p {Lab}*S.ISBev/c
ATTRACTIVE POTENTIAL

5 CHANNELS

Fxo. 9. A comparison
of the calculated pion-
nucleon differential cross
section for elastic scat-
tering in a three-channel
case with the cross sec-
tion in a four-channel
case. The angle 8 is the
center-of-mass scatter-
ing angle of the meson
in all Ggures.

I

0
cos e

IpIO

IO

~+8- p+N
{Lab}= S.IS BeY/c

ALS

For all the other channels and l values, we felt that the
choice was relatively unambiguous.

One remarkable feature of the results obtained by
solving the coupled channel equations is that S22&'i

always moves very quickly into the lower half-plane;
in other words, except for very high l or very weak
attractive potentials, 822&'& is negative. This is true for
all the cases we calculated, both 3- and 4-channel,
regardless of the energy, or whether the diagonal
potential was positive, negative, or zero. Therefore it
would seem to be a kinematical e6ect. To check this
idea, we went to the case of no p exchange, where all
elements of the potential matrix are zero except for
those off-diagnal elements where pion exchange is
allowed. Using this potential, we did two calculations
of the 1=0 S matrix as a function of g: 6rst with the
same kinematics in all three channels, so that the

problem is diagonalizable; second, with the actual
particle masses, a case which is not diagonalizable. The
results are shown in Figs. 7 and 8. In the 6rst case,
solution by diagonalization shows that S»(') should be
just equal to 2S»(') —j., and this behavior is demon-
strated by our numerical results. In the second case,
just changing the kinematics, we see a return of the
familiar situation in which 5» is strongly positive, and
5» strongly negative.

This persistent sizable difference between S» and S»
is noteworthy for the following reason. In applying
Sopkovich's formula to an actual experiment, such as p
production, one needs to know S», the S-matrix element
for elastic p-nucleon scattering, which of course is totally
unknown. Thus the procedure usually adopted is to
assume S»=S». In our model, this is a bad approxima-
tion, despite the fact that we have used identical
interactions for the x and p mesons; the mass difference
between the x and p alone is responsible. Further
demonstration of the difference between these two
elastic elements is given in Fig. 22 of the next sec-
tion.

In the upper portion of our energy range, it is
energetically feasible to produce the p and the
resonances together. Therefore, at incident lab momen-
tum 3.15 BeV/c, we performed a 4-channel calculation
in which the p-6 channel was added to the other three

(~E, pS, mh), still ignoring spins, of course. All the

coupling constants g p were set equal to one, as they
were in the 3-channel calculation at the same energy.
However, we get in this way an electively stronger
interaction, in the sense that the total cross section is
increased by the addition of another channel, especially
since this new channel is coupled to the incident channel

by the strong m-exchange potential. The results are
qualitatively the same for the 3- and 4-channel cases.
The increase in the elastic scattering cross section is
shown in Fig. 9; a decrease in the p-production forward

peak, presumably due to increased competition from
the fourth channel, can be seen in Fig. 10. A typical
comparison of results for the behavior of an S-matrix
element as a function of /, is shown in Fig. 11;here the
elastic element S» is seen to curl around further in the

e~s 10
cO O

LI

Ce

'CI

Ip

I80'

90'

FxG. 11. A polar
plot of S1j.as a func-
tion of l in the 3- and
4-channel cases.

I.O .9
COS 8

FIG. 10. A comparison of the calculated cross section for
~+TV ~p+S in 3- and 4-channel cases. 2700
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FxG. 15. A comparison of the
various calculated cross sec-
tions for m.+N ~p+N versus
squared 3-momentum transfer
q2 at an incident momentum of
2.5 BeV/c. Here p is the pion
mass.

Ol
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Cy
U

b'u

21js
I i I i I ) I

2 ~ 6 e
q'(IO' MeV')

IO

ATT

using absorption parameters ought to improve the
agreement with the experiment. Ke see that between
cos8=1 and cosa=0.9, corresponding to a region of
three-momentum transfer given by 140(g (500 Me V/c,
the agreement between the approximate solutions and
the coupled-channel results is rather good.

However, we see that at large angles, coso(0.8, the
Born approximation actually gives better agreement
with the coupled-channel result than any of the approx-
imation methods. However, this should not be taken
seriously, since the cross section has fallen two orders of
magnitude or more and the peripheral model is not
valid for cos8&0.8, which is to say for q&5 p, where p
is the pion mass. The two curves marked SF and SF
need some explanation. The curve marked SF is that
curve which is obtained by changing the s-wave phase
shift b»&" of the coupled-channel calculation by x,
making it a small negative rather than a large positive
phase. If we had changed all the phase shifts by x
we would get no change in the cross section, but
changing the s-wave phase by m relative to all the other
phases and then taking the square root in Sopkovich's
formula leads to the differences shown in the figure.
However, in the forward angles the differences between
these two cases are not nearly so large. The higher the
energy, the less important this s-wave phase shift
becomes.

.IO 6 8 IO I2 I4 I6

q'(io' Mev')

FIG. 11. Same as Fig. 15 at 4.0 BeV/c.

IO

g +N p+N
3 CHANNELS

ATTRACTIVE POTENTIALS

Figure 13 shows the elastic scattering cross section
m+N —+vr+N on a semilogarithmic scale over the
whole angular region. We see from the figure that at
large angles the Born approximation result is closer to
the coupled channel calculation than either of the two
other approximation methods, which are supposedly
improvements on the Born approximation. However,
near the forward direction, where the cross section is
appreciable, the modified approximation methods are
better. At the large angles the cross section has dropped
more than two orders of magnitude and is negligible.
There is no curve marked SF for elastic scattering,
since the coupled-channel results (CC) are input data
in Sopkovich's method.

We next show the inelastic channel e+N +e.+6-
(Fig. 14). This is a p-exchange channel, and the Born
approximation result is quite a bit smaller than the

IO

ill

I—
'O

'O

lO

~
I

8&0»
C$ FIG. 16. Same as Fig. &5

at 3.1$ BeV/c.
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4 6 8
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0 2 IO I2
Fsc. 18. Calculated cross sections for m'+N ~p+N at axed

3-momentum transfer {q=2p) as a function of the incident CM
momentum P1.
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FIG. 19.A comparison
of calculated cross sec-
tions for x+N~ p+N
at incident momentum
1.6 11eV/c with attrac-
tive potentials.
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Fzo. 21. Same as
Fig. 19 with only +-
exchange potentials (p-
exchange potentials are
set equal to zero).
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coupled channel result. When this is the case, use of
Sopkovich's formula, which reduces the Born approx-
imation still further, cannot be expected to lead to
improvement with experiment at any angle. The
K-matrix method, however, employing exact unitarity,
does give considerable improvement for small angles.
The results presented in Figs. 12, 13, and 1.4 for lab
momentum of 3.15 BeV/c, are very similar to those
obtained at our other momenta (1.6, 2.0, 2.5, 4.0)
using the same potentials.

Because we are dealing with a peripheral model, we
are principally interested in small-angle scattering,
with momentum transfers q of a few pion masses;
moreover, the approximations we are studying are of
use mainly on the forward peak in the differential
cross section for p production. Using an expanded scale

to show this peak in detail, we 6nd an amazingly good
agreement between Spokovich's formula and exact
results at 3.15 BeV/c. However, the agreement does not
persist at other energies: the SF curve is too high at
2.5 and too low at 4.0. The other approximations give
cross sections which are too high for small momentum
transfers at all energies considered. Figures 15, 16 and
17 show the small-angle p production cross section as a
function of squared 3-momentum transfer q', for lab
momenta of 2.5, 3.15, and 4.0 BeV/c, respectively.
All the approximation methods are significantly
better than Born approximation in these cases, with
Sopkovich's formula seemingly the best. The energy
dependence of the SF and exact cross sections is shown
in Fig. 18, where the cross sections at fixed momentum

Fn. 20. Same as Fig.
19 with repulsive poten-
tials.
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FzG. 22. A comparison of the absorption parameters q11 and real
phases 81i for pion-nucleon elastic scattering as a function of l, as
calculated by various methods. The values of 8 and g are computed
orily for integral values of l, and the curves are drawn merely to
aid the eye. There is no curve marked SF, since the Sopkovich
method allows one to calculate g for inelastic processes. The
8's are all 0 in the LW approximation. Also shown are the coupled-
channel results for y~g and b~g (p-nucleon elastic scattering), since
certain approximation methods assume that gag =g11 and 42=511.
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transfer q=2 p are plotted against pi, the intial-state
center-of-mass momentum. We might mention that
3.15 BeV/c was the first momentum at which we did
any calculations, and that it was chosen for the largely
irrelevant reason that some experimental data existed
at that energy. Yet we chose the one energy at which
Sopkovich's formula method gives essentially perfect
agreement with the exact solution of our Schrodinger
equation model for the cross section at forward angles.

Next let us look at the cross sections for different
signs of the potentials. So far we have been discussing
the case of all attractive potentials at different energies.
Because we found only smooth and rather weak energy
dependence, we did the following calculations all at
1.6 BeV/c where the longer wavelength makes the
integration of the differential equations easier. Also we
consider the efI."ect of neglecting the p-exchange poten-
tials entirely.

If the coupling constants g p of all the x-exchange
potential elements are kept equal to a single constant,
g, then the cross sections in all channels are independ'-
ent of the sign g . The reason for this is that the
m-exchange potential always changes a vr-meson state
into a p-meson state, or vice versa: thus any given
scattering amplitude is a sum of terms which are
either all odd or all even in g . So the case of attractive
~-exchange and repulsive p-exchange is identical to
that of all repulsive potentials, and the case in which
those two signs are reversed is the same as the all-
attractive case.

Figures 19, 20, and 21 show the differential cross
section for p production at 1.6 BeU/c in the following
three cases, respectively: all attractive potentials; all
repulsive potentials; attractive m- exchange and zero

p exchange. The Born approximation is exactly the same
for all three of these cases; the IC and LW (Lichtenberg-
Williams) methods give the same results for the first
two cases. Qualitatively the three cases are quite similar
in that all three approximation methods are too large
in the forward peak, although about the right shape.

I I I I I J I I I I0 1 23g45 6 70 I 234567
Fio. 23. A comparison of the absorption parameters g12 and real

phases Bj.2 for the reaction m+S'~ p+1V as a function of /, as
calculated by various methods.

We leave to the reader to decide whether these approx-
imate results are "good enough. "None of the approx-
imation methods seems to be trustworthy at larger
angles, although Sopkovich's method does fairly well
in the case with no p exchange.

Up to now we have been comparing cross sections, but
the approximation methods we are testing involve
forxnulas for the S-matrix elements. Therefore we can
study the approximations in somewhat more detail by a
direct comparison of the approximate and exact S
matrices. Ke shall show plots of the absorption param-
eters g~ and the real phases bg as a function of /. Again
the curves are merely to aid the eye, as the Schrodinger
equation is solved only for integral values of /.

Figure 22 shows S~~, the elastic S-matrix element
for mE scattering, at 3.15 BeV/c. (Actually shown are
iIii and bii, where Sii= iIiie"'".) Also drawn in the same
figure for comparison is the exact result for S22, the
element giving pit elastic scattering. The difference
between S~~ and S22, which was stressed in Sec. III, is
clearly seen here, too.

The reaction n+1V-+ p+1V, in which we are most
interested, is produced by S», which is shown in Fig. 23.
All three of the methods do fairly well in predicting p&,

after the erst few partial waves. It seems to be a general
feature, however, that the agreement is poorer with
regard to 8&. We can see no reason, from studying
these graphs, for the excellent agreement between
the SF and exact cross sections in the forward peak
at this energy (see Fig. 16). In fact, methods LW
and E seem to be better than SF, if anything, in their
predictions for g~, and none of the methods give partic-
ularly good agreement with 8&. The high partial waves
are important for the forward peak, but for /) 7, not
shown on the graph, methods I W and E are fully as
good as SF. On the other hand, when the negative
5-wave phase is put into Sopkovich's formula (SF ),
the agreement in the cross sections is spoiled, so the
larger 8& given by the SF method for /=0, 1 may be a
factor of some importance. At any rate, it is clear that
the good agreement in the forward cross sections at
3.15 BeV/c, does not reflect any detailed agreement
between Sopkovich's formula and exact S-matrix
elements. The fact that all the methods give about the
right shape in the forward peak, however, is a reAection
of the fact that for / greater than about 4, the approx-
imation schemes all give a good prediction of q~, which
is the important quantity for inelastic scattering at
high /.

v. camcx, USroms

%e have seen in our model that when the Born
approximation for nondiagonal processes is too large,
use of approximation methods to unitarize the S-matrix
elements, partially or completely, does bring improve-
ment in the agreement with the coupled-channel
calculation at small angles where the peripheral model
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is expected to hold best. At large angles there are large
differences among the various methods, but one should
not expect any peripheral model, even the coupled-
channel model, to describe events accurately here.
The straightforward use of Sopkovich's formula, where
the elastic-scattering parameters are taken from
experiment, of course yields no prediction for the
elastic scattering. The other methods do not seem to
yield much improvement over the Born approximation
when compared with coupled-channel results for the
elastic scattering, at least not in a three-channel problem.
For a channel in which the Born approximation is
too small, only a method like the K-matrix method
takes into account unitarity su8iciently accurately can
improve upon the Born approximation result. But of
course no one would apply Sopkovich's formula to a
nondiagonal channel in which the Born approximation
is already too small.

In the usual application of Sopkovich's method to
analysis of experimental data it is assumed that the
S-matrix element S p=i(S )'&'B p(Spp)'t' can be
calculated with reasonable accuracy by assuming that
S =Spy. In the coupled-channel calculation done here
we have found that this is not a good approximation.
Further, since the difference between S and Spy
arose solely from differences in the kinematics in the two
channels it is hard to see how this assumption can be
justified, except possibly at energies much higher than
those considered here. It was also found that the real
part of the phase shift is not negligible, a fact which
means that S cannot be treated as a real number.
Since a square root of S is inolved it is necessary to
ascertain the correct phase. Both the correct phase and
the elastic scattering in the channel P (in our calculation
channel P would be pl&I ~ pS) are not usually obtainable
from the available experimental data.

The method of Lichtenberg and Williams neglects the
real part of the phase shift, a procedure which is not
justified by the coupled channel calculations. It is
interesting however that it does predict the absorption
parameter p& correctly, i.e., in agreement with the
coupled channel g~, after the first few / values.

It may be possible that the approximation methods
discussed in this paper are more justified when applied
to the Feynman diagrams of field theory than when
applied to a potential model. However, the burden of
proof would appear to lie with those who wish to claim
that this possibility holds.

Here O', P', A., and V are matrices with elements as
follows:

+.p= pp-&" (r) I'-p'=I-pp-'

A„p=8 pX, V p= V p(r). (A2)

Under the assumption of equal kinematics, P'=p'I,
and A=XI:

—
( d' l (l+1)i+p' — iI—2l&V 4=0.
&dr 2 r'

(A3)

Under the assumption of equal ranges V= —gUe &'/r,

where U is some symmetric r-independent matrix.
Now choose a unitary constant matrix A to diagonalize
U: A"UA=U', where U' is diagonal. If Eq. (3) is
multiplied by At from the left and by A from the right,
the result is a diagonal matrix equation, that is, a set
of uncoupled Schrodinger equations:

- d' l (l+1)- ~e-~"
+p2 — I+ng~ U AAteA=0

dr'
(A4)—d' l(l+1)- «e-~"

+p' — I+2),g~
— U' 0"(r) =0,

dr' 5 r

where O'=At%A.
I et S' be the diagonal S matrix resulting from the

solution of Eq. (4). This means that for large r,

t (21+1)/2]ri't S'h &'&(pr)+Ih&&'&(pr)]. (AS)

On the other hand, if S is the S matrix resulting from
the original problem LEq. (3) with V= —gUe &"/r],
then for large r,

$(2l+1)/2]ri'LSh&«& (pr)+Ih&&2& (pr)]. (A6)

But we know that +=AC'At, so S can be obtained
easily from S':

%~ )(2l+1)/2]ri'LAS'Ath&&'& (pr)+Ih&&" (pr)]. (A7)

Therefore

then the coupled channel Schrodinger equations can be
uncoupled by diagonalization. Written in matrix form,
the equations are:

I%"(r)+(P'—Pl (l+ 1)/r']I}% (r)—2A V%'(r) =0. (A1)
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APPENDIX: DIAGONALIZATION PROCEDURE

If all the channels have the same kinematics and if
all elements of the potential matrix have the same range,

For example, in the 4-channel case with all ranges
and kinematics, as well as coupling constants, assumed
equal, we have

1 1
1 1 1 1
1 1 1 1
.1 1 1 1.
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This is diagonalized by

1
1 —1 1
1 1

giving

4.

U/ 0
0.0

0 0 0 e"' 0 0 0
0 0 0, 0 1 0 0
0 0 0 ' 0 0 1 0 P'
0 0 0. .0 0 0 1.

t1
0
0
.0

0 0 0 1 1 1
0 0 0 ~ ~~I~t, 1 1 1
0 0 0 ' ~ 1 1 1 1
0 0 0, .1 1 1 1.

S=1+iT.
Thus, in this case there is only one single-channel
Schrodinger equation to solve for each / value. We did
this case both with the coupled-channel program and
by integrating the one-channel equation and then
carrying out the matrix transformation (numerically,
of course). The two methods were in satisfactory
numerical agreement.

PHYSICAL REVIEW VOLUME 143, NUMBER 4 MARCH 1966

Theory of Parity-Violating Nonleptonic Decay*

S. P. RoszN
Purdue University, Lafayette, Indiana
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The simplest way of explaining the result 3 (Z+ ( ex+) =0 is to assume an effective parity-violating Hamil-
tonian of the form (BXB)&s&Xm.. With no further assumptions, this Hamiltonian predicts two sum rules
which are closely related to the Lee-Sugawara triangle, and it imposes an isotopic-spin selection rule AT & —,.
The proposed coupling scheme is a consequence of several dynamical models, and the b,T&-', rule is con-
sistent with the data on E —+ 2w.

1. IÃTRODUCTIOÃ AND GENERAL THEORY

RECENT experiment' indicates-that the parity-

'

~ ~

~

~

~

~

~

~

violating (pv) amplitude for 2+~ ts7r+ is zero.
Starting from this result, we discuss a general theory
which predicts two sum rules for the pv amplitudes of
nonleptonic hyperon decay. These sum rules are related
to the Lee-Sugawara triangle, ' but they do rot depend
for their validity upon such assumptions as octet
transformation properties and the AT=2' rule; instead
they follow from one simple assumption aboutthe
coupling of baryons and antibaryons in the eGective
Hamiltonian, We make a comparison with experi-
mental data and discuss models which give rise to the
desired coupling.

In unitary symmetry space, ' the most general form of
the effective Hamiltonian for nonleptonic hyperon deca
ls

Q C L(BXB)( iXxj( ) (rl, ran=1, 8,10,10,27),
Ns s f4
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where 8 and Bdenote the baryon and antibaryon octets,
respectively, and (m) denotes the SU(3) representation
to which they are coupled. The symbol x represents the
pseudoscalar meson octet and (n) denotes the over-all
SU(3) transformation properties of each term in Eq. (1).
The coeKcients C „are arbitrary coupling constants.

The decay mode Z+~ ex+ arises from a term
(E) m+ in Eq. (1). LNote that (Z) corresponds to the
antiparticle of Z+.]Because the combination (Z) I has
isotopic spin T= s, it cannot appear in an octet (BXB)
system. 4 Therefore the simplest way of ensuring that'

A(Z+~m+)=0

is to take an effective pv Hamiltonian of the form

(2)

hT =—,': Ls',Mrs" (1Vts"+ass")

ET= s: Mrs" (2gts"—Qsss')

(4a)

(4b)

and their Hermitian conjugates. L, M, M, and E

S.P. Rosen and S.Pakvasa, Phys. Rev. Letters 1$, 773 (1964}.
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Hv„——Z„d„L(BXB)(s)Xs.](„) (~=8,10,10,27) . (3)

Because of the occurrence of the (10), (10), and (27)
representations in Eq. (3), Hn, can include an admixture
of ~2=-,' and 2, but not ~T=2. In tensor notation, '
the revelent types of terms are


