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Then, we have resonance forms, like D(1,2,p). We
therefore want to evaluate (pi+ps)'. As previously
noted, (pi+ps)'= (P—Ps)'= —ms' —E(E—2Es). Fur-
thermore, there is the energy dependence of the width
of the resonance (the width appears through the pre-
scription that we replace m, by m, i—F,/2, where

Fp

3 4sr —po'

obtained using the usual psrsr coupling and the (off-
mass-shell) mass of the p). In the case at hand,

p, '=(pi+ps)' which we have just evaluated. p is the
momentum of the m. in the p center of mass. Using
(Pi—Ps)'=2Prs+2Pss —(P,+P,)' and the fact that

both m's have the same momentum, one Ands

4p '=ms'+E(E —2Es)
(mrs —ms')'—2(mt'+ms')+

mss+E(E —2Es)

All of the above formulas were constructed with
their suitability for computing in mind, and in the
above form are immediately programmable.

Numerical integration with a sixth-order polynomial
6t was used to obtain results, the program automatically
subdividing the integration interval where necessary
(e.g. , under a resonance peak) until the answer was good
to a desired number of significant figures (chosen to
be three).

PHYSICAL REVIEW VOLUME 143, NUMBER 4 MARCH 1966

Coupling Constants in Broken U(12) Symmetry*

D. Fz,pMar

Laboratory for ffttclear Scieece, Massachasetts Imststttte of Techwotogy, Cambridge, hlassachttsetts

(Received 22 October 1965)

The effects of SU(3) and U(4) breaking on the coupling constants in U(12) symmetry are investigated
using the spurion technique. For an SU(3)-breaking spurion which is a member of 143, only two parameters
are introduced in addition to the one for the formal symmetry. All 132 baryon-meson coupling constants can
be expressed in terms of these three quantities. For vertices involving pions or p mesons, only two param-
eters are relevant. The effects of U(4) breaking as well as simultaneous U (4) and SU (3) breaking are studied
with spurions which belong to the representations 143, 4212, and 5940 of U(12). The sum rules for the
coupling constants which follow from the formalism are in reasonable agreement with experiment.

1. INTRODUCTION

~HE U(12) scheme" provides a relativistic frame-
work for the derivation of the SU(6) results. ' In

addition to these results, U(12) also gives an absolute
value for the proton magnetic moment which is of the
right order of magnitude, and it relates all meson-
baryon vertices to a single form factor. Even though
the application of formal U(12) symmetry to scattering
processes meets with certain diS.culties, ' its success in
the case of the vertex function is encouraging. We
expect U(12) to be broken in two ways corresponding
to its subgroups SU(3) and U(4). The deviations from

*Researches herein reported have been supported by the
Atomic Energy Commission through AKC Contract AT(30-1)-
2098.
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A. Pais, ibid. 14, 267 (1965).' B. Sakita and K. C. Kali, Phys. Rev. 139, B1355 (1965).
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SU(3) are conventionally described by introducing a
spurion which transforms like the eighth component of
an SU(3) octet. It is well known that this also gives
rise to mass splittings between the members of the
SU(3) multiplets. U(4) on the other hand is broken
by the equations of motion which give rise to U(4)
noncovariant subsidiary conditions for the represen-
tations of U(12). In addition, to simulate higher order
effects, we shall introduce U(4) breaking spurions, '
which belong to the representations 143, 4212, and
5940 of U(12).

In the second section we give the effective interaction
Hamiltonian densities for the meson baryon vertex
including spurions. The third section deals with
the reduction of the U(12) field operators under
U(4)QxSU(3), and in the fourth section we study the
effects of SU(3) breaking spurions. In the f'tfth section
we investigate U(4) breaking as well as simultaneous
SU(3) and U(4) breaking, and in the sixth section we
compare the results with the experimental data.

~ P. G. Q. Freund, Phys. Rev. Letters 14, 803 (1965};R. Oehme,
ibid 14, 866 (1965)..



2. BARYON-MESON VERTICES IN U(12)

U{12) has 143 generators. In the de6ning (twelve-
dimensional) representation these generators are simply
the direct product of the U(4) generators (Dirac
algebra) with the U(3) generators. The representations
of U(12) transform like direct products of twelve-
dimcnsional quarks and can be written as tensors in a
twelve-dimensional space. The U(12) quark is the
direct product of a Dirac spinor and a three-component
U(3) quark. The spin-5+ baryon octet and the oo+

decuplet are assigned to the 364-dimensional repre-
scIltatIon of U(12), which Is described by a totally
symmetric third-rank tensor f~ec. The pseudoscalar
nmson octet and slnglct as well as the vector"IQcson
octet and SInglet belong to the 143-d1mens1onal rep-
resentation of U(12), which is described by a second
rank mixed tensor Pe". The symmetry-breaking
spurions S~" will transform like a member of the self-
adjoint representation 143, the same one the mesons
belong to. Ke shall also consider spurions belonging to
the 4212- and 5940-dimensional representations of U(12).
While the representation 4212 is described by an anti-
symmetric mixed fourth-rank tensor Plcnl I"el, 5940 is
dcscllbcd by a syIIlnlctl'Ic 011C plcnll I. TIIc cffcctlvc
U(12) symmetric interaction density for the meson

baryon vertex is given by

&o= gof~cfze&~e. (1)

Insertion of a spurion Se" of 143 introduces four
additional terms

p
&5=&Peep ze&znS I~BI 'e~l .

I

The introduction of a spurion Slc11l'~e' of 5940 gives

four terIDS

&I= gtj
"ecg ~ ec4 zoSr e+Pecgzec

X (gI&~OSne+g Az eS~n)

+2go&ecfzI cg~eSe~. (2)

With a spurion SIcnII" I of 4212 there is only one

cou ling

there corresponds a pair of indices on the right. Greek
lcttcl's 111dlcate U(4) lndlccs wlllcll I'1111 fl'onl ollc 'to

four while Latin indices stand for the SU(3} part and
run from one to three. To make (4) represent the
physical partides, we have to impose the equations of
motion. pe" transforms like the direct product of a
quark and an antiquark. The equations of InotIons
amount to applying the Dirac equation to each U(4)
Index: p= p"'rp

(P).'4" "=I4- ~" (P)~'4. n"= I 4-—~" (5)

p, is the meson mass. Clearly Eqs. (5) are not U(4)
covaI'1ant since thc fouI' y matrices aI'c slnglcd out. A
number of U(12} noncovariant subsidiary conditions
follow from these equations. The subsidiary conditions
eliminate the scalar part of 143 and relate the pseudo-
vector to the pseudoscalar as well as the tensor to the
vector part."Under these subsidiary conditions ex-
pression (4) for 4e~ reduces to

q Xo
os"(q)= (&+- v &.'+—&.' I

I
' VS')

which contains only the pseudoscalar-meson octet I'
and singlet X0 and the vector-meson nonet V. The
Inatrlccs I and V arc

2'

5co=4Pecfeec4 znSl ~z l'e~'+0"ecfz» c
X (kog~oSlnel'ee'+IIo'4meS(~el'~~')

+II'"ecfzI c4~eSlecl'~@. (3)

0 ~0

(~'—~')i~

3. REDUCTloN OF THE REPRESENTATIONS
OF U(12) UNDER U(4)OXBU(3)

The regular representation of U(12) 143 decomposes

under U(4)QxSU(3) into

48 L4 +7545 +VyV5@oo +'Y kp +oo&oekoo $a
X(X;),o (4)

where 5+~~ pp) pppz~ pp~ and 0'pp 1cprescnt thc slxteeQ

generators of U{4) while X; (5=0, .8}are the familiar

matrices of SU(3).' To each U(12) index on the left

o M. Gall-Mann, Phys Re& 125, 1067 (1962)

The a-I5 mIxing w»ch follows from U(12) and a mass
splitting 1QtclactloQ which tlansfolTQS llkc our spu110Q

(8) has been incorporated in V. The mesons IIo and I'
seem to have only very little mixing. ~ Spurions are not
subject to equations of motion. Ke can choose any
desired component or combination of components of a
representation to be a spurion depending on what

symmetry violation we want to simulate. To preserve
Lorentz invariance however a spurion should be a

~ R. H. Dalitz and D. G. Sutherland, Nuovo CiDIento 37, 177'I
(1965); M, 1945 (1965).



COUPLING CONSTANTS IN BROKEN U1121 SYMMETRY

The baryons are described by the fuHy symmetric
tensor lP~~o of the 364-dimensional representation. It
decomposes under U(4)OXSU(3) to give

P+llo 2 (V 2)Dsv pc&+~p«~[&PT]+

X(~n«&l.Plv. :+~a-&Wvl-, n'+~.~.&lv.l~.e') (9)

Use of the Bargmann-signer equations shows that the
totally antisymmetric singlet Vt p~t vanishes. D p„,„,„
is fully symmetric in its U(4) as well as in its SU(3)
indices and represents the spin-~3+ baryon decuplet. It
can be represented in terms of the Rarita-Schwingero
wave function P„ for spin--', particles and the decuplet
wave function d„, of SU(3) as

where C is the charge conjugation matrix and insures
the right symmetry for the U(4) indices. The decuplet
wave function is defined as usual by

du~=&*++,

dii2= S +/VS,

dlia= F +/V3,

di3i= " /&3,

d», E*'/v3, ——
di23= I'*'/g6,
dna==. ' /v3,

d2gg= Y /V3,

e&«N[~p]v& ls of mixed sylllllletl'y. Dl'opplllg the SU(3)
indices vre have, for instance,

+i~Pl v++ tv~1 P++ fPvf ~ O ~ + i~Pl v +fP~l v

The same is true for the corresponding SU(3) indices.
37~„p~~,„' represents the spin-~~+ baryon octet, and can
be expressed in terms of ordinary Dirac spinors and the

8 The U(4) t35U{3) content of higher representations of 0'{12)
is given by A. Salam, R. Delbourgo, M. A. Rashid, and J.
Strathdee, Proc. Roy. Soc. (London) A285, 312 (1965).

9 . Rarita and J. Schvringer, Phys. Rev. 60, 61 (1941).

I.orentz scalar and for strong interactions we want
parity to be conserved T. o form a U(4) breaking
spurion, ' which belongs to the representation 143 of
U(12), we contract the permissible Dirac matrices in
expression (4) with the two independent four-momenta
of the vertex and write p= p y

P~"= L~+&Pi+~pm+dPiP23~'&e' ~

Spurions which belong to higher representations can be
formed aQalogously.

The SU(3)-breaking spurion S~~ is a singlet under
the transformations of U(4) and transforms like Xs

under SU(3).

usual SU(3) baryon octet wave function b„' as

& -m. ..'(p) =—L(P+ ) ~3- f (p) b.' (l1)

mpm 2

t tÃi+Sfm
X( 1+ &~~~, (12)

I M. Muraskin and S.L. Glashow, Phys. Rev. 132, 482 (1963)."P. Gupta and P. Singh, Phys. Rev. 135, 31442 {1964);C.
Secchi, E. Eberle, and G. Morpurgo, ibm'. 136, $808 (1964).

"The labeling of the coupling constants and matrix elements
stands for baryon 1 —+ baryon 2+ meson. nzI, m2 are the masses of
baryons 1 and 2, respectively, and p, is the meson mass.

4. THE mFECT OF SV(3) BREAKING

U(12) drastically reduces the number of coupling
parameters for the meson baryon vertex. Kith I,orentz
lllvarlancc aQd chal gc lndcpcQdcncc 132 coupling
constants are needed to describe all the vertices
between the eight-spin--, '+ baryons F, the tcn-spin-~3+
baryons D, the nine pseudoscalar mesons I', and the
nine vector mesons V. Formal U(12) relates all these
132 coupling constants to a single coupling parameter.
These interactions are contained in the c6cctive
interaction density (1). We expect some deviations
from thc symmetry scheme. In particular, we know
already that there are deviations from SU(3) symmetry,
which is a subgroup of U(12). We want to study how
this reflects itself in the U(12) scheme. Usually the
SU(3) breaking term is assumed to transform like the
V=0, I=0 component of an octet. Correspondingly
we break U(12) by the component of its self-adjoint
representation 143 which is a singlet in U(4) space and
the F=O, I=O component of an octet in SU(3) space.
Thus we insert the spurion (8) into the interaction
density (2). Due to charge conjugation invariance, gi
equals gi'. Further we find that the first term in (2)
vanishes for the spurion (8). It follows that in broken
U(12) we can express the 132 coupling constants of the
meson baryon vertices in terms of only three parame-
ters; g9, gi, and g~. This goes far beyond broken SU(3).
There one already needs seven parameters just to
interrelate the twelve XXI' coupling constants, " five
more parameters for the twelve DSI' coupling con-
stants, o and so on.

Explicit calculation gives for the FFI' interaction"

(mi+m2)' —q'
jdNxz =~(p~)v sN(pi)

12
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By evaluation of a number of SU(3) traces we find

the Eqs. (14)."All other E1VI' coupling constants can
be obtained from the j.6 following ones by charge
independence":

Gnn. -=5 (go+2gi+2gp),

Gs s'n =go+2gi 4gp)

(+6)Gz-p..———6 (g,+2gi—gp),

V2GZ zo =4(gp+2gi —gp)

V2Gnzox+= go—gi+2gp,

(v'6)G.~x = 9(go gi—+2g0)—&
~~Gz z x+ 3 (gp gl gp) )

(+6)Ggs-x+ ——3 (gp —gi—gp),

(v'6)Gznp= 3 (g0+6gi+2g 0),

(v'6)G"="=—9(go—(14/3) g
—lg ),

(+6)Gzozp = 6(gp+2gl)

(g6)Gp~„= —6 (go—6gi+ 2gp),

G„xo=V3 (gp+2gi+2g, ),
Gssx'=&3 (go

—6gi),
Gzzx'= VS(go+4gi —2gp),

Gp.hxa= V3 (go 4gi+2gp) ~

(14)

A large number of sum rules follow from Eqs. (14). In
particular, we 6nd that the following relations from
formal U(12) symmetry still hold in the broken

symmetry:
Gz-z .-= (2/v3)GZ-~--

G„gx ———3&3G,Z x,
Gz -x'= (5/&&)Goz x'.

where g= pi —pp is the meson momentum. In formula

(12) the matrix element is multiplied by an expression
depending on the masses. G~~~ contains only Clebsch-
Gordan coeKcients and the three coupling parameters.
The conventional coupling constants g~~~ are related
to G~~J by

1 (mi+mp)' —
y,'( mi+mp)

gNNp= —
I
1+ IGNNp, (13)

12 m, mp k p j

sponding matrix element is derived to be"

MDNP (g /mp)PP(P2)gn(P1)gDNP

1+mpl
ga~s= & &Dwz.

GN' z x'= —go+gi —2gp,

~3GY, '- x-= go
—gi+2gp,

V2G1 -z-p= gp
—2gi+gp,

v3Gr, ' z x'= —go+gi+gp,

V2Gs * g» = —go+ gi-+g-p,

(v'6)G.-'-z'x-= go
—gi—gp,

V2Gz'-z-„= gp
—2gi —2gp,

G~ R z'=go —g1—4g2)

Gz'-s-xo= Gr, *-z-xo——%3(2gi—g,).

(19)

All other DEP coupling constants are obtained from
the fourteen above through charge independence.
Relations (19) satisfy the sum rules derived in broken
SU(3) symmetry. " However, broken nonrelativistic
SU (6) leads to different results. "The first four coupling
constants in the relations (19) are related to the
observed resonance widths. Now we can express the
remaining parameters

gp Bf~N nn +42Gri pi

gO+2gi= pLGN' nn
—2V2GY, '-~n].

(20)

(21)

Only the combination go+2gi can be determined from
the resonance widths, since go and gy appear in this
same combination in all processes involving pions or p
mesons. Combining (16) and (21) we can obtain gp

alone. %e also note the relations

GYa'~& =~3~Ft*& ~'r

Evaluating the SU(3) algebra for GDNp, we find the
following relations":

(+6)Gs*-s- =—
go

—2gi+4gp,

(+6)Gri'-z-n'= —
go

—2gi+gp,

~or~* p.n = —go—2gi+gp~

GN* nn =go+2gi+2gp,

Rels, tjons (14) also obey the sum rules of broken

SU(3)." One can evaluate gi from G»n- and Gnax',
which are known from experiment:

GN -Z-Xo=~3GY nX

Gz' px = —PGz' -zox -(Qp)GY, —,-x, --——
(22)

gi= (1/15)G-&=+ 0 (v'p)Gn«' (16) and the sum rule

The other two parameters shall be expressed in terms

of the spin-~+ resonance widths. To this end we- con-

sider the D1VP coupling constants. From (2) the corre-

~3 Performing the SU(3) calculation the relation

.".&.~.e,-c;=sp(~~c)+sp(ace) —sp(A) sp(ac)
&P(&) &P(~&) &P(&) —~p(~&)+~p(~) —~p(&) ~p(C')

is useful.

-+2(+6)GY,'-z- &= (+6)Gz*-z- . (23)

For formal U(12) symmetry there is no DXX0 coupling.
The next-order spurions belongs to the representations

'4 C. Chan and A. Sarker, Phys. Rev. 139, B626 (1965) and R.
Ferrari and M. Konuma, Phys. Rev. Letters 14, 378 (1965). We
do not agree with M. Konuma and E. Remiddi, Nuovo Cimento
38, 662 (1965).
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4212 and 5940 of U(12). Choosing these spurions to be
singlets in U(4) space and the F=O, E=O components
of an octet in SU(3) we get nothing new except a
contribution to the singlet and eighth component of
the octet-meson coupling.

Next, vre turn to the ÃEV interaction. There we

have two coupling constants'~

where F=Pi+Ps, g= Pi—Po, and v"= o" F g&T&yo.

The connection between the invariants in (24) and the
ones usually used is

u(p, )r u(p, )= LF'—(m, —m, )pup„u —(m,+ms)
XFpuu —(mi ms—)qpuu,

n (ps) cr p "g„u(pi) =u(po) L (mr+ms)y„—F„]u(pr) .

The invariants in (24) are convenient for electro-
magnetic interactions. Their coefficients f~rrv and

g~&& are directly related to the total charge and
magnetic moment.

Tile pill'e SU(3) pal'ts Fpr~v aild GNivv de611ed by

mt+ ms+ q'/p,
NF = ~XXV' p

2 (mime)"'

1 mr+ms)
gxw v =— 1+ Pmrv,

3 p, i

(25)

are vrorked out to be"

Palp =go+2gi 2gs&

go 2fj 41»
Fy.-j,~-=0,

~~Pz zpp =2(-go+2gi+gs) &

~F z'rr"= —go+gi+2gs,
(V'6)P.«"=—3(go—gt—2g )
~~Fz'z z"=go gt+gs ~—

(v'6)F = "'=3(go g+-g~)—
Ps&v=4(gr+gs) p

Fs's' =2(go 2gi go)

~& &"y= fo 2g»

~Axq =go 3g2 p

'i/ZPssop= 3go+ 2gi+ 2gs,

"t/2Ps s a=go 2gi 4gs)

v2Pz z e 2(go+go) y

~~FAsar 2(go+ sgs) y

for the term in (25).'Its go part is of F type. Gzrzrv is

~mrv= fxxv &(ps)u(pr)e, (q)
2 (mrms)'"

+g....(p,) .(p.),(~), (24)
4mgm2

obtained from Eqs. (14) by the substitutions:

z —& p, Z'-+ E*, r) ~ (1/v3)&u —(gs')y
X'~ (g's)(o+ (1/%3)y

Its go part is of 3D+2F type, as was the REF inter-
action. Substitution (28) reflects

thermo-p

mixing.
The DDI', DDV, and DEV vertices contain more

than one resonance and shaH not be considered here.

5. U(4) BREAKING

To make the representations of U(12) correspond to
representations of the inhomogeneous I.orentz group
which can be identi6ed vrith physical particles, vre
imposed on them the equations of motion. But since
the equations of motion are not covariant under U(4),
this introduced a number of noncovariant subsidiary
conditions. These subsidiary conditions eliminated
some components of the respective representation of
U(12) and interrelated others. We then used the
truncated expressions (5), (10), and (11) to evaluate
the interaction Hamiltonian (1). This procedure we
shall call formal U(12) invariance. Diagrams involving
dynamical quantities like propagators vrill, hovrever,
give rise to further symmetry violation. To simulate
such higher order effects we shall introduce U(4)-
breaking spurions. Experimental indication for U(4)
brea1Dng comes from the polarization of the outgoing
particles in certain scattering processes' vrhich should
not occur according to the formal symmetry. In the
presence of U(4)-breaking spurions such polarization
effects are no longer forbidden. ' '~ The same is true for
meson-pair production from baryon-antibaryon anni-
hilation at rest. In the latter case one needs higher
order spurions.

Considering spurions which belong to the self-adjoint
representation 143 of U(12), we arrive at expression
P) using the arguments in Sec. 3. Inserting (7) in (2),
we see that except for the first term in (2},spurion and
meson are sandvriched between baryon expressions
demanding yj.= try and y2= m2, respectively. The last
term in (2) is most easily handled. It only contributes
to the over-all form factor. The g~ term contributes
differently to the tvro form factors of the vector-meson
vertex vrhich could be used to adjust the absolute value
of the proton magnetic moment precisely to its experi-
mental value. "The magnetic-moment ratio hovrever
is not affected since the D/F ratio remains unchanged. "
The first term only contributes for the vector-meson
singlet. ' It gives

M'zrNv=P(q*, mr)ms, „)u(ps)u(pr)(pi+ps) pe„Sp(bb)so.

For the vertices involving pseudoscalar mesons,
spurion (6) gives a change in the over-all form factor.
A variety of U(4)-breaking spurions can be constructed

» R. Oehme, Phys. Rev. Letters 14, 664 (1965);Enrico Fermi
Institute of Nuclear Studies report EFINS-63-37 (unpublished).I6 Another ~ay to reduce-the expression for the proton magnetjc
moment is by speci6'c use of the pole model. See P. G. 0. Freund
and R. Oehme, Phys. Rev. Letters 14, 1085 (1965); D Flamm, .
Nuovo- pimento 88, 291 (iNS).
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TAsz,E I. Resonance width F and effective coupling constants. '

Decay m, (MeV)

1236.0
1382.1
1382.1
1529.7

m2 (MeV)

939.6
1115.4
1197.1
1321.0

l~l (Me»
229.6
205.0
117.8
147.4

r (MeV)

120
48 ~2
1.5~0.7
2.5~0.6

gowe/V'(~)

4.1—3.6—1.5
1t5

a See Ref. 22.

which belong to the representations 4212 and 5940 of

U(12). In the frame of these representations we can
form also momentum-independent spurions by con-

tracting the Lorentz indices of two Dirac matrices.
However, since there is only one matrix element in
Lorentz space and one in SU(3) space for the DXP
vertex, even an arbitrary U(4)-breaking spurion merely

changes the over-all form factor. Nevertheless it is
possible to split the ESP from the DSP-coupling
constants. With spurion (29) of 5940, for instance, the
last term of Hamiltonian (3) only contributes to the
lViVP and not to the DEP vertex.

Sino)'nsi =Z(y2) p'(vs), '& '&,', (29)

where Z stands for symmetrization of all index pairs.
The S*width calculated from U(12) symmetry using

the pion nucleon coupling constant as input turns out
to be about 20% smaller than its experimental value.
Spurion (29) may account for this discrepancy.

We shall now concentrate on the baryon resonance
width and investigate simultaneous U(4) and SU(3)
breaking. A spurion which belongs to the representation
143 of U(12) and whose SU(3) part transforms like

X8 does not give anything new. With the variety of

spurions contained in 4212 and 5940 however we can

essentially reduce the symmetry to the direct product
of the Lorentz group and broken SU(3). Let us, for

example, consider spurion (30) of 5940:

s i i=z( ) '(&„),'() ),'~, , (30)

where p again stands for symmetrization of the index

pairs. Spurion (30) can also be used for the construction

of the baryon and meson mass operator in U(12).' "If
inserted in the second term of Hamiltonian (3) it gives

a new combination of the two SU(3) matrix elements.
%'e still get a sum rule for the four resonance width

and it is equal to the sum rule which follows from broken

SU(3) symmetry. "
G~*---+(3/~~)Gr, *-2--+(V'2)Gr, -z-"

= (+6)G-.~--. — o. (31)

COMPARISON WITH EXPERIMENTAL DATA

Qesjdes decay processes, several models and extra-

polation procedures are used to extract coupling

constants from experimental data. The renormalized

pion-nucleon coupling constant, for instance, can be

found from scattering data using the static model. '

» G. P. Chew and P. E. Low, Phys. Rev. 101, 1570 (1956).

Another way to determine it is from photopion pro-
duction. "Similarly the pAE-coupling constant can be
obtained from photoproduction data. " If a scattering
reaction in a certain region is dominated by one-particle
exchange the coupling constants involved can be found
by extrapolating the scattering amplitude to the pole.2'

From decay processes the coupling constant is most
easily found. The baryon resonances provide a good
example for this case. For the spin-2 resonance width
the matrix element (18) leads to the formula" '2

1 gnN2 2 p 2222I'= —= — 22L1+ (1+p'/22222)'"]. (32)
4g 3 m2' mg

Equation (32) depends very strongly on the center of
mass momentum p of the pion

p2 (1/42N12) (2g12 2N22+i22)2 ~2

The eGective coupling constants obtained from Kq.
(32) and the experimental width" are given in Table I.
The coupling constants satisfy the sum rule (23)."
Comparing with Eq. (22) we 6nd that %3gr,*-z- 0 is
about 27% smaller than gr, *z —, which is quite rea-
sonable, since the measurement of the I'2* —+ Z +2r'
width is within errors of 50%.

In conclusion the sum rules for the resonance width
are reasonably well satisfied. These sum rules persist
to hold for U(4)-breaking spurions which belong to
the representation 143. Besides the resonance width
only the pion-nucleon constant is well known. As
discussed in Sec. 5 there may be indications for higher
order spurions.
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