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General formulas are derived relating couphng constants for the strong decay interactions of a baryon
resonance B,*of any spin s to the observed decay widths, for the decay processes B,~ —+ By+I', 8,*—+ Bg~
+I', and B,~ ~B~+V, where E is a pseudoscalar and V a vector meson. The calculations are carried
through within the framework of the Rarita-Schwinger formalism, using interaction Lagrangians incorporat-
ing derivative couplings of the pseudoscalar or vector-meson 6eld to free spinor fields. The resulting formulas
are compared with the well-known potential-theory expressions.

INTRODUCTION

B,e -+ Bi+8,
B.*—+ Bi*+2,
B.*QBi+7,

(&)

(2)

(3)

~~OBSERVATIONS of the strong decays of high-spin
baryon resonances afford valuable guidance in

assigning these resonances to their correct places in
various synnnetry schemes. Thus the correct isotopic-
spin assignment is likely to be suggested by the ex-
perimental branching ratio into the different charge
states of particles produced by the decay, while the ex-
perimental decay widths provide a means of extracting
phenomenological coupling constants whose magnitudes
are connected in SU(3) or some higher symmetry
scheme.

The purpose of this investigation is to derive, for a
baryon resonance B,* of arbitrary spin s and mass co,
general formulas relating the coupling constants g,p,
g,3~ alld g,iv to tllc widths F(40) fol' tllcll' respective
decay processes

where I' is a pscudoscalar and V a vector meson. Ex-
amples of each of these processes already exist in nature,
reactions of the type (1) being by far the most common
mode for a given resonance because of the relatively
low masses of the product particles for such reactions.
Perturbation-theory relations for I'(oI) have already
been given for the lowest spin values and arc well-
known' and extension to higher spins suggested by
analogy with the resonance-theory results of Blatt and
%eisskopf. '

Lagrangians incorporating derivative couplings of the
pseudoscalar or vector-meson Geld to free spinor 6elds
arc employed here, and the calculations carried through
in the framework of the Rarita-Schwinger' formalism.

' J. D. Jackson, Nuovo Cimento 34, M44 (1964) t see especiaily
Appendix Aj.

~ J. M. Slatt and V. I". %eisskopf, Theoretical NNclear I'hysics
(John 'gfiley k Sons, ¹wYork, 1952), pp. 332, 361, 406-422.
The form of Eq. (49) is retained in the derivation of W. M. Layson,
Nuovo Cimento 27, 724 (1963) by means of the Klein-Gordon
equation rather than the Schrodinger equation. A useful summary
of results appears in L. D. Roper, University of California Radia-
tion Laboratory Report No. UCRL 14193, 1965 (unpublished).

3 W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941).
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In all cases the decay interactions are assumed to be
parity-conserving. The result obtained for reaction (1)
is shown to agree in general form, as one would expect,
with the resonance theory result in the limit of a point
interaction at the decay vertex. The general result for
reaction (2) reduces, in the special case s= s5, to the ex-
pression obtained in the same formalism by Brudnoy' in
considering the decay of the Pg resonances into I'»
resonances, viz. ,

N~*(1688) —& N~*(1238)+s, (2a)

Y)*(1815)~ Yy~(1385)+s . (2b)

Reactions (2) and (3) possess, respectively, 2 and 3
different couplings, which will lead inevitably to am-
biguities in interpreting experimental data. In the ab-
sence of an exact theory it will be necessary to create
models like the Stodolsky-Sakurai' p-meson —isovector-
photon analogy for future guidance.

mon momentum from the decay of d at rest, and with po
and ko having their mass-shell values. As can be
readily shown,

and

pa= (2M) l Gl + ts —p ]
kp ——(2(o)-'L(a'+ p' —m']

(6a)

(6b)

(2(g) &l (g4 2(g2(yg2+ p2) +(yP p2) 2]&/2 (7)

(y,8,+m)C', ... „,=0

and the condition

(8)

B. Free Fields

In the Rarita-Schwinger formalism a particle of spin
s(=e—-', ), where n is an integer, is described by a field
operator C,... „,(n;=1 4) which is a tensor of
rank e—1, each component of which is a four-spinor
satisfying the Dirac equation

II. KINEMATICS AND FREE FIELDS

A. Kinematics

The decay rate for the process d —+ p+k is given' in
the rest frame 0& of d by'

r(a)) = 8&4&(p+k —d)
(2m-)'

pa)@a1 ~ an

Furthermore, C is a completely symmetric tensor

C ~ ~ ~ ag ~ ~ ~ ago ~ ~ x ~ ~ o a) ~ ~ o a) ~ ~ ~

with the properties

and

(9a)

(9b)

(9c)

(9d)1 1 d'p d'k
x— Plml', (4)

2s& (2s+1) 2po 2ko

.g 1
r(~) =—, El~la'

4s 2aP 2s+1
(5)

where the suffix 0 denotes evaluation of the matrix-
element modulus squared with lpl = llrl =q, the com-

' D. M. Brudnoy, Phys. Rev. Letters 14, 273 (1965).
'L. Stodolsky and J. J. Sakurai, Phys. Rev. Letters 11, 90

(1963).
S. S. Schweber, An Introduction to Relativistic Qgantem Field

Theory (Harper R Row Publishers, Inc., ¹wYork, 1962),
p. 486, Eq. (118).

~As well as identifying them, d, P, and k are taken as the
four-momenta of the corresponding particles, their masses being
~, m, and p, respectively; thus d=(d, &0) d'=d' —dp2= —aP.
The y matrices are Hermitian, with p&=p&p2yay4, and satisfy
y„y„+y„7„=25„,. The convention that spinors for particles of
mass m and arbitrary spin are normalized to 2m has been adopted.
The spin-$ baryon spinors P satisfy (iv.p+m)/=0, and have
positive-energy projection operator h+(P) =m —iy-p. The short-
hand riotation P =y p will be used.

where 5R is the Lorentz-invariant amplitude, defined in
terms of the S matrix via the general relation

sf'= 4'—~(2~)'~'(pr —p~)(~f'/HI* 2po')'") )

where a factor 2po, occurs for each initial and final par-
ticle. The summation in (4) is over all polarization states
of d, p, and k. The integration may be performed, re-

sulting in

p Q~ Pi "=p
Q~ Pi =p"

(10b)

(10c)

S...,O...,...s " =0. (10d)

The special value of Q' arises from the property, . of
great use in trace calculations, that if U is a free-particle
wave function satisfying the conditions (9a), (9b) as
well as the momentum space analogs of (8) and (9c),
i.e., describes a particle of unique spin s, then

P UPi '' = Q~ P& 'g+(p) —g+(p) Q& Pg ~ ~

spin

where h+ are the usual positive-energy projection opera-
tors of the spin--,' theory. Explicit expressions for the O~

operators for general spin may be obtained, but for

' C. Fronsdal, Nuovo Cimento Suppl. 9, 416 (1958).

~agape'a1 a2 ~ an-g

Equations (8), (9a), and (9b) can be shown to reduce the
number of independent components of C to 2s+1, as re-

quired for a particle of spin s. Equations (9b), (9c), and

(9d) with the Klein-Gordon equation for each tensor
component l corresponding to (8)] are the Rarita-
Schwinger equations for a particle of integral spin e—1.

Following Fronsdals we introduce the orthogonal pro-
jection operator 0& with the following properties

Q . . —QPi - ~ —A~ Pi'"
~ ~ ai' ~ aj, O ~ aj ~ ai ~ ~ ~

y (10a)
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s) 2 become vastly complex (see Ref. 4 for the case
s=a) and it is far simpler in trace calculations to ex-
ploit certain relations such as'

0~ Pi P a i(—s)

with
v'(p) = 4'(p)v.

v'(p) p.=o.

(13b)

A quantity which will occur frequently is

b.'(p)g'(p)c. '(p)
=q.'(p)q. '(p)=C' —(V p)'/p'=C' (13c)

which will be written q„ to indicate the fact that in 0„
it has the value q' —go'= q', the magnitude of the space
momentum squared.

A vector particle is described by a field A„satisfying
the subsidiary relation 8„A„=O, which, in terms of the
polarization vector e„&&'& and four-momentum p„has
the momentum-space analog

(14)

A sum over the polarization states j is obtained with the
aid of the projection operator (13a); thus

Q; e„&"e, &"= 6„,—k„k,/k'= 6„.'(k) . (15)

In the following, the calculational steps crucial to the
avoidance of impossibly wieldy expressions have been
included for pedagogic reasons. The matrix elements
arising in (A) and (C) are closely related to those con-
sidered by Fox,"whose algebraic methods have been
followed where possible.

' R. E. Behrends and C. Fronsdal, Phys. Rev. 106, 345 (1957)."G. C. Fox, University of Cambridge report, 1965 (unpub-
lished).

~ ~pQ~ ppi" p~ i(2—2) (11)
(222+1)

where 0»...„„"'"""is the operator for bosons of spin m.

This quantity is useful as it involves no p matrices and
hence may be taken outside a trace expression. A further
useful property is

g pQ~, PPi P~ i(rr)

2n+1
Q~ . P'"P"-'(n —1) . (12)

2n —1

A closed expression for 0' in the form of a sum over the
m= 1 operators, which have the form

o'."=4 p.p/p'—=4'(p) (»a)
has been given, ' which may be used to obtain certain
formulas needed here; these are listed in the Appendix.
The symmetry between a top and bottom su%x
is peculiar to the e=1 case and this object will be
called b„„'(p) as in any frame it is perpendicular to
pL8„„'(p)p„=Oj. It extracts the part of any vector q
perpendicular to p and hence we define

(16)

but if (P= —1 an iy5 must be inserted between the spin--,'
field if and the spin —(n ——,') field C»...„„,.The pseudo-
scalar meson field is it and the factor 1/222 &" '& has been
introduced to make the coupling constant g,~~ dimen-

sionless. Going over to momentum space the amplitude
corresponding to (16) therefore contains a vertex factor

V»"'Pn —1

gs)I'
k„,~ k„„„

n—1
(17)

so that the required amplitude squared and summed
over initial and final spins is

p ~m~ =Tr(&,V„,....„„,,t&~+(p)

X V» „„,A+(.d..)0„; „„;»...&" '(d, s")'} .-(18)

Now the factor p4Vtp4 is clearly just V, if defined as in

Eq. (17); if P,P(—1)"=—1, V must be redefined to in-

clude the factor iy~, so one has a y~ appearing on either
side of A+(P) (=rrr —iP) in (18), one of which can be
passed through the A+(p) to annihilate the other, re-
sulting in a sign change from m to —m. Furthermore one
can use Eq. (11),giving

Xk»'' ' 'kii i'8 ii»ii -e -" " "" (dirr)'

XTr((m' —iP)(co—id)y yp},

rrr'= +ter if P,P(—1) =+1. (19)

The quantity formed by contracting the k's with O~,

written 8 2...2P2"'2(d, e) is listed as (A4) in theAp-
pendix where it is seen to be symmetric under the inter-
change of suffixes n ~ P. Thus only the part of the trace
which is likewise symmetric can make a nonzero con-
tribution, this being 45 p(222'~ —P d). Therefore,

X6.pe.a...a'" "(d,22)

III. MATMX ELEMENTS FOR
DECAY INTERACTIONS

A. Pseudoscalar-Meson-Baryon Decays

The invariant matrix element for the decay process
8,*~8+P will be considered first. If the intrinsic
parities of J3,* and 8 are I', and I', respectively, then
for (P=P.P(—1)"=+1 the parity-conserving inter-
action Lagrangian is (recalling that e=s+2),
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and from (Ai)

sj~ sin —1))4D k„sin—1)(i' re P.oi)

On calculating this in Os Lin which kq= g, as defined in
Eq. (5)] and substituting in Eq. (5) there results the
final expression for the decay width, namely,

2 D g g2(n—1)

I',„i+p(oi)= —— (Pp+rii') . (20)
4m n sum '(" ')

This result is true for any e~& 1, i.e., decays of baryons
having spins ~& ~. Note that interaction Lagrangians of
the type

4'vi c'"'"""'& . -&»4 (21)

connecting free fields do not have to be considered, for
wave functions u(p) and U&&"'&"-'(d) each obey the
Dirac equation, and using d= p+k the amplitude may
be shown to reduce to that stemming from (16) with
suitable choice of coupling constant.

B. Pseudoscalar-Meson-Baryon Resonance Decays

Turning to decays of the type B,*~8;*+I' there
are two couplings" to consider, involving two dimen-

sionless coupling constants:

gap'
g — + +P1P2' ' 'Pn —lgPl P2 Prt-1m" 2

(22a)

and

gg)I'
O' C' " ~" 8 8 8 '''Bs„gg) (22b)m-

VPws P1'"Prs-1

ggs~
+ k~k„,k„, k„„, (23)

which gives for the squared-and-summed amplitude

if 8=I',I'1( 1)"+—'=+1.Once again to conserve parity
an iy5 is to be inserted between the spinors if 6'= —j..
The vertex factor corresponding to (22a and 22b) is

Zl~l =Trh, I'„.„,...„„,t~4A&(p)O„, (p,—',)V,.„...,„,A&(d)e,„„...,„,-" "-(~s))

O.„, i(p, 2)0...„,„,"-..». '- i(Z",~) -T.
l g~„.„,k„," k„„,+ k k„, "k

g
X(vari' iP)y yp gli,—„,k., k,„,+ k, k„~ k.„, (to r'd)y„—y, , (24)

mx' )

where m'= +m if (p= +1, by an argument similar to that preceding Eq. (19).
This expression will now be evaluated taking g', g", and gg' terms separately.

(i) g,p' term: This is

1 2 s
O.„'"(p,2)8.,s...s'""'(&,ii) Tr {(rri' rP)v-vs(~ trf—)v.v.)—

m 2 (n s) 5 2is+-1
(25)

ln calculating the trace, terms in p, ps, d„and d. can be neglected since they will vanish by (10b); it then re-

solves itself into two parts, the first being symmetric under either of the interchanges n ~ P and s ~ r, and th e
second antisymmetric. The first part has magnitude 48 sg„(m oi —p d), so its contribution to (25) is

2 n
0 „ "(p,2)e.,s...s"&"'(d, ri)X4(res'oi —p d)

5 2n+1
D P 2(n—2) (rs—2)

(m'oi pd)fi '(p) ri8 '—+ k 'k' by (A2),
3 (rs —1) m '&" 'i kd2

D k, &e-» —
t (p.d) ) ( (p ki) )-

(m'oi p if) &l —2+ l+(ri —2)l 1—
l

. (26)
3 (~ 1) rir sin —&) E Psd& l E kssPs )

"As the coupling of free Gelds only is considered here, the number of independent couplings is obtained by asking how many
irreducible components of the form C, exist in the direct product C„XC,~ of irreducible, unitary representations of the proper
orthochronous inhomogeneous Lorentz group. J. S. Lomont, J. Math. Phys. 1, 237 (1960) states that the multip'licity of Q, for
s&~s&+s& is (2s&+1)(2s&+1); the requirement of parity conservation will halve this number. Thus for reactions (1), (2), and (3)
there will be 1, 2, and 3 independent couplings, respectively. Following J. D. Jackson, Nuovo Cimento 33, 906 (1964) and
G. C. Fox (Ref. 10l, for reaction i3l the highest order coupling, $8&W&" ~-&8» ~ ~ ~ B„„,A&„will here be neglected for simplicity.
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The antisymmetric part of the trace can be shown to be

4(m'a) —p d)(b, bp„—8 „bp,)+4P„(b,dp —bp, d ) 4—p, (8 „dp b—p„d,),
which is to be contracted with

5(2n+1)
80M. p"(p 2) eO,„g. &". '(dn) = D P„2(n—2)

24n(n-1)

(27)

(n —2)
Xl b.,"(P)bp."(P)+ (b.,"(P)kp"(P)k'+bp"(P)k-"(P)k: ) —

L &) I (2g)4'
the latter equation following from (A3) and (A7a) and (A7b). The resulting contribution to(25) maybeshownby
direct calculation to be

(P d)'~ ) (p d)' (p k')'
(m'" Pd) & —

I
1+2 I+(n —»I 1+

3(n —1) m &&"—» [( p&d&) 2P2

p'd kp'( (p k')P
kp' (2n —2)+(n—2) 11 —

~
(29)

2 p'' kp4 )
On evaluating (26) and (29) in Op one obtains the partial decay width due to the (n—2)-fold derivative coupling:

g.p'D q'&" '&
q (2n —1) 2q'

I', )+~(co)= — (pp+m')+ (pp+2m')
4m n m. '&"'&o) (n —1) Bm2

(ii) g" term: From (24) this is

2 n
0~ap"(pp) O,~...~""'(d,n)»((m' ip)v~vp(~ &)—v.v'). —

m '"5 (2n+1)

(3O)

(31)

One sees from (A4) that the 0"s are symmetric in their suGixes so that only the symmetricpart of the trace con-
tributes, giving

1 2(n—1) P 2
d n

X~sb pO~ gPk(P'2)8. ,0,a g''"'(d~n)4(m'(o —P.d)=(8/3)D„- ( mrs Pd))—
m.2(=') m. 2

whe~~ ,k'= ,b(p)pk'(p)kp'(p), consistent with the the de6nition (13c); note that this quantity has magni-
tude (~'/m')q'in 0&. The partial decay width for n-fold derivative coupling is therefore

(iii) gg' term: From (24) one has

ga)p 2Dn q2n qr, I+p'((o) = ——(po+m').
4n. 3e m 2" mm

(32)

2 s
O.„, "'(p,2)O.. ;....„,'"""'"""-'(d,n) Tr(b„.„k„k".A 4m~'&" "52n+1

X(m' iP)y.yp(u) id)y—,y,+b,„„,k„—, .k„„,k„k„, k„„,(m' —iP)y yp(co id)v, y,). (33)—
By swapping upper and lower indices of the Q''s and interchanging dummy labels for the 6rst term in the trace,
this becomes

1 2 e
X O.,p"'(p, 2)-O„„~...&""'(d,n) Tr(m' ip)y" (~—id)y,y.+—(m' ip)y yp(&o—id)p.7,).—(34)

m-'&" " 52n+1

The two halves of the trace are equal since they are individually symmetric under the simultaneous interchange,
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n~P and r ~~, as may be seen from (27). Taking the part of the trace in 8 sa,„ first, and using (AS) one has

2
X(8/3)D„kq't" ')k&,'(m'&o p—d)(1 d—k/d')

m '(" ') (3S)

while the antisymmetric part gives, with the aid of (A6),

2 D
4'&"-'){La.,"(P)ks1(P)k„'yb,„-(P)k.~(P)k, $—L~ ~Pj}eTr

m 2(~ ~) 24
2 2 i dk pdh

-D~kg'&" ')kg' (m'(o —p d)I 1— + I+p k' —4' . (36)
m 2o1—1)3 E d2 d2

Equations (3S) and (36) when evaluated in 0& together give the decay-width contribution due to interference be-
tween the n-fold and (n—2)-fold derivative couplings as

ga~sI'gap' 2Dn g'

P.--:+ '"""'(~)= PPo(P—o+m') q'j-
4m 3e m"" ')m' (37)

The expressions (30), (32), and (37) hold for s&~2 pro-
vided the Lagrangian (22a) is interpreted to have re-
duced to the simple nonderivative form 4.4@ in the
special case s=-,'.The case —', ~ ,'+P is rea—dily shown to
have the same matrix element as the reaction $~~+P
so the width is given by an expression of the same form
as Eq. (20) for n=2 with the choice m'= +m according
as PaE~= ~1.

Finally one may observe that Lagrangians differing
from (22) by the insertion of a p„between the spinor
fields and contracted either with a spinor index or a
derivative index must vanish, either because of (9a),
or by an argument similar to that following Eq. (21) if
one considers free fields.

C. Vector-Meson-Baryon Decays

For the decay B,~ —&8~+V the two interaction
Lagrangians considered" are

Proceeding in the usual way by applying Eq. (11)
and taking g', g", and gg' terms separately, one has
the following, in which m'= ~m according as

P,P((—1)"+'=+1:
(i) g' term: This is

1 s
Og

1)1k ~ ~ )h(d n)y~ 1.(k)
m 2(11 2) 2n+1

XTr{(m' iP) (a) —id) y„y—,}.

Because of the presence of the vector-meson operator
which is symmetric in A. ~ p, only symmetric parts of
O(d) and the trace contribute, so on using (A2) this
gives

2D~ k '&" '& —
f (d k)'~

(m'&o —p d) nI 2+
(n —1)m"""

and

ga&V
QC "' 8„, 8„„,A „,,

m. (=2)
(38a) (d k)' ( (d k)')

+(n-2)
I
1-

I (41)
k 2d2 ( d2k2 )

/
ga~a V

Qp) (pl'' 11m—la
m (=» (38b) which on evaluating in Oz gives the partial decay width

due to (n —2)-fold derivative coupling:

for (P=P,P&( 1)"+'=+1,with—the usual iy~ insertion
for the opposite parity combination. The resulting
amplitude, squared, and summed over both baryon
spins and vector-meson polarization is

Z I
~

I
'=»{V4l'l41"'Pn —1~ 7+ (p) l'&1'''vn —1P

XA+(d) 0„...,„,"'"""-'(d,s)}a&„'(k), (39)

P.-~+v(~)=

q (2n —1 q')
X-(p,+m')

I + I
(42)

En —1 &2)

where

ga~a V

~@1".P -1&
m. ("-')

/
Zga~v

+ y),k„, k„„,.
m (n—i)

(ii) g" term: Equation (39) leads to

1 g
0„), a'"'(d n) a), '(k)

m '&" '& 2n+1
XTr{y,(m' ip)p p(~ id)p„V,}.— —
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TABLE I. Decay widths for baryon resonances of spin s(=)o—:2) in terms of dimensionless coupling constants g, g' de!)ned by the
Lagrangians (16), (22), and (38).The masses of decaying baryon, product baryon, and meson are a&, m, and )o, respectively; q is the decay
momentum common to product baryon and meson in the center-of-mass system, pp and kp are their total energies, and m'= {—1)(Pm
with (P as given in the erst column. t D„=()2!)22"/(2)o)!g.

Decay mo

1. B,~ —+ BI)2+I'

(P=PrPy/2( —1)o

——X
47r n

q ) 2(d-))
g
-(po+s)')

m) co

ll D——X
4 n

gg De——X
4 n

2. B,*~B3j2*+P

(P =P,Po(2(—1)"+'

3 Be*~Bi]s+~

(P =P,Pg(2( —1)"+'

( q
'(" ')

q (2n —1
(po+I)')

km. ( a-I
2 q~+-—(po+2m')
3m2

0+m') +— — — 3 {Pp—m')+2 —u

q )2(o—I) g—L2p. (p.+~)—:qj

q ))2" '2g k q—q+—(o)+)I')
t)ori cd )o

Because of the symme'try of 0+ and 8»' only the part
of the trace symmetric in v ~ ~ and X+-+ p contributes,
giving

ks2(" " ( p kd k)!
4D. 2~ p d- ~-3(m~yp. d), (43)

k' i
which leads to the (22—1)-fold coupling width

&f2 D ) (f ~
2(d—1)

I'.-1+v'(~) =
~ Em.i

The expressions (42), (44), and (47) hold for s&~ 2 pro-
vided the Lagrangian (38a) is interpreted as QC 3 for
s= 2. For the case —', o -', +V only one Lagrangian (38b)
is relevant, for which Eq. (44) with 2)=1 gives the ap-
propriate width.

As with case B, Lagrangians differing from (38) by the
insertion of a p„between the spinor Gelds may be neg-
lected, as may those incorporating ~ 8„, 3„,. by
the subsidiary condition on the vector Geld A„. The
calculated decay widths are summarized in Table I.

2gX- 3(Po-m')+ (d . (44)
CO p

IV. DISCUSSION

(p=+1(l= s—-', ),

The decay width for B,a —+ Bf+P, Eq. (20), can be
written in the form (P=P,Ef —1 ":

(iii) gg' term: Adopting the technique used to simplify
Eq. (33), this part of Eq. (39) becomes

Qg „rs"s(d )2)
2s+1

XTr(8„,(y) dy„y,m'+msygPy„y, )

+(p~)(, .~r))d„'(k). (45)

Taking parts symmetric and antisymmetric in z+-+ 7-

separately and using (A5), (A6) this leads to

g' D„1 [(o)+m)'—)22$
P - q2l+I

4m e 2m" o)'

(p= —1(l=s+-',),
g Dqf, j. 1

P
'

q2l+I
4)r nm "—' [(o)+m)'—.)22j

(20a)

(20b)

k~2("-»-
p 2p k'~ d k8D„~~ 1+ —

~

— (m'+~), (46)
m. 2=2

so the interference-term contribution to the decay
width is

which generalizes the result quoted by Jackson' for
s=-,'+ resonances. The term in square brackets is just
2(d(Po+m) which is =4(dm for q'«m' giving

P oo g2(q2(+)/(d)m+1 ($=s~ ) (t2((ms. (48)
g".vg".v 2D—.f' q 'l "

+a*"'"'(~)=
e (m.i
g kpg

X—q+ (m'+(d)
0) JM~

Here / is the orbital angular momentum for the decay
process inferred from angular momentum and pari:ty
.conservation, and the q"+'. may be interpreted as the

(47) familiar angular-momentum barrier factor (q") times
a phase-spa, ce factor (g) by analogy with the nonrela-
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tivistic potential-theory result. ' As Burr and Pilkuhn"
stress, there are ambiguities in apportioning Feynman
amplitudes into orbital angular momentum parts and
spin or purely kinematic parts in a relativistic treat-
ment. However, to pursue the analogy, potential theory
states that

F yqroV&(qro),

where y is the "reduced width, " ro the range of inter-
action, and V~(kro) a barrier-penetration factor. Some
values of Vg(qrp) are'

Vp(qrp) =1, Vg(qrp)=q'r p/(1+q'rp'),

V (qro) =q'ro'/(9+3q'rp'+q4r, '),
and in the limit qrp ~ 0 Vg(qrp) (qrp)"D„/n(e!); thus
there is the expected correspondence to the point-
interaction field-theoretical result of (20a), (20b). The
"reduced width" y encompasses sects due to the in-
ternal properties of the resonance, and would corre-
spond to higher-order terms in a perturbation-theory
treatment, as would the denominator of Vq(qrp) which
expresses directly the degree of departure from a point-
interaction picture. In choosing an expression F ~ (m/pp)

Xq ~
q'/(q'+X')

~

' for the SVp analysis of resonance de-
cays, Glashow and Rosenfeld" allowed for such a de-
parture empirically by the introduction of a form factor
(qo+XP)-l

Recent theories of SUB-breaking suggest" " linear
relations among the coupling constants for the decays
of members of the same multiplet into a baryon and a
pion, such as the following for the ~3+ decuplet

2g(N* -+ Nn.)+3v2g(F* -+ An-)

—V3g(F*-+Zpr)+242g(. *-+ n) =0,
and

g(N* ~Nn. )= —V2g(F* —& An)

which are satis6ed by recent data to within experimen-
tal error, when the relation (20b) for /= 1, F ~ g'q'm/~,
is employed. Becchi, Eberle, and Morpurgo" deter-
mined the eGect on the derived coupling constant ratios
of introducing the (q'+X') ' factor of Glashow and
Rosenfeld, " and found it was only 2%%u~ for the choice
X=350 MeV.

Notwithstanding the difhculty of isolating symmetry-
breaking effects from form factor effects, it would ap-
pear that the unmodified relations (20a), (20b) or (48)
are adequate for the moment. Whether the coupling
constants for decays of the proposed —,

' octet containing
the N*(1520), F*(1660),and ~(1820) are satisfactory

~ H. P. Durr and H. Pilkuhn, Nuovo Cimento 40, 899 (1965).
~ S. L. Glashow and A. H. Rosenfeld, Phys. Rev. Letters 10,

192 (1963).
'4 V. Gupta and V. Singh, Phys. Rev. 135, 31442 (1964); 136,

3782 (1964); V. de Alfaro and Y. Tomozawa, ibid. 138, 31194
(1965); M. Konuma and Y. Tomozawa, Phys. Letters 10, 347
(1964); P. G. O. Freund and Y. Nambu, Phys. Rev. Letters 13,
221 (1964).

~~C. Becchi, E. Eberle, and G. Morpurgo, Phys. Rev. 136,
S808 (1964).

in this respect is a question awaiting experimental
clarification. "' Srudnoy' has shown that the decays
of the no+ resonances N*(1688) and F*(1820) into vari-
ous 8~I' states are consistent with their being members
of an SUp octet, using the relation (20) with m=3,
(P= —1 Lwhich is the same as (20b) with /= 3j without
a form factor. Experimental checks on the allocation to
multiplets of the higher nucleon resonances such as
N*(1920), N*(2190), and N*(2360) must await the
identification of co-members.

Turning to B,*~BP+I' decays, the experimental
widths for the reactions (2a), (2b) have been shown to
be consistent4 with the identification N n(1688) —+

Ap(1238)+n. A (1815)—+Zp(1385)+pr provided the
lowest order single-derivative coupling (30) is employed
in preference to the threefold derivative coupling (32).
Decays of the —,

'—octet members to the corresponding
8-decuplet members have been considered"'~ but only
upper limits to the widths are available, derived from
the inelastic (2n) decay modes.

One example of the decay B,*~B;+V is known
to the author, namely, that of the F*(2300) I=i
resonance recently identified" in 3.5-GeV/c E p
interactions:

F*(2300)~ N+E*(890) .
Both the spin-parity and multiplet assignment of this
resonance await identilcation.

In considering the decay of one resonance into
another, the effect of the 6nite width of the daughter
resonance on the decay width of the parent resonance
should be considered. The expression for F(co,m, y)
derived above should more correctly be replaced by a
suitable average over the mass of the daughter reso-
nance such as

5$Q F'(mp)
F(co,mo, p) =— F(pp, m, p) dmo

o (m' —mo')'+mp'F '(mp)

if the daughter resonance has mass mp and width F'(mo).
Or, as a rough guess, one could try the usual trick of sub-
stituting a complex mass m'-+ mpo+impF', and taking

r(pp, mp', p) =ReF(pp, mo' —imQF', p),

which amounts to an effect (F'/mp)', negligible for
existing resonances.
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APPEN'DIX

The general form of 0~„,...„„"'""2,the spin-n boson positive-energy projection operator, has been given by
Behrends and Fronsdal' as follows:

Z II~.;. + & .'&" ll&.;.;"+
(n!) n(p), n( 2) i 1= i~3

~n/2~Ill y2 ~vlv2 ~IJ(n-1IIn ~vn-lvn

~(n—j.)/2~plp2 ~vlv2
' '

~fhn-2fIn-1 ~vn-2vn-1 ~gnvn

for even e

2n+1
Qe „uk ~ 2(d n) D k 2(11—I) (A1)

(2n+1) D„
Qe av12 ~ ~ 2(d n)—

2n (n —1)

k„,'k„'
X n()„„,'+(n —2) kp(" ')

kg

v1v2k ~ k(g~Pl+ v11II2++v2 ~PI II2~' "~ (d,n)

(2n+1) D„
Lh„...S„„,+((n-2)/k, ')

2n 2(n —1)

(A2)

y (b„„,'k„'k„,'+b„„,'k„,'k„') ()21 i-2 ) 2)7,—(A3)

where the sum runs over all permutations of the n
suKxes p&

. p, , and separately over all permutations of
the e suQixes v~. v .The signi6cance of the m=1 opera-
tor (Eq. 13a) has been referred to in the text. The ex-
plicit form for e= 2 is

1
8182 ( ) 2~21"1 ~F2"2 +2~l41"2 ~@2"1 3~8122 ~"1&2

The following useful properties of the 0''s when some of
their suffixes are contracted with a four-vector k„(then
written 0'...„..."'k„=0...2..."') can be derived from
the above definition Lsome of these have already been
given in Fox"].

Qg „„vik ~ ~ k(d n)

where

D„=(n))22~/(2n)!.

These expressions refer to particle d, so that kq' is the
space-momentum-squared of k„ in O~, according to the
definition (13c). Strictly speaking b„„'(d) and k„'(d),
rather than 5„,' and k„' should appear, but for concise-
ness this label for particle d has been dropped in the
text; it is retained for particle p however Lsee, for ex-
ample, Eq. (28)j.

Certain quantities appear in the text which are con-
tractions of m=1 projection operators referring to dif-
ferent particles, defined as follows:

~„'(p)~,:=~,~"(p),

~.'(p)k. '= k."(p) .
(A7a)

(A7b)

D kp1 kv1
(n+1)8, '+(n —1) k32(" ') (A4)

2s kg'

0~ 2 .2'"'"(d n) =((2n+1)/n)D„k, 'k '("—') (AS)

0„, „,0, „,„22 2" '..'. (d,n)

2n+1
— D.t k„,'8„„,' k„'8„,„2'—j, (A6)

4e


