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By=E4(2ZsZs—ZZys),
C1=D1=E1(—2Z4)+Eo(—2Z5—2Z¢)+ Es(—275)
FE(—Z1Zs—Z:ZFZ5Zs),
C2=D3=Eg[mp(Zs'—Zs—Z4)+mn(Z5—Z1—Z4)]
+Ea[m,,(Z2—Z1-—Ze)+m,,(Z2—Zs—Z5):] s
Cys=Dy=Es[my(Zs—Zs—Z10)+mu(Zs— Z1— Zy) ]
+E2[mp(Z10—Zl'—Z7)+mn(Zg—Za'—Z7)] s
Cs=Dy=Eo(ZoZr0v—Z1Z3—Z1Zs) ,
where we have made the following definitions:
E1=p,p,Dyy=—mp+ (p-d)2/ma2,
EZ:P#P/DM= —p-p'+ (Pd) (17' -d)/md,
Ey= Pnlﬁv’Duvz —mg+ (?l'd)z/mdz ’
E4=5",D,‘,= —'3 5

NEUTRON EXCHANGE IN REACTION p4+p—d+n*t

1345

and
’
Zi=p - n—momy,,

Zy=p-nt+mym,,
Zy=p-n'—mymy,
Zi=p" 0 +mgmn,,
Z5=P'P,+m1’2 )
Ze=n-w'+m,
Zi=p-n—mpMy,
Zs=1p"-n'—mgmy,
Zg=p°1>,—mp2,
Zyw=n-n'—m.2,
Z11=n2—~m,.2 5

Z12= n’”—mnz.
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General formulas are derived relating coupling constants for the strong decay interactions of a baryon
resonance B,* of any spin s to the observed decay widths, for the decay processes B,* — By+P, B.* — By*
+P, and B,* — By+V, where P is a pseudoscalar and V a vector meson. The calculations are carried
through within the framework of the Rarita-Schwinger formalism, using interaction Lagrangians incorporat-
ing derivative couplings of the pseudoscalar or vector-meson field to free spinor fields. The resulting formulas
are compared with the well-known potential-theory expressions.

INTRODUCTION

OBSERVATIONS of the strong decays of high-spin
baryon resonances afford valuable guidance in
assigning these resonances to their correct places in
various symmetry schemes. Thus the correct isotopic-
spin assignment is likely to be suggested by the ex-
perimental branching ratio into the different charge
states of particles produced by the decay, while the ex-
perimental decay widths provide a means of extracting
phenomenological coupling constants whose magnitudes
are connected in SU(3) or some higher symmetry
scheme.

The purpose of this investigation is to derive, for a
baryon resonance B,* of arbitrary spin s and mass w,
general formulas relating the coupling constants g,;p,
gs3p and gov to the widths I'(w) for their respective
decay processes

B*— By+P, 0
B*— B¥*+P: (2)
B*— By+V, @A)

where P is a pseudoscalar and V a vector meson. Ex-
amples of each of these processes already exist in nature,
reactions of the type (1) being by far the most common
mode for a given resonance because of the relatively
low masses of the product particles for such reactions.
Perturbation-theory relations for I'(w) have already
been given for the lowest spin values and are well-
known! and extension to higher spins suggested by
analogy with the resonance-theory results of Blatt and
Weisskopf.?

Lagrangians incorporating derivative couplings of the
pseudoscalar or vector-meson field to free spinor fields
are employed here, and the calculations carried through
in the framework of the Rarita-Schwinger® formalism.

1J. D. Jackson, Nuovo Cimento 34, 1644 (1964) [see especially
Appendix A].

*J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(John Wiley & Sons, New York, 1952), pp. 332, 361, 406-422.
The form of Eq. (49) is retained in the derivation of W. M. Layson,
Nuovo Cimento 27, 724 (1963) by means of the Klein-Gordon
equation rather than the Schrédinger equation. A useful summary
of results appears in L. D. Roper, University of California Radia-
tion Laboratory Report No. UCRL 14193, 1965 (unpublished).

8 W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941).
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In all cases the decay interactions are assumed to be
parity-conserving. The result obtained for reaction (1)
is shown to agree in general form, as one would expect,
with the resonance theory result in the limit of a point
interaction at the decay vertex. The general result for
reaction (2) reduces, in the special case s=3, to the ex-
pression obtained in the same formalism by Brudnoy*in
considering the decay of the Fj resonances into Py
resonances, viz.,

Ng*(1688) — Ny*(1238)+,
Y *(1815) — V3*(1385)+.

(2a)
(2b)

Reactions (2) and (3) possess, respectively, 2 and 3
different couplings, which will lead inevitably to am-
biguities in interpreting experimental data. In the ab-
sence of an exact theory it will be necessary to create

models like the Stodolsky-Sakurai® p-meson-isovector-
photon analogy for future guidance.

II. KINEMATICS AND FREE FIELDS

A. Kinematics

The decay rate for the process d — p-% is given® in
the rest frame Og of d by’

1
= f 59 (p+h—d)

1 &p d%k
X— YlmpP——, 4
20 (25+1) 20 2ko

where 91 is the Lorentz-invariant amplitude, defined in
terms of the .S matrix via the general relation

S 5= 87— i(2m)36%(ps— ps) M/ [ 1L 2p0:) 1),

where a factor 2po; occurs for each initial and final par-
ticle. The summation in (4) is over all polarization states
of d, p, and k. The integration may be performed, re-
sulting in

1 ¢ 1
I(w)=—
41 20? 25+1

2[omfo?, )

where the suffix 0 denotes evaluation of the matrix-
element modulus squared with |p|=|k|=g¢, the com-

4D. M. Brudnoy, Phys. Rev. Letters 14, 273 (1965).
8. Stodolsky and J. J. Sakurai, Phys. Rev. Letters 11, 90
1963). i
( 6 S.) S. Schweber, An Introduction to Relativistic Quantum Field
Theory (Harper & Row Publishers, Inc., New York, 1962),
p- 486, Eq. (118).

7 As well as identifying them, d, p, and % are taken as the
four-momenta of the corresponding particles, their masses being
w, m, and g, respectively; thus d=(d,ido), d*=d*—d¢’=—c’
The v matrices are Hermitian, with ys=7y1y2ysys, and satisfy
YuYr+vovu=204. The convention that spinors for particles of
mass 7 and arbitrary spin are normalized to 2 has been adopted.
The spin-} baryon spinors ¥ satisfy (3y-p+m)¢=0, and have
positive-energy projection operator A*(p)=m—iy-p. The short-
hand notation p=--p will be used.
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mon momentum from the decay of d at rest, and with p,
and %, having their mass-shell values. As can be
readily shown,

po= )Lt mi—u7],
ko= (20) [t u*—m?],

(6a)
(6b)
and

4= (20) [wh— 2(m*+-u)+ (m?— )22, (7)

B. Free Fields

In the Rarita-Schwinger formalism a particle of spin
s(=n—3%), where # is an integer, is described by a field
operator ®g,...q, , (@;=1---4) which is a tensor of
rank #—1, each component of which is a four-spinor
satisfying the Dirac equation

(7405 m)Payeap_ =0 ©)

and the condition

YarPayerean_1=0. (9a)
Furthermore, ® is a completely symmetric tensor
B...qiveeajees = Perajoreajors (9b)
with the properties
06, Payerea,_1=0, (9¢)
and
81y Paagerran1=0. (9d)

Equations (8), (9a), and (9b) can be shown to reduce the
number of independent components of ® to 2s--1, as re-
quired for a particle of spin s. Equations (9b), (9¢), and
(9d) with the Klein-Gordon equation for each tensor
component [corresponding to (8)] are the Rarita-
Schwinger equations for a particle of integral spin z—1.
Following Fronsdal® we introduce the orthogonal pro-
jection operator ® with the following properties

O.eviverai® = O™, (10a)
Per@ar. B =0, (10b)
Year Oy =0, (10¢c)
beras Oz P =0. (10d)

The special value of © arises from the property,. of
great use in trace calculations, that if U is a free-particle
wave function satisfying the conditions (9a), (9b) as
well as the momentum space analogs of (8) and (9c),
i.e., describes a particle of unique spin s, then

Y Uy UPE = © g B AH(p) = AH() Oyon B

spin

where At are the usual positive-energy projection opera-
tors of the spin-} theory. Explicit expressions for the ©
operators for general spin may be obtained, but for

8 C. Fronsdal, Nuovo Cimento Suppl. 9, 416 (1958).
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s>% become vastly complex (see Ref. 4 for the case
s=3%) and it is far simpler in trace calculations to ex-
ploit certain relations such as®

Oayeveanyfr Fr1(s)

n
=——7aY8Oaas. -0t PI(0)
(2n+1)
where ©,,...,,»"""» is the operator for bosons of spin 7.
This quantity is useful as it involves no vy matrices and
hence may be taken outside a trace expression. A further
useful property is

826 aareraniPB B (1)

2n+1
= Oareeeany® P i(n—1).
2n—1
A closed expression for @ in the form of a sum over the
n=1 operators, which have the form

Oy = 08— pupy/p*= 5,,,1(?) (13a)

has been given,® which may be used to obtain certain
formulas needed here; these are listed in the Appendix.
The symmetry between a top and bottom suffix
is peculiar to the #=1 case and this object will be
called 6,*(p) as in any frame it is perpendicular to
L0, ()p»=0]. It extracts the part of any vector ¢
perpendicular to p and hence we define

(11)

(12)

. 0 (9)= 8" (p)g» (13b)
with
9 (p)pu=0.
A quantity which will occur frequently is
3w (P)g* ($)gu*(p)
=0 (P)a'(P)=¢"— (¢ p)*/P*=0* (13c)

which will be written ¢,? to indicate the fact that in O,
it has the value ¢>—go*=q? the magnitude of the space
momentum squared.

A vector particle is described by a field 4, satisfying
the subsidiary relation 8,4 ,=0, which, in terms of the
polarization vector €, and four-momentum p, has
the momentum-space analog

kue, =0, (14)

A sum over the polarization states j is obtained with the
aid of the projection operator (13a); thus

Y e PeDP=5,,—kk,/k2=0,r(E). (15)

In the following, the calculational steps crucial to the
avoidance of impossibly wieldy expressions have been
included for pedagogic reasons. The matrix elements
arising in (4) and (C) are closely related to those con-
sidered by Fox,!® whose algebraic methods have been
followed where possible.

?R. E. Behrends and C. Fronsdal, Phys. Rev. 106, 345 (1957).

10 G. C. Fox, University of Cambridge report, 1965 (unpub-
lished).
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III. MATRIX ELEMENTS FOR
DECAY INTERACTIONS

A. Pseudoscalar-Meson-Baryon Decays

The invariant matrix element for the decay process
B,*— B+P will be considered first. If the intrinsic
parities of B,* and B are P, and P, respectively, then
for ®=P,P(—1)"=-1 the parity-conserving inter-
action Lagrangian is (recalling that n=s-+1%),

8s3p _
o= JpHL bn19 v 2D, (16)

mr(n—l)

but if ®=—1 an #ys must be inserted between the spin-3
field ¢ and the spin — (n—%) field ®,,,...,,_,. The pseudo-
scalar meson field is ¢ and the factor 1/7,(*~1 has been
introduced to make the coupling constant g,;r dimen-
sionless. Going over to momentum space the amplitude
corresponding to (16) therefore contains a vertex factor

8sipP
Vipeoin=——Fu"*
mrn—l

%)

: knn-l y

so that the required amplitude squared and summed
over initial and final spins is

2 || 2=Tr{ysV ' sn_y t74-A+(P)

X Vlll"’l‘n—lA+(d)®l‘1""“u—l'm..'""_l (d,s)} J (18)
Now the factor y4Viy, is clearly just V, if defined as in
Eq. (17); if P,P(—1)"=—1, V must be redefined to in-
clude the factor 4vs, so one has a v; appearing on either
side of At(p) (=m—ip) in (18), one of which can be
passed through the A*(p) to annihilate the other, re-
sulting in a sign change from 7 to —m. Furthermore one
can use Eq. (11), giving

gs%Pz

p”°
mL2D 241

Z[om|2=

“Run—

X Runey Oapsrees ey #2=1(d )
XTr{(m'—ip)(w—id)yaye}
m'=xm if P.P(— r==1. (19)

The quantity formed by contracting the &’s with @,
written ©Ogg...x8* "*(d,n) is listed as (A4) in the Ap-
pendix where it'is seen to be symmetric under the inter-
change of suffixes a <> 8. Thus only the part of the trace
which is likewise symmetric can make a nonzero con-
tribution, this being 46.5(m'w— p-d). Therefore,

gs3p” 7
——A4(m'w—p-d)
2D 241

Zlom|*=

X 5ap®ak...kﬁk' : "(d,n)
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and from (A1)
= (guip¥/ M2 DYAD 2D (mi/ma— p-d) .

On calculating this in Og4 [in which ke=g, as defined in
Eq. (5)] and substituting in Eq. (5) there results the
final expression for the decay width, namely,

ge}Pz Dn q qZ(n—l)

I‘s_,H_p(w)= (P0+ml) . (20)

dr 1 wm D
This result is true for any #2> 1, i.e., decays of baryons
having spins >%. Note that interaction Lagrangians of

the type _
yb'y)\@#l"'lln—lapl. .. a#n_xa)\q& (21)

connecting free fields do not have to be considered, for
wave functions %(p) and U# - -#»-1(d) each obey the
Dirac equation, and using d=p+4% the amplitude may
be shown to reduce to that stemming from (16) with
suitable choice of coupling constant.

B. Pseudoscalar-Meson-Baryon Resonance Decays

Turning to decays of the type B,* — By*+P there
are two couplings!! to consider, involving two dimen-
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sionless coupling constants:
8siP _
,_,B: @I‘lq)l‘llw‘ : 'lm_lauz' ot a#n—1¢ b (228')
mrn—2
and
gsip _
L= <I>”1€I>“m”2‘"“""13“6“,"6“2- o 6#n—1¢; (22b)
Me"

if ®=P,P3(—1)"*1=+1. Once again to conserve parity
an 7ys is to be inserted between the spinors if ®=—1.
The vertex factor corresponding to (22a and 22b) is

8s3P

st ﬂ»mmkuz’ * 'kun-l
M

Vﬂml‘l"'#n—1=

§s3P

kﬂmkulkuz' . 'kun—x (23)

mq"

+

which gives for the squared-and-summed amplitude

> | mn ] 2=Tr{YsV umpree-unas VA (2) O (9,3) |/ () [ PR “#n-1(d,s)}

C52n+1

7

1 4
@)amﬁ’l(ﬁ,z)@n,,.v,---v,,_f""‘"z'“””'l(d,n)_’_— Tr{(gﬁummk”z. .. k“n_1+__2k“mkm. . 'knn—1>
M

mﬂ_z(n—Z)

’

4 .
x(m’—ip)va<g6mnkm' L e PN ~kvﬂ_1> (w—id)vwa , (24)
m

T )

where m'=+m if ®= =1, by an argument similar to that preceding Eq. (19).
This expression will now be evaluated taking g%, g”*, and gg’ terms separately.

(i) gosp? term: This is
1
M2 5 2n+1

2 n
- ———®auﬂv(p,2) @ka---kn‘k' : k(d;n) Tr{ (m,—ip)yaYﬂ(w— id)YK'YT} .

(25)

In calculating the trace, terms in pa, ps, dr, and di can be neglected since they will vanish by (10b); it then re-
solves itself into two parts, the first being symmetric under either of the interchanges a <> 8 and k<> 7, and the
second antisymmetric. The first part has magnitude 4848, (m'w—p-d), so its contribution to (25) is

O (9,2) Ok ¥(d ) X 4(m'w— p- d)
4 D,

—5- 2n+1

3 (1—1) m2

kd2(n—2)

4 D,

3 (n_' 1) m1.-2("_2)

kd2(n—2)

(m'w— P d)BMvL(P) l:”‘suvl

o (-] o

( )k#k#] by (A2),
kaq?

2d2

kd2p2

1 As the coupling of free fields only is considered here, the number of independent couplings is obtained by asking how many
irreducible components of the form C, exist in the direct product Cs;XCe, of irreducible, unitary representations of the proper
orthochronous inhomogeneous Lorentz group. J. S. Lomont, J. Math. Phys. 1, 237 (1960) states that the multiplicity of C, for
s2851+s2 is (2s1+1) (25:+1); the requirement of parity conservation will halve this number. Thus for reactions (1), (2), and (3)

there will be 1, 2, and 3 independent couplings, respectively. Following J. D. Jackson, Nuovo Cimento 33, 906

(1964) and

G. C. Fox (Ref. 10), for reaction (3) the highest order coupling, Ja)®#1"* #~19,; + « - 9p,—1 42, Will here be neglected for simplicity.
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The antisymmetric part of the trace can be shown to be
40w p- ) (Barpx— Susdpr)F4D(Sards— 83:da) — 4 (Busdy— puda) 27
which is to be contracted with
5(2n+1)

@O (5,2) GO, ™ H{dgt) =~
o kT ) 2n(n—1)

D, ka? (n—2)

(1-2)
X([ oo P00+ su M PP+ R |~TasB) s (28

the latter equation following from (A3) and (A7a) and (A7b). The resulting contribution to (25) may be shown by
direct calculation to be

4 Dn kdz(n—z) , I (P.d)2 (P.d)z (P.kl)2
e Kt ey R Gy
-d Ea? B
—p—kd2[(2n—2)+(n—2)—"<1 _@R) 2)}] . (29)
PZ P2 kd4

On evaluating (26) and (29) in O, one obtains the partial decay width due to the (z—2)-fold derivative coupling:

gs1? Dy ¢*2 qr(2n—1)
Tropeple) =2 —[

! 2q2 ’
1) (potm )+§z—2(ﬁo+2m )] . (30)

T 1 M2 w
(ii) g term: From (24) this is
1 2
ma?n S (2n41)

OuiP*($,2) Ocke..r ™ *(d,n) Tr{(m'—ip)yavs(w—id)yey.} . (31)

One sees from (A4) that the ®’s are symmetric in their suffixes so that only the symmetric part of the trace con-
tributes, giving
1 k2D B2
——X 26480 a5 ($,2) 847 O .. ¥(d 1) 4(m' w0~ p- d) = (8/3) D —(m'o—p-d),

MA" M2 gy 2

where kp%=das'(p)ka'(p)ks'(p), consistent with the the definition (13c); note that this quantity has magni-
tude (w?/m?)g? in Og. The partial decay width for #-fold derivative coupling is therefore

g1p” 2Dn ¢ g
Lo’ (@) =————————(po+-m'). (32)

4w 3n m2"m m
(iii) g¢’ term: From (24) one has
1 2 =»

21 g Eim@““xa”l(ﬂz)®KVsz~-Vn—1T"""‘2'"""'l(da”) Tr{0umumbus’ * * Bun1bomn * * Rvuey

X(m,""":p)'ya"/ﬂ(w_id)'Yx'Yf'l‘avmnkm' *RonsBumbp - 'kun-l(ml—ip)'ya')’ﬂ(w—id)'Yx'Y'r} . (33)

By swapping upper and lower indices of the ®’s and interchanging dummy labels for the first term in the trace,
this becomes

1 2 n

m2D 5 241

@akﬂvl(P’z) @xvlk-uk'k' : k(d;n) Tr{m,—' ip)’YWa(w— id)'Yr'Yx'l" (m,_ 'I:P)’Ya’)’ﬂ(w* id)‘)/,{)’f} . (34)

The two halves of the trace are equal since they are individually symmetric under the simultaneous interchange,
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a<> B and 7<>«, as may be seen from (27). Taking the part of the trace in 8,0, first, and using (A5) one has

m,"’(”_l)

while the antisymmetric part gives, with the aid of (A6),

a0 24
2

mﬂ_2(n—1) 3

X (8/3)Daka ™Dk (m'w— p-d)(1—d-k/d?)

(35)

D,
—ka* D[ Sar*t (p)ls (P + 05 (P)ha (P)lr 1—[a >8]} @ Tr

2 Ak pd
—andw—%zl (m'w—p- d)(1—75+7;>+ p-kl—-kﬁ} . (36)

Equations (35) and (36) when evaluated in O, together give the decay-width contribution due to interference be-

tween the n-fold and (n— 2)-fold derivative couplings as

gsw}PgsiP’ 2Dn qz("_l)

I‘s‘_’%_‘hpinterf.(w) —

i1:31’0(1’04‘7”') —¢*]. (37

dr  3n m 2D gp?

The expressions (30), (32), and (37) hold for s> $ pro-
vided the Lagrangian (22a) is interpreted to have re-
duced to the simple nonderivative form &-®¢ in the
special case s=$%. The case 3 — $-P is readily shown to
have the same matrix element as the reaction §—3+4P
so the width is given by an expression of the same form
as Eq. (20) for =2 with the choice m’= 4=m according
as PyPy==+1.

Finally one may observe that Lagrangians differing
from (22) by the insertion of a v, between the spinor
fields and contracted either with a spinor index or a
derivative index must vanish, either because of (9a),
or by an argument similar to that following Eq. (21) if
one considers free fields.

C. Vector-Meson-Baryon Decays

For the decay B,*— B3tV the two interaction
Lagrangians considered!! are

8s3v _
L= \b@"l".#"—lanz. . 'alm—lA uls (38&)
m’r(”“z)
and
gav’
L= (1) YABH Y e e Dy An (38D)
Ma "

for ®=P,P3(—1)*t'=+1, with the usual #ys insertion
for the opposite parity combination. The resulting
amplitude, squared, and summed over both baryon
spins and vector-meson polarization is

z I M| 2= Tr{74Vm---#n_1>\f’Y4A+(P) Viiernin

XA+(d) ®i'1---vn_1m ke (d,s) } 6)\pl.(k) ) (39)
where

8siv
Vureeepmeih=——0u\Rps" * * Ry

mr(n*z)
igsyv’
YNOu " 'klm—v (40)
g (D)

Proceeding in the usual way by applying Eq. (11)
and taking g? g, and gg’ terms separately, one has

‘the following, in which m'=dm according as

P Py(—1)+H=1:
(i) g?term: This is
1 n

M2 In+-1

®ka--~k1)\k. : 'k(d)n)a)wl(k)

X Tr{(m'—ip)(w—id)yev.} .

Because of the presence of the vector-meson operator
which is symmetric in A <> p, only symmetric parts of
O(d) and the trace contribute, so on using (A2) this
gives

2D, kED (d-k)?
(m’w—p-d)[n(Z—l— )

(n—1) m 22 a2k
(@-k)?f  (d-k)?
+o=2r—(1=—2) |, @

ka*d?
which on evaluating in Oq gives the partial decay width
due to (n—2)-fold derivative coupling:

g8%V2 Dn q 2(n—2)
o222 2)

T N \WMg

2n—

q L ¢
x—(po+m’)( +—> . (42)
12) n—1 u2
(ii) g term: Equation (39) leads to
1 n

M2 21

O™ *(d,10) 04 (k)

XTr{ya(m'—ip)y(w—id)yiy<} -
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TasLE I. Decay widths for baryon resonances of spin s(=#-%) in.terms of dimensionless coupling constants g, g’ defined by the
Lagrangians (16), (22), and (38). The masses of decaying baryon, product baryon, and meson are w, 7, and g, respectively; ¢ 1s the decay
momentum common to product baryon and meson in the center-of-mass system, po and ko are their total energies, and m' = (—1)®m

with @ as given in the first column. [D,= (n ')22"/ 2n)!].
g Dn ¢" Du 8¢ Da
T'(w) —_— — ——X
Decay mode dr n ir n dr n
q 2(n~1) q
1. B*— Bipt+P (—) =(potm’)
My ®

(P=P.P1/2(—1)"
g\ g [2n—1
2. Bs* — By*+P (—) —I: ("——1') (potm")
|

My n—

2 ¢
@=PPyp(—1)n*1 +- ——(ﬁo+2m’)]

g \2 ¢ m—1\ ¢
3. B* = Bip+V (—) —(Po+7ﬂ')[< )‘l‘— <
Mo n—1 u2

@=P,Pipp(—1)*"

2m g o2 D
(—‘> Kl "(1’0‘*‘7”')

My w m?

q 2(n—1) q
(——> —L2p0(potm") —3¢*]
My, m?

q 2(n—1) q q2 & 2n—3 Zq k
) -[3 (ﬁo—m')+2—w:| *(-) [q+——(w+m'):|
My %) u? M, %) u2

Because of the symmetry of ® and §,,* only the part

of the trace symmetric in 7 <> k and A <> p contributes,

giving
PRI

4D, [2(1; d~j—"—iﬁ> —3(mwtp- d)] (43)

mﬂ_Z(n—l)

which leads to the (z—1)-fold coupling width

g3v” Day g \2= D
T/ ()= —(——)
T M.

q 2¢*
x—[S(po—m'>+—w]. (44)
%) w?

(iii) gg’ term: Adopting the technique used to simplify
Eq. (33), this part of Eq. (39) becomes

@nk...k'k" "(d,n)
X Te{ 8 p(vrdyeym'+may\pycys)
+p o\ ke 7)}0,ME).

Taking parts symmetric and antisymmetric in x <> 7
separately and using (AS), (A6) this leads to

o o142 )LL), o

so the interference-term contribution to the decay
width is

2n+1

(45)

. —8av8stv’ 2Dny g \
I‘x»%_’_vmterf.(w) — < )

4 n \My

xg{q+%°§<m'+w>} . @)

The expressions (42), (44), and (47) hold for s> % pro-
vided the La.granglan (38a) is interpreted as 1[/<I> A for
s=3%. For the case $ — -+ V only one Lagrangian (38b)
is relevant, for which Eq. (44) with n=1 gives the ap-
propriate width.

As with case B, Lagrangians differing from (38) by the
insertion of a v, between the spinor fields may be neg-
lected, as may those incorporating --:9,;---A4,; by
the subsidiary condition on the vector field 4,. The
calculated decay widths are summarized in Table I.

IV. DISCUSSION

The decay width for B,* — B+ P, Eq. (20), can be
written in the form [®=P,Py(—1)"]:

C=+1(=s5s—13)
g 2,2
. 2,+1f<w+m> £ e
dr n 2m.* C w?
(P:—l(l:s—"%),
2
Poym & & 1 _ 1 (20b)

dr n mA2 [(w4m)i—p?] ’
which generalizes the result quoted by ]eu.ckson1 for
s=3$* resonances. The term in square brackets is just
2w(po+m) which is =4wm for ¢>m? giving

Do g(@t/w)mst, (I=sF3), ¢*<m?. (48)
Here / is the orbital angular momentum for the decay
process inferred from angular momentum and parity
conservation, and the ¢?**1 may be interpreted as the
familiar angular-momentum barrier factor (¢2!) times

a phase-space factor (g) by analogy with the nonrela-
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tivistic potential-theory result.? As Diirr and Pilkuhn®
stress, there are ambiguities in apportioning Feynman
amplitudes into orbital angular momentum parts and
spin or purely kinematic parts in a relativistic treat-
ment. However, to pursue the analogy, potential theory
states that

(49)

where v is the “reduced width,” 7, the range of inter-
action, and V,(kro) a barrier-penetration factor. Some
values of V;(gro) are?

Volgro)=1, Vilgro)=g**/(14+¢*?),
Va(gro)= q¢'re*/ (9+3¢%ro*+q're") ,

and in the limit gro— 0, V;(gro)~ (g70)**Dn/n(n!); thus
there is the expected correspondence to the point-
interaction field-theoretical result of (20a), (20b). The
“reduced width” v encompasses effects due to the in-
ternal properties of the resonance, and would corre-
spond to higher-order terms in a perturbation-theory
treatment, as would the denominator of V,;(¢g7o) which
expresses directly the degree of departure from a point-
interaction picture. In choosing an expression I' « (7/w)
X qlg?/(¢®+X?)|* for the SU; analysis of resonance de-
cays, Glashow and Rosenfeld!? allowed for such a de-
parture empirically by the introduction of a form factor
(g+X2)

Recent theories of SUs-breaking suggest*:!® linear
relations among the coupling constants for the decays
of members of the same multiplet into a baryon and a
pion, such as the following for the §+ decuplet

25(N* — Nu)+3VZg(V* — Ar)
—V3g(V* — Zr)+2V2g(E* — Em)=0,

T < ygroVilgro)

and
g(N* > Nr)=—V2g(Y* — Ar)

which are satisfied by recent data to within experimen-
tal error, when the relation (20b) for I=1, I « g2¢’m/w,
is employed. Becchi, Eberle, and Morpurgo!® deter-
mined the effect on the derived coupling constant ratios
of introducing the (¢4 X?)~! factor of Glashow and
Rosenfeld,'® and found it was only 29, for the choice
X =350 MeV.

Notwithstanding the difficulty of isolating symmetry-
breaking effects from form factor effects, it would ap-
pear that the unmodified relations (20a), (20b) or (48)
are adequate for the moment. Whether the coupling
constants for decays of the proposed §~ octet containing
the N*(1520), Y*(1660), and E*(1820) are satisfactory

2H, P. Diirr and H. Pilkuhn, Nuovo Cimento 40, 899 (1965).

1S, L. Glashow and A. H. Rosenfeld, Phys. Rev. Letters 10,
192 (1963).

14V, Gupta and V. Singh, Phys. Rev. 135, B1442 (1964); 136,
B782 (1964); V. de Alfaro and Y. Tomozawa, ibid. 138, B1194
(1965); M. Konuma and Y. Tomozawa, Phys. Letters 10, 347
(1964); P. G. O. Freund and Y. Nambu, Phys. Rev. Letters 13,
221 (1964).

15 C, Becchi, E. Eberle, and G. Morpurgo, Phys. Rev. 136,
B808 (1964).
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in this respect is a question awaiting experimental
clarification.!®:'” Brudnoy* has shown that the decays
of the §* resonances N*(1688) and ¥*(1820) into vari-
ous ByP states are consistent with their being members
of an SU; octet, using the relation (20) with =3,
®=—1 [which is the same as (20b) with /= 3] without
a form factor. Experimental checks on the allocation to
multiplets of the higher nucleon resonances such as
N*(1920), N*(2190), and N*(2360) must await the
identification of co-members.

Turning to B,* — By*+P decays, the experimental
widths for the reactions (2a), (2b) have been shown to
be consistent?! with the identification N,7(1688) —
A5(1238)+m, A'1(1815) — Z;(1385)+ provided the
lowest order single-derivative coupling (30) is employed
in preference to the threefold derivative coupling (32).
Decays of the §~ octet members to the corresponding
é6-decuplet members have been considered!®:'7 but only
upper limits to the widths are available, derived from
the inelastic (27) decay modes.

One example of the decay B,* — B34V is known
to the author, namely, that of the ¥*(2300) I=1
resonance recently identified!® in 3.5-GeV/¢c K—p
interactions:

7*(2300) — N-+K*(890).

Both the spin-parity and multiplet assignment of this
resonance await identification.

In considering the decay of one resonance into
another, the effect of the finite width of the daughter
resonance on the decay width of the parent resonance
should be considered. The expression for I'(w,m,u)
derived above should more correctly be replaced by a
suitable average over the mass of the daughter reso-
nance such as

I (mo)

(mz—moz)z-l-mo?I"z(mo)

- mo [
I‘(w’m();l‘) = f T(w,m,u) dm?
T Jo

if the daughter resonance has mass m, and width I ().
Or, as a rough guess, one could try the usual trick of sub-
stituting a complex mass m2 — mo?4-im,I", and taking

f‘(w)m02)“) = Rer(w) mo>— imOP,) M) )

which amounts to an effect ~(I'/m,)?, negligible for
existing resonances.
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APPENDIX

The general form of ©,,...,,”"""», the spin-z boson positive-energy projection operator, has been given by

Behrends and Fronsdal® as follows:

eV —

oo TR >3
e (#1)2 2w, [i=1 =3

where the sum runs over all permutations of the »
suffixes y; - - - un, and separately over all permutations of
the » suffixes »; - - - v4. The significance of the =1 opera-
tor (Eq. 13a) has been referred to in the text. The ex-
plicit form for =2 is

—15 s Ll31s ls L__
®uw2m2(2)”‘ F0uvy Ougwy 201wy Opiamy

The following useful properties of the ®@’s when some of
their suffixes are contracted with a four-vector %, (then
written O...p.."""ky=0...;...."") can be derived from
the above definition [some of these have already been
given in Fox107;

1 1 L
55:‘1#2 6V1Vz .

2n+1
O ke s *(d,m) = Dok2»D (A1)
n
2n+1) D,
@aﬂlk'--ka”k. ’ k(dyn) =
2 (n—1)

17 1
ks k;x ] E2=D | (A2)

X [”‘Suml"" (n—2)

d

@ul‘—"’l.u#—'vz®mu2kmkymk' ' Ak(d,n)

= "‘——‘—‘[6"11;2'[6“2101]'_'_ ((n_ 2)/kd2)
2n 2(n—1)

X (6M1VszV1lknzl+ auzvllkmlkvzl) - (ﬂl « ”1)] ]

(A3)

@ /205" Ovypgt - -

@ (n—1) /20y g  Ovyog * *

n n
H Opivit @10 10 00yt H Ot -+

*Opn1pnOvn_1on for even n:l
b

for odd »

. L L s
5#n—2ﬁln—1 61’»-—2"7»_1 6llnl'n

@,,lk...k”l’“""”(d,n)

Dn kot
ot Dt =D e, (g
2n d2
O E(d 1) = ((2n+1)/n)Drkeitk a2 | (AS)
a’m‘—)n@pluzk---kvlk.”k(dyn)
2n+1
= Dn[kml‘svmzl*knlanwzljx (A6)

4n

where
D,=(n!)22"/(2n)!.

These expressions refer to particle d, so that £42 is the
space-momentum-squared of &, in Og4, according to the
definition (13c). Strictly speaking 8,,'(d) and %,'(d),
rather than 8,,' and £,* should appear, but for concise-
ness this label for particle & has been dropped in the
text; it is retained for particle p however [see, for ex-
ample, Eq. (28)].

Certain quantities appear in the text which are con-
tractions of #=1 projection operators referring to dif-
ferent particles, defined as follows:

duw' (P)on =0"(p),
5“,,1(?)]6,'[ =£M(p).

(A7a)
(A7b)



