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Neutron Exchange in the Reaction p+p ~ d+~+
J. MArzzws* sNn B. Dzo

Infjhan Instztlte of Technology, Eanplr, In&a
(Received 13 September 1963}

Several features of observed p+p -+ tf+e+ cross sections in the BeV region suggest that a one-particle (in
this case, one-neutron) exchange mechanism may play a significant role. We have investigated this possibility.
The treatment of the dnp vertex requires some care; the Fourier transform of the deuteron wave function
plays a crucial role in the calculations. The resulting predictions for the angular distribution clearly exhibit
the forward peaking which is experimentally observed, although the calculated total cross section, as a func-
tion of energy, does not agree very well with experiment.

I. INTRODUCTION

~ 'HE reaction

has been of considerable interest, both theoretically'~
and experimentally. 4 ~ The most conspicuous feature, a
prominent peak in the total cross section at a proton
laboratory kinetic energy of about 600 MeV, was shown

by Mandelstam' to follow by a final-state interaction
mechanism from the existence of the (3,3) resonance
1V*(1238)in the pion-nucleon system. Turkot et al. ,' and

more recently Yao,' extended this mechanism to higher

energies, and showed that the pion-nucleon resonance
$*(1920) should produce a peak in the total cross
section for reaction (1) at a laboratory kinetic energy of
about 2.8 BeV. If the existence of this latter peak, which

the experiment of Turkot et a).4 suggests, is conhrmed,

it will establish this calculational scheme, involving
one-pion exchange plus anal-state interaction, as a
reasonable approximation scheme.

There is, however, another single-particle exchange

which may occur, namely neutron exchange (Fig. 1).
This process was brieQy discussed by Yao'; he remarks

that the relevant diagrams are (a) dificult to calculate
because the neutron is far from its mass shell, and (b)
probably smooth functions of energy and therefore not
able to reproduce the observed peaks. We are in general

agreement with both of these points, but it is still of
interest to attempt the calculation. The diA'erential

cross section' exhibits forward (and backward) peaking,
and the forward peak approaches 0' with increasing

energy. This behavior is very suggestive of a one-

particle exchange mechanism.
In Sec. II we present the general plan of our calcula-

tion. In Sec. III we discuss the treatment of the dip
vertex and in Sec. IV we present our numerical results
and some remarks. An Appendix contains some calcula-
tional details.

T Te, TQp (2)

where T, and T~ are the contributions from the dia-

grams of Figs. 1(a) and 1(b), respectively.
The dorp vertex has been discussed by Blankenbecler

et c/. ' We shall rederive the basic result in Sec. III of
this paper, because the derivation in Ref. 8 is highly

formal and abbreviated, and because of a misprint in

the answer LKq. (33) of Ref. 8j. The result is that the

dnp vertex of Fig. 2 is

II. MATRIX ELEMENTS

The invariant matrix element T for reaction (1) may
be written, in our approximation, as

(b)

Fxo. 1. Feynman
diagrams for single
neutron exchange in
the reaction p+p -+
d + v+: (a) "un-
crossed" diagram;
(b) "crossed" dia-
gr @Ill.

s(p) (gtV.+gmp. )N (~) (3)

where u and e are particle and antiparticle spinors, re-

spectively, and the index p, is to be contracted with the

polarization vector of the deuteron, which we treat as an

elementary spin-one particle. Explicit expressions for g&
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f~x,E g Deuteron "decay"' Inatrix elements. q denotes the YA'@LE Q. DcutcI'on decay Dlatl'lx clcnlcnts, ln tcrxos of s- and
coxomon Inomcntum of thc Proton and neutron. F&,gs

=E&,&+1Ã&, gs
4-%'avc decay amphtudcs.

v4erc E~, is the total energy of the proton or neutron.

Proton spin Neutron spin Matrix element
Proton Neutron

spin spin

(2F„F„) '&kg (F„F+P cos'S)
+gs(F„+F )g' sin'Sg

(2F~F„) '&f2g~ —gs(F„+F„)gq' sing cosse'~

(2FN.) "E2e—gm(F~+F )jg' sin++"

III. THE dnp VERTEX

Let us begin by imagining that ms)m~+m„so that
the deuteron is unstable and decays into p+n The.
matrix element describing the decay wi11 be taken to be
(3), or more precisely the Hermitian conjugate of (3),
since the roles of incoming Rnd outgoing particles have
bccn 1Dtel changed.

We first wish to relate the coupling constants gj and
gq to thc s- and d-wRvc dccRy RIDphtudcs. A stI'alght-
form'Rrd wRy to do this 18 to imagine thc dcutcI'oD to bc
"spin up"; i.e., the polarization vector is —(-,'V2)(i+sf)'
By inserting explicit expressions for the spinors in (3),
+c obtain decay matrix elements to the various nucleon
spin states. These are given in TRMe I. Note that we
assume the constants g1 and gs to be real throughout.

If a typica, l matrix element of Table I is denoted by T',
the decay rate to that spin state is

r= —
I
2'I'dQ- .

32% md'

We may alternatively describe the "decay" of the
deuteron by giving the amplitudes f, and fs for s- and
d-%'Rvc decay& rcspcctlvcly. RcfcI'cDcc to tables of
Clebsch-Gordan coeKcients and spherical harmonics

and g2, in terms of the deuteron wave function, will be
glVCD lD SCC. III.

If we use the dnp vertex (3), the matrix elements T,
and T&of (2) are

&.=e(p) (gIy, +gsp, ) (II m) —'~gV sg(p')
(4)

&s=~(p)(gIvs+gsps){II m ) ~g»N{p) &

where g is the conventional pion-nucleon coupling con-
stant; (g'/4s) =14.7. The p+p~d+s+ di6ercntial
closs scctlon 18 thcD

do 4 g2
Z I

2'I'.
dQ 256vr qg 8

gl2 f22 Rnd W RI'c tlM lnltlal momcntum2 6nal momentum~
and total energy in the c.m. system, respectively, and P
denotes the usual sum over proton and deuteron
polRllzatlons. Thc squaring and Summing RI'c performed
by standard techniques; details are presented in the
Appendix.

Up

Up
Dorm
Bown

Up
Dorm
Up
D0%'n

f.+(gs)fs(3 cos'8 —1)

(9/8)'~'fs sins cosse'&

(9/8) I/'fg sin~em"&

glvcs then the decay IQRtrix elcDMnts of Table II; Rga,1Q

wc assume that thc 1Qltlal dcutcroQ 18 splQ Up. We 6X thc
normalization of f, and fd, by de&ning formula (6) also
to hold for the matrix elements of Table II.

A comparison of Tables I and II now yields thc
relations

(F+.q '~' 1 ( f,q

2 J F+„+q'k vs
—(2F )\/s 7

(F.+F )(M'.+/)
fs 3F+„+g'~

&I(f.—

We now consider the effect of the deuteron mass
moving to its correct value, below the sum m„+m„.The
deuteron wave fuIlctlon Rt lRlgc dlstRnccs changes from
the form

p-(s'"/r)fa. +u, X(d-state angular funct1on) j, (g)
to

(s-«'/r)La, +asX (d-state angular function) j. {9)
Tile cg and Gg of (8) arc clcally pl'opol'tloIlal to thc f~
and fs of Table II; the precise relation follows from thc
observation that 'tile wave function (g) 1Illpllcs a decay
rate

r=(4~qm. /z„z„)(Io,Is+ I«Is)
A comparIson of (6) and (1o), usIng thc matrix elements
of Table II, shows that

f g= (32s'ms'/Z Z )I"a (11)
%'c shall asslike that the deuteron Inass IIlay bc

moved to its correct value without doing violence to thc
above relations. We thus obtain the coupling constants
g» and g~ in terms of the constants a, and g@ of thc
asymptotic deuteron wave function {9),by combining
relations {7)and (11):

/F+ mg'q»s 1 a~q
gI=4 I I ~+—

I

E Z~. i F@.+g vS '

/F+ mgqI" 1
(»)

E z„z„J (F,+F„)(F~„+(i)
ug 3FQ„+g'~

&g (t' )
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W ~ 2.5 BeV
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I I I the pole. It seems unphysical to expect this eBect to
persist away from the pole.
(b) It is well known' that the Fourier transform of a
wave function is closely related to the corresponding
three-particle Green's function. In other words, the
Fourier transform of the deuteron wave function pro-
vides a rapidly decreasing form factor which should be
used to reduce our mass shell estimates.

I I I I I I I I

I 0 20 30 40 50 60 70 80 90
(deg)

FIG. 3. Calculated c.m. differential cross sections for rp=0.3, 0.4,
and 0.5 F. The crosses are experimental points from Ref. 4.

The question arises as to the proper values of E~ „,
F„,„and q' to use in (12). For the values of gi and g~

when all three particles of Fig. 2 are on the mass shell
("at the pole, "for the diagrams of Fig. 1), the prescrip-
tion is clear. We simply use the same relations that hold
for mz)m„+m„, namely,

Specifically, we have modified Eqs. (12) as follows:

(a) q' is computed from (13), but with m„' replaced by
n'. Thus, on the mass shell (n'=m„'), —q' has its very
small value o,', 'but it increases rapidly as n' departs
from m„. The remaining kinematic variables in (12),
namely E~ „and F„„,we have given their mass-shell
values. We are not certain what the correct treatment of
these variables is, but in any case they are relatively
slowly varying.

(b) From (9) it follows that

(14)

E„=(mg+m„' —m ')/2m',

E„=(m j+m„' m„')/2md, —
F„=[(mg+m~)' —m '1/2m',

F„=[(mg+m )'—m, '$/2m',

q2 —[mg4 —2m'(m 2+m 2)+(m 2 m 2)21/4md ~

(15)

That is, for a given n', q' is computed from (13), with
e.„' replaced by n'. Then I4 z are computed from (15)
and inserted into (12) to obtain the appropriate values
of gy and g2.

Finally, we must choose some reasonable deuteron

However, if we use these values, together with a
reasonable asymptotic deuteron wave function, we ob-

tain coupling constants gJ and g~ which lead to ridicu-

lously large cross sections for reaction (1).There are at
least two reasons for this:

where p, q is the Fourier transform of the s-wave

(d-wave) radial function of the deuteron. We have re-

(13) placed relation (14) by

(a) The value of q' is anomalously small at the pole,
because the deuteron binding energy is so small. This
small value of q' in (12) causes the d-state contribution

(i.e., the contribution from aq) to be unusually large at
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FzG. 4. Effect of varying the d-state parameter p on calculated
cross sections.

W (BeV)

Fzc. 5. Zero-degree differential cross sections, as functions of
total c.m. energy 5'. The crosses are experimental points taken
from Ref. 2.

' R. Blankenbecler and L.F. Cook, Phys. Rev. 119,1745 (1960);
R. Blankenbecler, Nucl. Phys. 14, 97 (1960); M. T. Vaughn,
R. Aaron, and R. D. Amado, Phys. Rev. 124, 1258 (1961);R. D.
Amado, Phys. Rev. 127, 261 (1962).
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wave function. We have taken for the s-wave function

f,(r)= (N/r)Le «" "'&—e e&~"p&j (r)rp)
=0, (««) (16)

This function has the Fourier transform

25-

y, (q) = &Px ip. (r)e 'p'-*-

kn N (P' —n') nP q'—
cosqr p+ sinqrp . (17)

(q'+n') (q'+p')-—q(n+p) I I I
'

I I I I

IO 20 30 40 50 60 70 80 90

ec m. (deg)

The constants N and p were evaluated from the normal-
ization condition and the effective range rp. Neglecting FIG. 7. Calculated differential cross sectionsfor variousenergies,

showing increasing forward peaking with increasing energy.
ra=0.3 F; p=0.02.

n p(p+n) n e ' "'
LV =—

2m (P—n)' 2e. 1 nr, —

For the effective range, we have taken"

r,=1.82 F=9.22 BeV '

After making modification (a) above, the d-state part
of the deuteron wave function turns out to have very
little inQuence on the final results. We have therefore
taken for the d-state function simply a constant p times
the s-state function. In order to fit the observed
quadrupole moment of the deuteron, p must be chosen
near 0.02"; on the other hand, the d-state probability
requires a much larger value of p. The discrepancy, of
course, simply reflects the inaccuracy of our d-state wave
function.

IV. NUMERICAL RESULTS AND DISCUSSION

We have calculated numerical values for the differ-
ential cross section of reaction (1),using the formulas of

Sec. II and the Appendix, and the modifications dis-
cussed in Sec. III. The numerical calculations were
performed on the IBM 1620 computer of the Indian
Institute of Technology, Kanpur.

In Fig. 3 we show the c.m. differential cross section at
a total c.m. energy W=2.5 BeV (proton lab kinetic
energy = 1.46 BeV). The three curves show the effect of
varying the hard-core radius rp from 0.3 F to 0.5 F,
while holding the d-state parameter p fixed at 0.02. The
crosses are experimental points, taken from Ref. 5. It is
apparent that we cannot fit simultaneously the observed
magnitude of the differential cross section and the ob-
served amount of its forward peaking.

In Fig. 4 we show the effect of varying p. The cutoff
radius is held fixed at rp= 0.3 F, and W= 2.5 BeV.

In Figs. 5 and 6 we show the zero-degree differential
cross section and the total cross section, respectively, as
functions of 8', for rp= 0.3, 0.4, and 0.5 F. In no case is
there good agreement with the experimental data which
we have taken from Refs. 2 and 5.
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Fxo. 6. Total cross sections for various values of ro. The crosses
are experimental points from Ref. 4.
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Fro. 8. Fourier transform (17} of our assumed deuteron wave
function (16}as a function of ri', the squared four-momentum of
the virtual neutron. The horizontal bars denote the range of n' in
the uncrossed diagram, corresponding to angles g, from 0' to
90', 0' is at the left.
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On the other hand, one characteristic feature of the
experimental results, ' namely the increasing sharpness
of forvrard peaking vrith increasing energy, appears
quite clearly in our model. In Fig. 7 vre show diGerential
cross sections calculated for various values of lV, with
t'0= 0.3 F, p =0.02. For ro= 0.5 F, the effect is even more
pronounced; at iV=3.5 BeV, the maximum in the
angular distribution is at 0'.

The reason for this forward peaking is of some in-
terest. Although such angular distributions are typical
in one-p30n-exchange calculations, we are here dealing
with elcleon exchange, and a simple calculation of the
momentum transfer involved vrill shovr one that such
sharp peaking ls not expected.

In fact, the reason for these angular distributions is
our Eq. (15). The a, ,4 and therefore the effective
coupling constants g~, 2 are proportional to the Fourier
transforms of the deuteron vrave function. As vre vary
the angle 8, and therefore the momentum transfer e', the
variations in do/dQ to a considerable degree simply
reflect the variations in the Fourier transform g, (q').

To illustrate this point, vre have drawn Fig. 8. This
shows the Fourier transform p, (q2) for r3 ——0.3 F. Above
the Fourier transform vre have drawn horizontal bars
indicating the range of values assumed by e' for the
uncrossed diagram, as 8 goes from 0' to 90'. It is clear
from this Ggure that the presence of the maxima in
Fig. 7, moving to smaller and smaller angles as W in-

creases, simply follovrs from the presence of the maxi-
mum in

I p, (g') I' near n'= 0 The b.ehavior of curve 1 in
Fig. 7, showing a m3nim24m in do/dQ for W= 2.2 BeV,
can also be understood from Fig. 8. For 8'=2.2 BeV,
the zero of p, (q2) near n'=0.45 BeV' occurs for a
real scattering angle between 0' and 90'. The fact that
angular distributions calculated for r=0.5F exhibit
sharper forward peaking is also easily read off from
Fig. 8.

We conclude that our one-neutron exchange mech-

anism is at least partially successful in reproducing the
ObSerVed CharaCter Of p+p-+d+2r+ CrOSS SeCtiOnS,

particularly the forvrard peaking vrhich increases with

energy. The agreement vrith experiment might very
well be improved by the inclusion of absorptive eGects"
in the present calculation. We also suggest that the
intimate relation between Fourier transforms of bound-
state wave functions and angular distributions, familiar
to nuclear physicists from stripping theory, "may occur
in the present case, as vrell as others, in high-energy
particle physics.

Incidentally, a calculation" of the cross section for
p+p-+ 8+ vector boson by Nearing, assuming one-

neutron exchange, vras made "at the pole, " and vre

vrould therefore expect it to overestimate the actual

"M. H. Ross and G.L. Shor, Phys. Rev. Letters 12, 627 (1964),"S, T. Butler, Nucleur Stripping Eeuct~ows (John Wiley R Sons,
Inc., Neer York, 1957).

@J. Nearing, Phys. Rev. 132, 2323 (1963).

cross section enormous1y because of his omission of the
Fourier transform of the deuteron wave function. "
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APPEN'DIX

We begin with the invariant matrix element for reac-
tion (1) in the form (2)

T T~ TQ)

with T, and T3 given by (4). The squared and summed
matrix element is

ZI2'I'=El&. l'+El»l' —Z &.*&3—Z»*&..
We write

P l r.l'= L2g'/(n —m.2) j4a
2 I

2'. I'= C2g'/( "- .')'j4B,
g r:r,= L2g'/(n2 —m„') {n"—m„')j4C
P rgb. = L2g2/(n2 —m„2) (n"—m„2)]4D,

and further decompose 3, J3, C, D into four parts each:

~ = lg1I2~1+g1*g2~2+gC2'~3+ I g212~4~
B= lg1 l B1+g1 g2B2+g1g2 B3+ lg2 l B4&

gl gl +1+gl g2 +2+g1 g2 +3+g2 g2 +4 y

gl g1D1+gl g2D2+glg2 D3+g2 g2D4 ~

We must remember that, following Sec. III, we are
modifying the coupling constants at the dnp vertex, so
that gy and g2 take on different values accordingly as the
four-momentum of the exchanged neutron is e or I'. %e
have therefore distinguished these alternatives in Eqs.
(A1) by using a prime (no prime) to denote a coupling
constant for which the virtual neutron has momentum
n'(n).

The quantities 3;, ~ ~ ., D; are evaluated by the usual
trace and projection-operator techniques. For example,

A1——-', Try„(n+m„)y3(P'+m„)
Xy3(n+m„)y„(P—m,)D„„,

where D„„is the spin-one projection operator

D„,= —8„,+d„d„/m42.

The results of the traces are

A 1—E1( 4Z1)+E2( 2Z11)+E4 (Z3Z11 2Z1Z2)

A 2
——A 3

——E1Lm„(2Z1—Z11)+m„(2Z1)j+E2(m+11),
~4 El(2Z1ZV ZQZ11)

B1=E2(—2Z12)+E,(—4Z3)+, ( 3Z» —Z3Z4)

B2——B3——E2(myZ12)+E3Lm~(2Z3 —Z12)+m„(2Z3)j,
~4 J. Nearing, Phys. Rev. 135, AB2 (1964).



B4=Es(2ZQZ3 —ZQZ12),

Cl= Dl——El(—2Z4)+E2(—2ZQ —2ZQ)+E3(—2Z,)
+E4( Z1Z3 ZQZ4+ZIZQ) y

C2= DQ ——EQLm, (ZQ —Z3—Z4)+ m„(ZQ —Zl —Z4))
+E3pm „(ZQ—Zl —ZQ)+m„(Z2 —Z3—ZQ) ),

C3 D2 E1 /Ply (Zs Z3 Z10)+m~ (Zs Zl ZQ)j
+EQLm„(Z, Q

—Zl —Z7)+m„(Z, —Z,—Z7)j,
C4 D4 E2(ZQZ10 Z1Z3 Z7Z8) y

where we have made the following de6nitions:

El=P.P D"= m—+s(p ~)'/ms'

Es=P.P'D"= PP'+—(P.d) (P' d)im",
EQ=P„'P.'D„,= —m„'+ (P'.d)2/ms',

E4 814JIBEp

Zl= p "S —msm~,

Zs=p S+msm~,

ZQ P ' 73 mrpmN p

Z4=P "s+msmn
Zs= p'p +m
ZQ —s' s+m'Q

Z7 P s msmQ

Zs= P 's —msme ~

ZQ —p'p ms

Zyo=S Ã —St

~ s

Z$9—S 8l~ e
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Decays of Baryon Resonances of Any Spin
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General formulas are derived relating couphng constants for the strong decay interactions of a baryon
resonance B,*of any spin s to the observed decay widths, for the decay processes B,~ —+ By+I', 8,*—+ Bg~
+I', and B,~ ~B~+V, where E is a pseudoscalar and V a vector meson. The calculations are carried
through within the framework of the Rarita-Schwinger formalism, using interaction Lagrangians incorporat-
ing derivative couplings of the pseudoscalar or vector-meson 6eld to free spinor fields. The resulting formulas
are compared with the well-known potential-theory expressions.

INTRODUCTION

B,e -+ Bi+8,
B.*—+ Bi*+2,
B.*QBi+7,

(&)

(2)

(3)

~~OBSERVATIONS of the strong decays of high-spin
baryon resonances afford valuable guidance in

assigning these resonances to their correct places in
various synnnetry schemes. Thus the correct isotopic-
spin assignment is likely to be suggested by the ex-
perimental branching ratio into the different charge
states of particles produced by the decay, while the ex-
perimental decay widths provide a means of extracting
phenomenological coupling constants whose magnitudes
are connected in SU(3) or some higher symmetry
scheme.

The purpose of this investigation is to derive, for a
baryon resonance B,* of arbitrary spin s and mass co,
general formulas relating the coupling constants g,p,
g,3~ alld g,iv to tllc widths F(40) fol' tllcll' respective
decay processes

where I' is a pscudoscalar and V a vector meson. Ex-
amples of each of these processes already exist in nature,
reactions of the type (1) being by far the most common
mode for a given resonance because of the relatively
low masses of the product particles for such reactions.
Perturbation-theory relations for I'(oI) have already
been given for the lowest spin values and arc well-
known' and extension to higher spins suggested by
analogy with the resonance-theory results of Blatt and
%eisskopf. '

Lagrangians incorporating derivative couplings of the
pseudoscalar or vector-meson Geld to free spinor 6elds
arc employed here, and the calculations carried through
in the framework of the Rarita-Schwinger' formalism.

' J. D. Jackson, Nuovo Cimento 34, M44 (1964) t see especiaily
Appendix Aj.

~ J. M. Slatt and V. I". %eisskopf, Theoretical NNclear I'hysics
(John 'gfiley k Sons, ¹wYork, 1952), pp. 332, 361, 406-422.
The form of Eq. (49) is retained in the derivation of W. M. Layson,
Nuovo Cimento 27, 724 (1963) by means of the Klein-Gordon
equation rather than the Schrodinger equation. A useful summary
of results appears in L. D. Roper, University of California Radia-
tion Laboratory Report No. UCRL 14193, 1965 (unpublished).

3 W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941).


