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Possible Tests of C,„and T„Invariances in l++N ~ l++r anti A ~ B+e++e
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A systematic method to test the C,& and T,t, invariances of the electromagnetic interaction is to use the
inelastic scattering S++g~ I++I' where l+ is the charged lepton, E is the target nucleus (or nucleon), and
I'&E but, otherwise, can be any system of the strongly interacting particles. General expressions for the
various possible C,»- and T,q-noninvariant effects in such reactions are derived and discussed. Similar con-
siderations are also applied to the decay A —+ 8+e++e, where A and 8 are any complexes of the strongly
interacting particles.

X. INTRODUCTIOÃ

'HK recent discovery' of
J.

has stimulated an extensive re-examination of the ex-
perimental foundations of the various discrete space-
time symmetries for all the interactions. It was found'
that there are good evidences that the strong interac-
tion H g is separately invariant undel the space in-
version I',t,, the time reversal T,t, and the particle-
antiparticle conjugation C,&, there are also strong
evidences that the electromagnetic interaction B~ is
invariant under the same space-inversion operation I',t,

and the product (C„T.&,&). However, at present, there
exists no evidence that H~ is, or is not invariant under

C,& or T,t,. Throughout this paper, for darity, we use
the subscript "st" to denote the particular choices of
these discrete symmetry operators that are determined

by the strong interaction alone. From the observed

(sr+ad=) and (E+,K ) symmetries in the @+p annihila-

tion experiment, ' the operator C,& must satisfy
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c.,le+)= Ix-),

where
I p&, I p&, lsr+» and IE+) all refer to the various

physical single-particle states. From the observed reci-
procity relations in the nuclear reactions' and the p-p
scattering experiments, ' we conclude that

~.tl ps, ),)=nrl p-~, ),&

&.~lms, 1&=nrlrt s,1&,

where the subscripts k and X denote, respectively, the
momentum and the helicity of p or I, and std is a
phase factor.

If II~ is not invariant under the particle-antiparticle
conjugation C„, then we can attribute reaction (1) not
to the violation of C,tI', t, by B „I„but to the virtual
e6ect of H~. There is, then, a natural explanation of the
smallness of the observed amplitude of reaction (1)
w111cll ls about (n/sr) t1111es tllat of Xr ~ sr++sr

On the other hand, it has been well established, at
least for the leptons, that the electromagnetic interac-
tion II~ is separately invariant under a charge coejggu-
Hoe C~, a time reversal T~, and a space inversion I'~.
Furthermore, we know that the minimal electro-
magnetic interaction of any system of the spin-0 and
spin--, particles is always invariant under C~, T~, and
I'~. It seems, therefore, aesthetically appealing to
ussgme that there exists a charge-conjugation operation
C~ under which all electromagnetic currents change
sign and that all electromagrIetic w]eractions, including
that of the nonleptons, are invariant under this cherge-
comjggation symmetry C~.

As remark. ed before, H~ is already found to be in-
valla11t under PBt, alld tile Product (CgtTesPes). Tlllls, 1f

B~ is invariant under C~, it must also be separately
invariant under T~ and I'~, where T~ and I'~ for the
nonleptons are de6ned by

5L. Rosen and J. E. trolley„Jr. , Phys. Rev. Letters 2, 98
(1959);D. 3odansky et al. , ihid 2, 101 (1959.).

6 See e.g., A. Abashian and E. M. Hafner, Phys. Rev. Letters
1, 2SS (19S8);C. F. Hwang, T. R. Ophel, E.H. Thorndike, and R.
Vililson, Phys. Rev. 119,352 (1960).
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and

(6)

where j„is the charged leptonic current

l=e, p

and J„,E„are both currents of the nonleptons which
satisfy

and
CsO',Csz '= &», - (10)

By de6nition, under the charge conjugation C» all
electromagnetic currents must change their signs; i.e.,

C,g„C, '= —g„.

A mismatch between C,t and C~ means that

(12)

(13)

and vice versa. The transformation properties of J„
and E„udner T,t, and T„are determined by Kqs. (5),
(6), and (10)—(12).We find

(14)

(15)

Tst+ga Tst +p ~ (16)

Thus, the existence of E„ implies also a mismatch
between T,t and T~. Explicit examples of such E„have
already been given in some previous papers. ~ 8

r As an example of such E„, we may write E„=z),(8/Bx„)
X (p„co„—p~„), where p„and co„are the 6eld operators of the @o

and co particles, and X is a real constant. The @ and co have the
same C,t= —1 eigenvalues, but the opposite C~ eigenvalues. Thus,
E'„ is even under C,» but odd under C~. In this case, E„transforms
like members of the octet representation under the SU3 trans-
formations. Since J'E4d'r =0, both C,t and C~ anticommute with
the charge operator. For more discussions, see T. D. Lee, Phys.
Rev. 140, 3967 (1965).

8 Another example of such a current E'~ is the possible existence
of a charged, but C,&=1, particle. See T. D. Lee, Phys. Rev. 140,
3959 (1965).In this case, E'„ transforms like a scalar under either
the isospin transformations or the SU3 transformations.

In this case, the possibility that the electromagnetic
interaction may violate the C,t symmetry can be
simply viewed as a possible mismatch between the two
conjugation operators C,t and C~; i.e.,

(7)
and therefore

Tst+ Ty o

We may decompose the electromagnetic current eg„
of all particles, leptons, and nonleptons, into three parts:

Independent of these theoretical speculations, the
fact that, at present, there does not exist any evidence' '
that H~ is invariant under C,t or T,t shouM provide
su%.cient incentives for further experimental efforts in
this direction.

The purpose of this paper is to point out that a
systematic study of the question of T,& invariance of
H~, over a wide range of energy momentum transfer,
can be made by considering the inelastic scattering

3++X-+ f++F, (17)

where X is any target nucleon (or nucleus), f= e or zz,

the 6nal system I' should be different from X, I'/S,
but otherwise F can consist of all possible 6nal states
(continuum and resonances) of the same total energy
and momentum, or I' can consist of only certain reso-
nant states. The theoretical aspects of reaction (17) are
considered in the next section. A possible test of T,t
invariance of H„can be made by using a polarized
target nucleus, and by measuring the correlation
function

S;. (kXk'),

where S;„ is the polarization vector of the initial
nucleus and k, k' are, respectively, the initial and the
final momenta of /+ in the laboratory system.

An alternative test can be made by using an ee-
Polarized target, provided the final system 1' consists of
only a single baryon-meson resonance state E*. The
T,t invariance property of H~ can be tested by measur-
ing the correlation between the spin of S* and the
vector (kXk'). The spin of X* can, in turn, be deter-
mined by measuring the 6nal nucleon spin in its decay
products. The 6rst method of using a polarized target
to test the time-reversal invariance is applicable to any
final states of strongly interacting particles; the second
method of using an unpolarized target is applicable
only if all polarization effects due to 6nal states other
than E*can be properly subtracted out.

T,t invariance can also be tested by using an un-
polarized target and by analyzing the angular distribu-
tion of the decay products of the X*. Although this
method does not require the measurement of any spin
direction, the 6nal state must consist of only a single
resonant state, and the effects of all other 6nal states
must be removed. This particular method of testing
T,t invariance will be discussed in detail in Appendix A.

With some slight changes, the same formula which
is derived for reaction (17) can be directly applied to
the decay

2 ~ 8+e++e-.
As examples of such decays we may mention either'

w +P —+ zz+e++e—,

' The possible use of reaction (19) to test the T,q invariance of
H~ was suggested by L. Lederman and M. Schwartz (private
communication). Some theoretical considerations of this reaction
have also been made by G. Feinberg (unpublished).
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orlQ

Z' ~ h.'+e++e-. (2o)

where

(24)

A discussion of these reactions and the related tests of
T,t, invariance is given in Sec. III.

However, if the C,»
——+1 current K„ transforms like

an isoscalar, or if it transforms like a mixture of the
singlet and the octet representations under the SU3
transformations, then reaction (20) is not a suitable
candidate for testing the T,t, invariance. While the
possible T,~-noninvariant effect in reaction (19) is not
reduced by any isospin or SU3 selection rules, it is
greatly restricted by the available limited range of
four-momentum transfer. As will be discussed in Sec.
III.3, even for a maximal violation of T,t invariance,
the correlation between the final neutron spin and the
decay plane is estimated to remain quite small.

IL INELASTIC SCATTERING 1++N-+ &++I'

corresponds to a 100% polarization.
The intial lepton is assumed to be unpolarized, and

the 6nal polarization of both F and l+ are riot measured.
The differential cross section do of reaction (17), in the
single-photon-exchange approximation, is independent
of the sign of the charge of /+, and it is given by the
following theorem:

Theorem:

do 4——z. c' k"[(q')' kre' mr5-'dk'd (cos8)

X (2 ((o(o'—kk' cos8—2mP) Wt

+ (co(o'+kk' cos8+mP) Ws

+[8;a (kXk')5(cps —a)")mst —'Ws}, (25)

where n is the fine-structure constant, 8"~, 8'2, and 8'3
are three real and dimensionless functions of q' and mi
only. These functions satisfy the following inequalities:

Throughout this section, reaction (17) will be con-
sidered and the following notations will be used: Ws h (q2/Ps) Wl h 0 (26)

E= (2m'�)-'[mr'+mst'+ q'5. (22)

1. Polarized Target

We consider first the case that the target nucleus, or
nucleon, is polarized and that its spin jN is

=13N 2 (23)

Let S; be the polarization vector of the target nucleus,

'o Reaction (20) has been considered in Ref. 2.

k, it'= laboratory momenta of the initial and the 6nal
l+, respectively;

co, co'= laboratory energies of the initial and the final
l+, respectively;

8=angle between k and k',

m&, mN ——masses of /+ and E, respectively;

P=k —k'= total laboratory momentum of I';
E=ra+mN &o'= total lab—oratory energy of I';

k, O', P= [k~, [k'[, (P[, respectively;

mr ——(E'—P')'~ seffective mass" of I';
q'= (four-momentum transfer)'= P' —(E—mN)'.

In this problem, there are three independent variables
which may be taken as k, q', and mr (or k, k', and 8).
The P and 8 are functions of only q' and m&,.

P= (2m~) ~[(mr+m~) +qs5 ~ [(mr —mN) +q J~s (21)

and

[Ws—(q'/P') W&5W&& [sr m& '(E -m&)—PWs5s (27.)

Furthermore, if
8 3/0,

then B~ violates the T,t, invariance, " and, therefore,
also the C,~ invariance.

Proof:

If S; =0, the above expression of do is well known. "
The following proof of the theorem, however, follows a
somewhat different approach" than that used in most
of the literature" on electron scatterings.

Let us consider the laboratory system and choose
the s axis and the y axis to be parallel to P and (kXk'),
respectively. It is convenient to first resolve the initial
and the final states of S and I' into the helicity eigen-
states" ~)tN) and ~hr), where ) sr and ) r denote, respec-

"If we assume that B~ is invariant under C~ and T» then
Ws/0 (or, W480) also implies that H.~ is not invariant under
C~ and T~.

» J.D. Bjorken (unpublished); R. Von Gehlen, Phys. Rev. 118,
1455 (1960); M. Gourdin, Nuovo Cimento 21, 1094 (1961);
L. N. Hand, Ph.D. thesis, Stanford University Physics Depart-
ment, 1961 (unpublished); S. D. Drell and J. D. Walecka, Ann.
Phys. (N. Y.) 28, 18 (1964).

» The proof given in this paper follows closely the method used
in deriving the general expressions of inelastic neutrino cross
sections. See T. D. Lee and C. N. Yang, Phys. Rev. 126, 2239
{1962).

& See, however, a recent paper by J. D. Bjorken and J. D.
Walecka, Ann. Phys. (to be published).

'5 Throughout the paper, these helicity states are assumed to be
normalized; i.e., (X (X)=1.The relative phases between the vari-
ous state vectors LX) with different helicities X are chosen accord-
ing to the convention used in A. R. Edmonds, Angular Momeetlm
ie Qeuntem Mecheeics (Princeton University Press, Princeton,
New Jersey, 195'l). We use also Edmonds' convention for the
Clebsch-Gordan coefBcients.
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tively, the eigenvalues of the spin of E and the total
angular momentum of the complex I' along the direction
of P (i.e., the s axis). Since the components of the elec-
tromagnetic current )1„ transform like a vector and a
scalar under the three-dimensional rotations, the di6er-
ence (Xr—X~) can only be 0 or +1.We find from the
current conservation

Jy
=Jy,=L~4=0.

Equation (25) can now be readily derived by setting
the initial proton state to be an appropriate coherent
mixture of IX~=+-',& and IX~= —2&. The three real
functions Hip, 8"2, and S'3 are rdated to the three com-
plex form factors F+ and F, by

F&1 r=~~lg I1~&= l—(E m—ar)&Xr=4rjg4j~x& (28)
W,=g I IF+I'+ IF I'jmrb(ca+mrr cu' —E),— {36)

from the rotation invariance along the s axis

W1=+ LIF+I'+IF I'+(E—m~) 'q'IF, I'jmrq'P-'

)(b (Gl+ m11)—6) —E), (37)

XB(a)+m~—a&'—E) . (38)

&),r——X1r+1jy,(0) IXN&

=al&z, =~~a1jg„(O)I)~), (29)

and from the space-reQection symmetry with respect
to the (x,s) plane W1=ig Q LF.*F —F *F,jmrmpgq'F-'(E —mN)-'

0) IxN&=1t expjis ()~ )1r)j& xrl4 (0) I x~)

for pQp, and

&11r
I 8.(0) I ~~&

= —q expj kr(X1)t —Xr) j&
—Xr I g„(0) I

—X~), {30)

where

q=6~6r 'exp)i~(-j~ j,)), — (31)

6'~ and 6'j are, respectively, the parities of X and I',
j~= 2 is the spin of S and jp is the spin, or the total
angular momentum, of F.

For any given complex I", there are, therefore, only
three independent nonleptonic matrix elements (called
form factors) F+, F, and F„where

F =+-',g =-,'+1jg, (0)+'ri„(0) IX =-',), (32)

F*=&11r=ill*(0)I~~=2& (33)

It is clear that only the nonleptonic current (J„+E„)
in g„contributes to the above matrix elements.

In the expression for do., the leptonic current j„
appears only through the sum

L..=!Z &k, l l~.(0)lkX&&k',1'I~'(0)jk,», (34)

where the state
I k,X& refers to that of a lepton l+, or l—,

with a momentum k and a helicity X. The sum J„„is
given by

L„„=(2 ')- fl„'l„+l„'l„(mP+l.l.')—8„,'j, (35)

where l„= (k,m), l„'= (k',uo') and the repeated index is
to be summed over. In the particular laboratory system
used in this section, we have

L),— P'(E m~)'L44)— -—
L44= —(2(dc' ) (Mco +k'k +mP) )

L„=(axe') —'(~(o' —k k' —2mp)

L = (2&see'F1) '(eon —a")(kXk')

From these expressions, the inequalities (26) and (27)
follow immediately. The functions 8 i, 8'~, and 8'3
clearly depend only on q' and mp.

In Eqs. (36)—(38) the sum over I' can consist of all
possible hnal continuum and resonant states of the
same effective mass mp, or it can consist of only a single
resonance. In either case, each F is an eigenstate of H,~

and, without any loss of generality, it can also be chosen
to be an eigenstate of LT„Xexp(—iverJ„)j; i.e.,

T,) exp( —krJ„)I xr&=)tr

Ilier&,

where J„is the y component of the total angular mo-
mentum J and gr is a phase factor independent of the
particular helicity value of the state I". Thus, for each
Anal state I', the form factors F+, P, and F, must be
relatively real if T,) invariance holds for H~ (i.e.,
E„=O); therefore, W300 implies that B~ is not in-
variant under T.~.

It is useful to de6ne an asymmetry parameter u:

d (1')—d (1)

d~(t)+d~(1)

where do (1) and d)r(1) refer to the diiierential cross
sections wllell tile 1111tlal polarization 8 =g and
S; = —g) respectively, and g is a unit vector parallel to
(k&(k'). By using Eq. (25), we find

u=h 'Lkk'(aP —&P)m~ ' sin8W j
where

g= 2((o(v' —kk' cos8—2mp) W1

+ (om'+kk' cos8+mP) W2. (41)

The test of T,& invariance is to measure the parameter g.
In most cases, it is a good approximation to set mi ——0;

Eqs. (25) and (40), then, acquire some simpler forms:

d)r =2''~'(~mrq')-'d&u'd cos8{2W1+ W2 cot'(8/2)
+ (S; g) (aP—cg")m~ 2W1 cot(8/2) }, (42)
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and

a= [2Wi+ W2 cot'(8/2) j—'
X (~'—a&")mN 'Ws cot(e/2) . (43)

The above considerations can be easily extended to an
initial nucleus of arbitrary spin jN, and the result is
given in Appendix B.

It is important to note that Eq. (25) is valid only in
the single-photon-exchange approximation. A correla-
tion such as S; (kXk') can also be generated by the
interference term between the single-photon-exchange
process and the two-photon-exchange process, without
violating the T,t, invariance. However, the amount of
such T,&-invariant correlation is necessarily small,
since it contains an additional power of the fine struc-
ture constant n, furthermore, it is proportional to the
sign of the charge of the lepton, while the T,~-non-
invariant correlation, given by Eq. (25), is not.

II. Unyolarized Target and Final-State Polarization

Possible tests of T,t invariance can also be given by
using an unpolarized target. Let us consider the simple
case that the final system consists of only a single
resonance state N*. Reaction (17) becomes simply

l++N ~ l++N*

By using the same method given in the preceding sec-
tion, the density matrix D of the resonance N* can be
calculated, where D is a (2jze+1) (2j&~+1) Hermitian
matrix and jN* is the spin of S*.We discuss the explicit
form of D for the case that the spin of the target
nucleus (or nucleon) is

jN 2 ~

After summing over the polarization of Z and that of
both the initial and final P', the elements of the (un-
normalized) matrix D are given by

D-:.~= D-~,-~=
I
F+I'(L-+4.),

D;,&=D &, ;= IF I2(L,.yL„„)
+ I

F.I2[q~(Z —m~)-2]2L.„
D;,;= —D ;, ;*=q'(F.—m=~) 'F *F L

D y„=D ),;*= F+*F (L„L„„), — —

and
D i i=[q (E mN) '1[F *F, —FF,*1L„, (4—5)

where L„„is given by Eq. (35) and the subscripts X, 9 in

Dq, q denote the helicities of S*. All other matrix
elements of D, except those which are related to the
above one by the Hermitian conjugation, are zero.

From the density matrix, it is straightforward to
calculate the average of the spin vector jN* of the
resonance. We Gnd

(j~*)= & '(kXk') ((v' —(o")mN—'g

X I (j~ +2)W3+ (j~*—2)'"(jib*+5)'"W4j (46)

Sr (kXk'), (50)

therefore, can also be used as a test of T,t, invariance,
provided the background events which are due to states
other than the resonance S*can be neglected.

It should be emphasized that there always exist, in
addition to S*, other continuum anal states. The
interference terms between these continuum (i.e., non-

resonant) states and N*, as well as the interference
terms between the different continuum states can pro-
duce a background correlation between Sr and (kXk')
without any violation of T,t, invariance. The angular
average over the final nucleon momentum directions
can eliminate those interference terms that are between

(N+vr) states of different l values, such as p3/2 and dy2,
etc. The remaining background correlation must be sub-
tracted out in order to use the final-state polarization
as a test of T,& invariance.

Remarks

(i). In the above derivations for Eqs. (25) and (46)
the initial l+ is assumed to be unpolarized and the two

where z and 6 are given by Eqs. (31) and (41),
respectively,

W4=ig(F, *F+ F—,F+*)mrmPq'P '(E m—&) '
Xfi(~+m~ ~' F)—(47)

and Wi, W2, W, are given by Eqs. (36)—(38) in
which the sum over j." consists now only of one term
I'=N*. The h(~+mN co' E—) fu—nction in the various
W; (i=1, , 4), of course, cancels each other in the
final expression for (j~*&. All the above rnomenta and
energies are measured in the laboratory system, but the
spin (jN~& is measured in a particular rest system of N*
which can be reached from the laboratory system by
making a Lorentz transformation in the (z,t) subspace
where the z axis is parallel to P. From Eq. (46), it
follows that if (j~*)WO then either Wa, or W4, or both,
must be different from zero; this means that H~ is not
invariant" under T,~ and, therefore, also C,~.

The spin state of E* can be analyzed by measuring
the spin of the Anal nucleon E in its subsequent decay

(48)

The distribution of the polarization vector Sr of the
final nucleon can be calculated by using the density
matrix D of N*. For example, the value of Sf s,veraged
over the diGerent directions of the momentum of the
final nucleon is given by

(49)

where l is the orbital angular momentum of the decay
product (N+vr), and the + and —signs are for
l= j~~—-,'and j~*+-',, respectively. [ISr I

=1 corre-
sponds to a 100% polarization for the Gnal nucleon
along the direction Sr.j

A detection of the correlation
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the form factors Il~, Il, are given byspin states of the final P are summed over. For /+= p,+,
the initial muon, in most cases, is longitudinally polar-
ized; its spin lies in the (x,a) plane. The correlation be-
tween the y axis [i.e., the direction (kXk')] and S;
remains given by Eq. (25), and the correlation between
the y axis and (j&*) remains given by Eq. (46). Both
correlations can still be served as tests of T,t, invariance.
A detailed discussion of the consequences of the polar-
ized muon is given in Appendix C.

(ii). So far, we have not discussed the isotopic spin
selection rules of the C,4

——+1 current E„.If E„exists

and if it satisfies the
I
AI

I
=0 rule, 2 then, for an initial

proton target, it is best to detect the asymmetry
parameter a, or the average (ji2*), for the final complex
I' which contains one of the I= 2 resonances.

(iii). If the final state F=E*is of spin 2, then

Il+——0
~-= —[(mr+&)/(2~)3'"f

and

[(m—r+E)/(») j'"[f+(& m.—) (f'+f")j, (5g)

instead of Eq. (55).

IIL A —+ B+e++e

In this section we apply the method developed in the
last section to the reaction

(59)A ~ 8+8++8

P —0
where A and 8 are two arbitrary states of the strongly

(51) interacting particles. For simplicity, only the formula
for the special case that A is unpolarized and

In this case, the y component of (jN*) is related to the
asymmetry parameter a, defined by Eq. (39). We find spin of 8=2' (60)

(JN')2 (52)

(iv). If the final state F is of spin -', and parity
Pr=(P~, the matrix element of 4i„(0) can also be
written as

(F
I A. (o) I 1V)=i Urty4[y„f+i(F„+Ã„)f'

+'(F. &.)f"3U-, (53)

where E„, F„are, respectively, the four-momenta of
states IN) and IF), U~ and Ur are spinor solutions of
the free-particle Dirac equations with the same four-
momenta as the physical X and F, the form factors f,
f', and f" are functions of q', which are relatively real
if T,t, invariance holds.

From current conservation, these functions satisfy
the relation

will be given explicitly. The spin of A is, however,
arbitrary. Special examples of such reactions are given
by (18)-(20).

P= —(k„+l ), (61)

and the y axis is parallel to (k+Xk ).Just as in Eqs. (32)
and (33), there are only three form factors which are
dered by

G~=w ',P,= ,'-I g,, (0)-wig„(0) I l,= ,'w1) -(62)

1. Density Matrix of 8
Let the energy and the momentum of e+, measured

in the laboratory system (i.e., the rest system of A), be
or~ and k~, respectively. The s axis is, again, chosen to
be parallel to the laboratory momentum P of the
particle 8 where

f- (mN+ mr) f' (mr m—~) 'q—'f"- (54) and

By using Eqs. (32) and (33), the form factors Ii+ and
Ii, are related to f, f', and f" by

8+=0,
Il = —[2E(mr+A)g-'"Pf,

&.= [2&(mr+E)j '"~[f—(mr+&) (f'+f")j (55)

(v). If the final state F is of spin -,'but parity
(Pr ———(P12, then Eq. (53) is replaced by

G.=(~ =-,'Iy. (0) Ix,=-,'), (63)

~= IPI.

where X& and X& denote, respectively, the helicities of
A and J3 (i.e., the eigenvalues of the spin operators of
A and 8 along the s axis). Clearly, G+ and G, are func-
tions of q' only, where q' is the (four-momentum)', and
is given by

q'= P2—(E—mp)2

g—(+2+m 2)1/2

D=2'+42 S,
The current conservation gives, instead of Eq. (54),

where 42 are the usual (2X2) Pauli spin matrices.
(57) By following exactly the same methods used in thef= (mr —mdiv)f' —(mr+m~) 'q2f":

(F I g„(0) I x)=iU.ty4[y.f+i(F.+&.)f' The density matrix D of the particle 8 can be

+i(F g )fl/) U (56) written as
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previous section, we 6nd, in the single-photon-exchange
RpproxlDlatlon)

2"= (oi+oi ) '[2—
(oi+o& k+—k cos8+2m.s)Wi

+ (~0~oi +k~k cos8—m s)Ws] (65)

S= (mgso~~oi )-'(QXir )(oi~s—~0 ')Ws, (66)

where ms~ and m, are, respectively, the masses of A
and t.', 8 is the angle between k+ and lr, and k~ denotes
the magnitude

I k~ I. The functions Wi, Ws, and Ws are
related to the form factors G+, G, by

and q' is related to the suni (o~++o& ) by

q'= mgs —miP —2m'(~++~ ) . (74)

Let d'Et and O'Eg be the partial-decay rates of reaction
(59) in which the spin of 8 is, respectively, parallel and
antiparallel to the normal vector 8. By using Eqs. (65)—
(71), we find"

O'St+ O'Ei
=[—q's-mg(2jg+1)] 'a'E[OsO( —q')]

X{[1+(s/P)' —(4m'/q')]CI G+ I'+
I
G-I']

+C1—(s/P)']C —q'/(m~ —&)']
I G. I') (75)

w, = IG+I+IG I, (67)

Ws=(qs/&')[IG+I'+IG-Is+(~ —m~) sqsIG I']

Ws=sgq'm~'E s(E—m~) '(G+G,*—G,G+*), (69)

where

(70)

(Pg, 6'~ are, respectively, the parities of A and 8, jr= —,
'

is the spin of 8, and j~ is the spin of A. The H/'~, 8'2, 8'3
satisfy the inequalities (26) and (27).

In the case that the spin of 8 is summed over, the
trace of the density matrix, 2l', is related to the
reaction rate by

Rate(A ~8+e++s )=ass s(2jp+1) '

O'k~O'k 8(~++co +E—mp) (q')-'2 . (71)

The vector T-'S gives the polarization of 8, measured
in a particular rest system of J3 which can be reached
from the rest system of A by making a Lorentz trans-
formation in the (s,f) subspace.

If the electromagnetic interaction satis6es the T,»

invariance, then G~ and G, are all relatively real and,
consequently, 8'3 should be zero. Thus, a possible test
of the T,» invariance is to measure whether the polariza-
tion vector T 'S is zero or not.

%e note that the density matrix is symmetric with
respect to the interchange between ir+ and h . It is
convenient to de6ne the normal vector 8 of the decaj-
plane to be the unit vector parallel to

Px(k++k ),
where Iy, k~ are the unit vectors along P and k~, re-
spectively. The normal vector A is, then, symmetric
with respect to the interchange between k+ and lr .
For a given orientation of the decay plane, the density
matrix depends on two independent variables which

may be chosen to be q' and ~) where

s= (&+ &-)

O'Xt —Oslo i =[—qs+m~(2g~+1)Ps(m„—E)]-i
X2tgQ Skulk s sln8[OsO( —

q )]
X [G.Gp*—G+G.*], (76)

where e varies from

—[1+(4m, s/q )]'i' to +[1+(4m, '/q')]' "8
and (—q') varies from 4m, s to (m~ —mii)'. The I' and E
are functions of q', and are given by

[(m&+mn)'+q']ii'[(m„m) +sq]—isi(77)
2fÃg

E= [m~s+mii'+q'].
2m+

(78)

Ori+OXi = [3( q')m»(2j—~+1)]-i4~sZPO( qs)—
x(2[IG.I+IG I]+C-q/( .-~)]IG.I & (79)

OXt —OSi = [3m» (2jr+1)(mg —Z)]-'
X ( q') '"O( q')[2~—'&I'~][G.—G+* G+G.*]. (80)—
It is useful to define the asymmetry function A (q') by

2 (q')—= (OFt+OSi) '(ONt Oui)-—
= ( I G+ I'+

I
G-I'+ s[—q'/(m~ —~)']

I
G*l')-'

X-',s(m —E)—'(—qs)'isis(G, G *—G G,*). (81)

~6 Expressions similar to Eq. (75) have been discussed in the
literature for reactions in which the spin of 8 is not measured. See
¹ KroH and W. %ada, Phys. Rev. 98, 1359 (1955) for a discussion
on w +p-+ I+e++e . The reaction Z ~A0+e++e has been
analyzed by G. Feinberg, Phys. Rev. 109, 1019 (1958);G. Feldman
and T. Fulton, Nucl. Phys. 8, 106 (1958).

In Eq. (76), sin8) 0 if s& 0 and sin8(0 if s (0.
In order to detect the T,»-noninvariant term

(O'Xt —O'Xi), one should choose events for which
—q&)4m, s. Let OXt and OXi, be, respectively, the
integrals f, OsSi and J; O'imari, integrated over the entire
e range for a given q'. The e integration can be easily
carried out, and we obtain, after neglecting —(4m, s/q')
Rs coIIlpaled to unity)
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2. Syecial Case: jg=-,' and 6'~=6'a

If j~=-,'and the states A and 8 are of the same
parity, then, by using Eq. (53), the matrix element of
g„(0) is given by

(Bl g„(0) l
A)=zU t~,f~„f+z(a„+A„)f'

+i (B„A„)f—"jUg (83.)

Tllc culTcll't conservation» Eq. (54), glvcs

f= (my+me) f'+ (mg ma) —'q'f".—

The form factors G~ and 6, are given by

6 =0,
G+= f2'(Z+m,—)] Vf, -

where

G.= f2'(E+m.)] '"fI'(& .-)/q'jg, -
g= f(m, +m, )f—2m~(m, yZ)f'j.

By using Eq. (84), we find

g= 0 at q'= 0.

(84)

(85)

(86)

(87)

(88)

In terms of f and g, the asymmetry function becomes
(m, =0)

A(q') = (2l g I' 4gl fl') 'l( —q')'&'(d* f—g*). (9o)—

For small q', f and g are given by

f= f»»+0(q'),

g= (dg/~q') oq'+of (q')'j.

'l( q')'"I fol-'L—fo(dg!4')o* ccj—
as q~ —&0.

Some discussions of the density matrix have been
given'1 in Ref. 2 for the decay Ze ~Ae+e++e .

"In the approximation»»», =0, Eqs. (65) and (66) become

&=2LIG+I'+ IG-I'3LI —(& &+)(& &-)j
+I (&—»»»~) (g')'IG*I'I. I+(k+ k-))

S=»»»tq'P '(E—»»»g) 'LPX(k +k )g(G G *—G.G *).
For the special case 6'g=6'g and jg=~~, these equations reduce to
r=LM(E+~,)7-»(2I/I&z'LI —(i k,)(P k )j

+ lgl'I. I+(k+ &-)3,
and

S=»i»(E+~s) j-'LPX (&++&-)jLgf' —fg'j,
where f and g are given by Eqs. (84) snd (88). The functions F
snd G m Ref. 2 are identical with the above f and g; the T and Sx
in Ref. 2 ditfer from the above 2'snd 8 by a factor I M (E+»»»s)P'.

Thus, independent of the forms of G+ and G„we have

l~(q') I
~ (2~2)-'. (»)

If A (q )Wo ill tile slllglc-plloton-cxcllangc Rppl'oxlllla-

tion, then T,t, invariance is violated.

3. special Case: j~———,
' and 6'g ———6'~

Next, we consider the special case j~=~ and the
states A and J3 are of the opposite parity. As an example
of such reactions we may mention the s-state capture
of s. +p~ e+e++e . In this case, the matrix element
of g„can be written as fcf. Eqs. (56) and (57)g

(J3l8.(0)l~)= U 'v fv.f+ (&.+'~.)f'
+l'(&. ~.)f"3VlU~ (9&)

The current conservation gives

f= (m—g ms)—f' (m~—+ma)-'q'f". (92)

The form factors G+ and G, are related to the f, f', and
f"by

6=0,
G+= f(E+ma)/(2E) j'"f,

(93)

(94)
and

G.=—f(E+ma)/(2&) j'"ff+ (&—ma) (f'+f")j (95)

By using Eqs. (65), (66), ('H), (N) and the above
formulas we can easily express the functions T, S,
d'Xt, and d'Et in terms of f, f', and f".

Sometimes, it may be useful to eliminate f and
express G+ and''G, in terms of f' and f"only. Equations
(94) and (95) can be written in the alternative form

G+= —f(8+ms)/(2Z) jt~'(mg —ms)
Xff'+ (m~' mgP) 'q'—f"j, —(96)

G.= f(E+ms)/(2E) J~'(m~ —E)
Xff'—(mal+ma) t(m~ ms)-f"j. —(K)

Rt both tile nllllllllR1 Rlld tile 111axllllal vallles of (—q ).
For the s-state capture of

(99)

the possible magnitude of the asymmetry function
A(q') may be roughly estimated by noting that the
single-pion-pole contribution to the form factors has a
quite different q' dependence from the rest. Let f ' and
f "be, respectively, the single-pion-pole contributions
to the form factors f' and f". (See Fig. 1.) It can be
readily shown that

f,'= [q'+2m. '+ (m, '/mdiv) j-'
XZ(2mlv+m ) (m /ma) (100)

(G+G,*—G+*G,)= fE(my+ms)7-'
X(m, Z)Z m,—fff"e f"f"j—(9S).

In the approximation of setting m, =0, the asymmetry
function A(q') is given by Eq. (81). It follows from
Eqs. (94) and (95) that G+= —G, as —q' reaches its
maximal value (mg —ms)'. Thus,
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A(q')
— &0.11(m /m~),

~'(q')
(109)

FxG. 1. Diagram for the
single-pion-pole contribution to
~ +p-+n+e++e .

f "=
I q+s2 m,' +(m„'/mN)P'K(2mN+m ), (101)

where ns and m~ are, respectively, the pion and the
nucleon masses. The dimensionless constant K is

3.4)&10 4, and is given explicitly by

K= (g'/ )s'"(2m +Nm ) 'm„m'i' (102)

where (g'/4s. )—15.7 is the square of the pion-nucleon

coupling constant. In obtaining the above expressions
we have used the fact that the initial pion is captured
in the 1s orbit. From current conservation, Eq. (92),
these single-pion-pole terms necessitate a corresponding
term f in the form factor f where

The form factors f, f', and f" can now be written as

f=f +KB,
f'= f '+m~ 'K8', —

x'= —q'/m ' (107)

I6'Iexp(&). (108)

f"=f,"+m~ 'K5". (104)

The single-pion-pole contributions f, f ', and f "
necessarily satisfy the requirement of T,t, invariance;
therefore, they are all real functions. The functions

8(q') 5'(q') and 0"(q') can be complex, if the T,t, in-

variance is violated, but they are expected to be
slowly varying functions of q'. In a perturbation calcu-

lation, 5'=+1, h"= —1, and 5= —(m, /mN) at q'=0.
For the present case, we assume that the phase angles
of 5' and 5" can be arbitrary, but their magnitudes re-

main of the order of unity; i.e.,

I|"(q')I-I~"(q') I-o(1), (1o5)

Consequently, from Eq. (92), I II 0(m, /mN).

By using the above expressions and Eq. (81), the
asymmetry function A (q') can be expressed in terms of
8' and 5". After neglecting (m, /m~) as compared to
unity, we find

A (q') = —-'I 5'I (sing) (m /m&) I
4——',x'+x'g —'

Xx(1—x') (2—x')+0(m '/m2), (106)
where

and the maximum of
I
A/5'I occurs at (—q'/m ') =0.39

and sing=&1. Since I8'I is of the order of unity, this
means that even for the maximal T,f, noninvariance
(i.e., P= +s/2) the magnitude of the asymmetry func-
tion A (q') is only &1.6%.

In the above estimation, the form factors are dom-
inated by the T,&-invariant single-pion-pole contribu-
tions. Thus, we have

I
f"/f'I (m~/m )))1, and the

realtive phase angle between f' and f" is only of the
order of (m /m~).

It seems worthwhile also to examine the asymmetry
function A(q') for the alternative, but less probable,
possibility that the pion-pole contribution may turn
out to be unimportant. In such a case, the relative
phase between f' and f"may be quite large. We note
that if the pion-pole contribution is not important, then
there is no reason to expect that

I
f"

I
should be much

greater than f'I. Therefore, we may neglect Im f'I as
compared to m~f" I. The asymmetry function is, then,
given approximately by

A(q)=~Lm~(2m„' —q)] '( q')'i (m—+q')( (110)

where

&(q') = liI f'I '(ff"* f"f'*)—
Equation (110) is valid if

I
f"

I
is of the same order of

magnitude as, or at least not much greater than,
I
f'

I
. It

is easy to see that Eq. (110) implies that
I A/$ I

(0.084
X (m~/mN). In this case, a maximal violation of T„in-
variance means that

I $ I 1; the upper limit of A (q') is
&1.2% which is about the same order of magnitude as
that given by (109).
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APPENDIX A

In this Appendix, we discuss a possible test of T,t, in-
variance by using reaction (44) with an unpolarized
target. If the final state is a single meson-baryon
resonance E* and if no spin polarizations are deter-
mined, an analysis of the angular distribution shown

by the decay N* ~ N+z can still serve as a test for T,t,

invariance. Define 0~ and 4 as the polar and azimuthal
angles, respectively, of the N —m relative momentum in
the'N* rest frame. The:coordinate axes in this ref'erence
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frame are obtained from those previously chosen in the laboratory system by a simple Lorentz transformation
without rotation, in the s direction. If the spin of the target nucleus is j~=-„we have the following theorem'.

Theorem:

4sn'k"dk'd(cos8) - q'
do'= b(E+ oI.—IIIII Ã—) IF+I 2(roM —k'k —2ttII )+ (oIM—+k'k +IrII )

(a'k
I
q' I' P2

(j'-l)' —
. . . (

XL(F; „")+0+-:)(F ")j + 2IF-I (-'-k k-2 )+I IF I+ -IF.
I(j'+s)! - & (&—~~)'

q' . (Fp 1»I)' qs(oI' —oI")kk' sln8
X (m—o'+k k'+m') , (F ' I)so)'(j'+-')+ — +COSC (F+F *+F+~F,)

(j'-$)! 2k"P sin'8
XI:+i' Ils Fi' Il—s (J +s—)(2 +s)+Fi' Ils Fi -Ils j —. . . , +cos2@(F+F-*+F+*F-)-

(j'+s)!(j'+s) P-

(FI'-lfs )
dC d (cosO~)—F'-us'&'-I»' (j'+s) '"(j'—s) '"--

2 kr

( l)m d'l+m
F»a F m(cosQ») F m(&) — (I &s)m» (2 I)I

2VI ggl+m

and g ls thc sp1n of thc S rcsonancc.

Proof:

Measuring do(0»,4) corresponds to determining the expectation value of a certain operator O(O C). H we choose
a representation @&here the 6nal state is labeled by the 2' coxnponent of its angular momentum m, then

o--(e,C)= 2 (~'——:,l, ~', ~'I~' —:,~'+), —:,—))F' v-+I(0~)-
. . X—1/2

X(j'—-'
g q' ~(j'—-' m+)i -' —)i)I ' „, ,+(0 C)

where (jl,js,j,m I jI,IIII,js,ms) are the usual Clebsch-
Gordan coefncients and the I'I (0»,C ) are spherical har-
monics. "It is interesting to note that 0(0»,4) does not
depend on the orbital angular momentum, /= j'~~~, of
the resonance state. This is an example of the Minami
ambiguity. '8 Using the density matrix for the S*reso-
nance D, given in Sec. II2, we obtain

8Ira'k"dk'd(cos8)
do. = — — — —P O(OP) ~, dCd(cosO)

k(o'Lqsf'

which reduces to the result stated in the theorem.
An examination of do- reveals that the coefficients

« IF+I', IF-I' IF I' F+F *+F+*F. and F+F-'
+F+*F are independent functions of k, 0~, and 4.
Therefore, if do(, C) is measured for events with a
constant q' but for two or more values of k the above
6.ve quantities can be determined. T,t, invariance
implies two relations among these quantities

's S. MiIIami, Progr. Theoret. Phys. (Kyoto) ll, 213 (1954).

IF+F, +F+ F,I=2IF+I IF, I

IF+F-*+F+'F-I=2IF+I IF-I.

These two equations are tests of T,t, invariance, pro-
vided, of course, that only events due to the Ã* reso-
nance are analyzed. Because of the-Minami ambiguity,
tllc fol'Ill of do'(0" C') ls lndcpcndcnt of tile E s psl'lty.
Thus, if any measurement of do (0»P) is to serve as a
test of T,~ invariance, additional conditions must be
imposed to ensure that the 6nal states measured are
only those with the isotopic spin and parity of the Ã~.

APPENDIX 8
T,t, invariance can be tested in the general reaction

l++iit ~ I++I', K and I' having total angular mornen-
tum j~ and jp, respectively. Let the density matrix
for the spin distribution of the target nudeus be given
by

Ar= (&+SN J)l(2j II+&),
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where J is the angular momentum operator. In this
general case, Kq. (25) is still valid; however, Wq, Wq,
and 8 3 must be rede6ned. Let us define

F (m)=-,'P.r——m —1lJ,(0)—U'„(0) jX»=m),
if jm —1j ~&jr

=0, if lm —1j)jr
F,(m)=(Xr=mj J,(0) j)»——m), if lml ~& jr

=0, if jmj&jr

where
l X») and

l Xr} are helicity eigenstates; X» and Xr
denote, respectively, the eigenvalue of the spin of F and
the total angular momentum of F along the direc-
tion of P.

Wa=~ Z Z L(j»—m)(j»+m+1)]'"
m~j~ F

X(F (m+1)*F,(m) —F (m+1)F, (m)*}

q'mrm» 2
X — 8(~+m» —a&'—E)

P'(E—m»)' 2J»+ 1

Using this definition for W;, Eq. (25) describes the
scattering of leptons from objects of total angular
momentum j» with polarization S». As before, the
observation of the term S» (kXk') and the consequent
nonvanishing of Rais an indication of T,&noninvariance.

Wg —— P Q jF (m) j'mph(co+m» —co'—E)
m=jN 1' 2J»+1

P 2lF (m)j2+jF, (m)jn
g

m~ jN (E—m»)'
exclude th

tÃpg
8 (M+m» —co —E)

y' 2j»+1 Tkeorem:

Under certain experimental conditions, the initial
lepton in the reaction I++E +i++I-' may be polarized.
Muons produced by the decay ~~p+v have this
property. The theorem in Sec. I.i can be generalized to

is possibility.

krcPk'dk'd (cos8) o)'—co"
pa= 2((as)' —k k' —2mP)W, + (ox&'+k k'+mP)Wg+S» (kXk') Wg

k(o'LP]'mr fÃ~

-(kXk') X (k—k')- ( co'+mg) (k—k')
+S» Srmg(ra r»')W, +—S» Sg kl 1—— jWg —S».

ru+m)) p
—k') Si k( M +mi

— m)((u —au') (Wg+We) —
l

(co—m) ((o'+m)+k'2 —kk' cosy 1+ — jWI
P P k a)+m)

g mph
Wg=Q (F,F *+F,*F )b(s)+m» —E—(u'),

co—eo 2

We ——Q 2mr(jF+l' —jF j')b(co+m» E (o'), — —

and S~ is the polarization of the initial lepton as measured in its rest frame. The particular coordinate system in

which the components of S~ are to be determined is obtained from that chosen in the laboratory by a simple

Lorentz transformation without rotation, in the k direction. If the initial lepton is completely polarized, l S&l = 1.
The 8'; satisfy the following relations:

!P'
2Wg~& jW6l; (2Wg —We)j —Wl —Wg l& j P'Wg(E —m»)/mph''j gj' 'j'

q2

$2 (Ps
W, &—W, ; (2W,—W,)l —W,—W, l& LW, (E—m»)/Lq&ylnj .

P2 (qn

Proo:

In the present case, the initial Inuon is polarized, but the tvro 6nal muon spin states are summed over. The

lepton current j„enters the cross section only in the sum

—;P (@.I j„(0)lk'~')(k'~'1 j.(0)(1+ ~,~~„')I@)=I-„„+Z„„,
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where I„„is defined by Eq. (34), and -,'(1+kg „S„')is a spin-projection operator. The four-vector S„' is obtained
from the S deaned above by forming in the electron's rest system the four-vector (S,O). This four-vector is then
transformed into the laboratory system by a simple Lorentz transformation without rotation; the result is 5„'.
The tensor X„„is antisymmetric and

iS) (k—k') iS) k- m +m)
(~ &a—')m~ — (~ m—) (~'+m)+k" k—k' cosg 1+

2Goco I 2GOGO P (u+m j
iS( S i$( k — a'+m-

Kss= (o)—(o')mg+ -kk' sing 1—
2GOG0 2M')'E re+ m

iSg
Est= (Gl —4p )mt.

207Gt)

Our theorem can be derived by following exactly the same method as that given in Sec. I.i, but using (L„„+Z„„)
in place of I.„„.
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A gross mass scale is assigned to the baryon-antibaryon model for bosons: for charge octets tn'('L) —m'('L)
=z BeV'. For charge singlets the mass formula is less certain but seems to be quite different from that for
octets. The quantum number of A parity is pointed out as an inescapable feature of this model; the empirical
values of A then rule out quarks for the simplest realization. Interest is remarked in E3m resonances and in
possible resolution of the Em and E2m modes of the E*(1430).

~ MPIRICAL mass relations among elementary par-
~ ticles have been remarked from time to time, ' with

high numerical precision but lacking a relevant physical
model. %e present here an approach from the other
extreme by assigning a preliminary mass scale to the
baryon-antibaryon model for bosons. The assignment
relies heavily on the set of J~=2+ mesons that now
seems established"; it is concerned in this instance only
with the gross features of J~ ordering. The approach
is one of bounded speculation but already yields
speci6c boson interpretations at some variance with
those currently popular, and amenable to experimental
study, viz. , the question of J"=i+ for the X meson, the
survey of E3m resonances. Such measurements are
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feasible but cannot usually be reconstructed from
randomly assorted data; in the hope of arousing critical
discussion, the elementary considerations below are
presented.

The energy scale chosen is so gross that the internal
structure of octets and nonets will be of little concern,
and details of coupling schemes need scarcely be
speci6ed. In order to avoid the opposite extreme of
complete formlessness, we impose the following con-
straints:

(i) The basic Fermion and anti-Fermion are not
quarks nor triplets but just the observed baryon charge
octet of spin ~ in some "bare" state, which is taken not to
di6er very substantially from the dressed state. This is
a little unfashionable at present but entrains the next
restriction, often neglected; confrontation with experi-
ment is discussed below.

(ii) The baryons are taken to obey ordinary Fermi
statistics, having never given evidence of parastatistics;
that is, the Pauli principle is taken seriously.

(iii) Systematic corrections could be introduced as


