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in case only the number but not the location of the sign
changes of p is known.

As the last step one has to calculate the constants 0,,
in (818) and (819), which can be performed in the
same manner.

We de6ne

$;&')(x)= (z—s,) ', i =0, 1, , rt —1 (820)

@;&»(*)=(*—~,)-'-', '=0, 1, "., ~—1. (821)

By means of the Schmidt procedure one may then
orthogorialize the linearly independent functions &t); in
the interval xg&x&x2.

Calling the new sets of functions Ps&'), o=1, 2, one
thus has

lt&«) —Q U t&r)yt(r)

of the ps& )(x):

"(~)=z &.(~')r "'(*')«')«"(*)
k=0

n 1 CQ

x x oa~ &o;p' x,(x')ea~'(x')«')
Z1

Substituting (823) into (817) one obtains

2

—Q &rt&'&((()t&') (x) dk
p,

2—g

1 *& p(z')
dx' dx (824)

P, X &OS S

(6&') fs &'))= lie&') (*)4a "(*)d*=hss .
with

(822) n—1 4 $2

&xt& ) = Q U,e&'U;t&') X„(x)()4&'(x)dx; (825)
&t, k=o

The minimizing function r&'(x) is a linear combination Eqs. (3.7) and (3.8) are just (824) and (825) for o =1.
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Assuming that the equal-time commutation rules for the vector and. axial-vector-current octets proposed
by Gell-Mann are valid and that the divergence of the 6$=0, AI= 1 axial current is a strongly convergent
operator obeying unsubtracted dispersion, relations and dominated by lour-frequency contributions, vre

derive a sum rule for the renormalization of the neutron axial p-decay constant Gg, by the strong interactions.
The result agrees with that previously obtained, from the assumption that the axial-current divergence is
proportional to the pion Geld. The results are generalized to the, strangeness-changing leptonic decays in
the context of Cabibbo theory and generalized Goldberger-Treiman relations, and are used to compute the
&t/f ratio for the weak baryon axial-current coupling and an independent value of Ge.

L INTRODUCTION

ECENT calculations of the eGects of the strong
interactions in renormalizing the axial-vector

coupling constant in p decay, ' ' gA=G~/Gv, give good
agreement with the experimental value. These results
were derived from the following three assumptions.

(1) The equal-tirue commutators of the spatial inte-

grals of the time components of the hadron currents

measured to 6rst order in the weak and electromagnetic

~ Work supported by the U. S. Atomic Energy Commission.
~ S. L. Adler, Phys. Rev. Letters 14, 1051 (1965); Phys. Rev.

140, 8736 (4965).' W. I. Weisberger, Phys. Rev. Letters 14, 1047 (1965}.

interactions, the "charges" obey the algebra of
SU(3) &(SU(3) as postulated by Gell-Mann et &tl.'

(2) The effective Hamiltonian for leptonic decay of
the hadrons is a current-current interaction which

couples the appropriate members vector and axial-
vector current octets of the strongly interacting particles
to the usual y„(1—ys) current of the leptons through
the simple combination V„&A„.4

(3) Partially conserved axial current (PCAC) hy-

' M. Gell-Mann, Phys. Rev. 125, 166'I (1962);Phymcs 1, (1964l.
R. P. Feynman, M. Gell-Mann, and G. Zweig, Phys. Rev. Letters
13, 678 (1964).

4 The relation of the algebraic relations to the speciGcation of a
universal weak coupling of leptons and hadrons has been discussed
by M. Gell-Mann and Y. Ne'eman, Ann. Phys. (¹Y.) M, 360
(1964).



UNSUBTRACTED DISPERSION RELATIONS

pothesis. The divergence of the 68=0 axial-vector
current is proportional to the pion Geld. ~8

8 A„'(x) = (i'—p'Jtd'gg/g„) y ''(x), i=1, 2, 3, (I.1)

where y '(x) is the renormalized Heisenberg field of the
x mesons, p is the pion mass, M is the nucleon mass,
g „is the rationalized renormalized x-nucleon coupling
constant.

In this article, we derive the sum rule for g~ LEq.
(II.14)j from a more general form of PCAC analogous
to that used by Bernstein ef al.9 to derive the Gold-
bcrgcr- TlcimR11 relation. Kc assunlc tllat thc divergence
of the axial current is a highly convergent operator
whose matrix elements satisfy unsubtracted dispersion
relations in the four-momentum transfer squared q'. For
small q' and certain values of the other variables in the
problem, these matrix elements may be dominated by
nearby poles.

These notions will be made more precise in the theo-
retical development of Sec. II where we treat the prob-
lem of formulating an unambiguous deGnition and
region of validity for pole dominance of matrix elements
of axial current divergence when these matrix elements
are functions of more than one invariant variable. In
Sec. III the results are generalized to include the AS= 1
leptonic decays in the context of Cabibbo theory" and
generalized Goldberger-Treiman" relations. The nu-
merical evaluation of the sum rules is discussed in Sec.
IV. The results give l g~ l

—1.2, and a d/f ratio similar
to-other estimates. %hile there are considerable nu-
merical uncertainties in the evaluation of the sum rule
for AS= 1 decays, the general consistency with Cabibbo
theory is good and is strong evidence against the expla-
nation of the suppression of AS= I decays relative to
AS=0 decays as a strong-interaction renormalization
effect.

II. THEORETICAL DEVELOPMENT FOR
X8=0 DECAYS

As a starting point we consider a matrix element of
the time-ordered product of two components of the
axial-vector current between one-proton states of equal
momentum

with A ~+=A ~ &&3~ ~

' M. Geii-Mann and M. Lsvy, Nuovo Cimento 16, 705 (1960).
6 J. Bernstein, M. Gell-Mann, and L. Michel, Nuovo Cimento

16, 560 (1960).
~ Y. Nambu, Phys. Rev. Letters 4, 380 (1960).
~ S.L.Adler, Phys. Rev. U7, 81022 (1965);139,31638 (1965).9 J. Bernstein, S. Fubini, : M. Gell-Mann, and '%'. Thirring,

Nuovo Cimento 17, 757 (1960). See also Ref. 3.
~o N. Cabibbo, Phys. Rev. Letters 10, 531 (1963)."M. Goldberger and S. Treiman, Phys. Rev. 110, 1178, 1478

(1958).

9' (i= 1, 2, 3) are the isovector members of the octet
of axial-vector currents. The tensor E p is related to
second-order forward scattering of a proton by an axial-
vector Geld. From general invariance arguments, R p
can be written as a sum of kinematic second-rank
tensors formed from combinations of p, q, and y matrices
evaluated-between Dirac spinors, each multiplied by
appropriate normalization factors and a l,orentz-
invariant scalar function. In the usual manner, the
arguments of thc scalRx' functions Rrc chosen as the
invariant variables in the problem, which in this case are

or some linear combinations of these three. ;.p can bc-con
sidered as the energy of the particle incident on the
proton in the rest system of the proton, the "],aboratory
system.

From Eq. (11.1) we obtain

g E„j(g', )=i d4xe' ' [(2'lT(a A +(g)gs-(0))ly&

-b(ap)(PlL8 A,+(0),Ap-(a)jIP)

+&(&p)iv'(I'I L~p+(0) ~n (~)jl~)l (II.3)

We have integrated by parts to cast Eq. (II.3) in the
given form. Equation (II.3) is the basic equation for
deriving our results. The sum rule is obtained from
Eq. (II.3) as a low-energy theorem" in the limit q' -+ 0,
I -+ 0. We proceed to evaluate the terms in. Eq. (II.3)
up to Grst order in v. For Gxed space-like or light-like g',
the invariant functions in the decomposition of R p can
be shown from the axioms of local Geld theory» to
satisfy dispersion relations in v. For p {) the only
singular term as q'~0 is- the one-neutron pole at
g +2&v=0. That ls~ the- contribution, 'to E~p(v~~
q =0) from the cuts is finite in this limit. Therefore, if
we consider q q&E p and take the limy —&0, the cut
contributions are at least of second order, and the unite

+ Similar methods have been used to deduce consequences of
Geld theoretical versions of conserved and partially conserved
axial currents. Y. Nambu and D. Lurid, Phys. Rev. 125, 1429
(1962);Y. Nambu and E.Shrauner, i'. 128, 862 (1962).See alsoRefs. 1 and 8.

pote added ~N proof. After completing this vrork the author
learned that similar formalisms have been applied to current
algebras independently by V. Alessandrini, M. A. B.-Beg, andL. Brown, Phys. Rev. (to be pubhshed), and C. Bouchiat andPh. Meyer (private communication).i'N. N. Bogoliubov and V. D. Shirkov, Introduction go the
Theory of QNuetis@$ Iiklds (Interscience Publishers, Inc. , Ãew.
York, 1959), Chap. IX.
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and erst-order terms on the left side of Eq. (II.3) come
entirely from the one-neutron Born term.

This Born term will give a factor g~'. On the right
side of Eq. (II.3), the term involving the time-ordered
product of the axial-current divergences will be related
to the forward p-p scattering amplitude on the mass
shell via analyticity in q'. The assumed equal-time
commutation rules determine the last term on the right.
The combination of these various factors leads 6nally
from Eq. (II.3) to a sum rule for g~P, Eq. (II.14).

In deriving Eq. (II.3) we have integrated by parts
with respect to space and time variables and discarded
surface terms. The spatial surface terms give no con-
tribution if we use wave packets. The temporal surface
terms at t=~ ~ vanish in the same manner if all the
intermediate states inserted in our expressions lead to
osclllRtlng time bchavlor that 18 1f Rll 1ntcrmcdiatc
states have different energy from the one-proton state. '4

For q'=0, the only dangerous term comes from the one-
neutron intermediate state; in our calculation we shall
explicitly assume the neutron mass M to be diGerent
from the proton mass M~. In 6nal result we let M„=3f„
and assume charge independence; the answer is in-
sensitive to the order in which we let the various small
quantities in the problem tend to zero. This procedure
of keeping 3f &3f~ until the end of the calculation will
have the additional advantage of allowing the deriva-
tion to be generalized immediately to renormalization
of the strangeness changing decays (Sec.III), where the
Born terms involve nucleon-hyperon transitions and the
masses are manifest1y unequal.

For reference we note that the matrix element of the
axial-vector current between proton and neutron is
given by

(P(P1) IA-'(x) l&(Pp)&
= (2~)-PPr.m,/(Z. Z„)j».".

g&

Xppv(P1)(V-V &1(V')—e-~&p(V') jr' (Pp) (114)

q =pl pp ) Fl(0)=1-.
p+= p (p 1+jap) is a nucleon isotopic spin matrix.

If the effective Hamiltonisn has V—A couphng, then

g~ equals G~/Gv, the ratio of axial-vector to vector
coupling constants measured in ordinary p decay. From
Eq. (II.4),

(P ]
a-A.+ [N)= i(2v) PPM.~v/(~. ~v-)j"

Xp'p'g~D(q')Nv(pl)V pr+I-(Pp) (» 5)

D(q') = (~.+~v)P1(q') —q'PP(V') ~

The assumption that D(q') obeys an unsubtracted dis-

persion relation and that D(0) is dominated by the

one-pion pole at q'= p' leads to a derivation of the Gold-
berger-Treiman (G-T) relation,

f = —VZg~M/g

f is the decay constant of the charged pion de|ined by

(0[8 A +(0) (p )=i(2p) '»(2E,) '»pPf . (II.7)

With thcsc dcGQlt1ons thc BoI'Q contI'lbutlon to E~p can
be evaluated as

qcry' ~BOl'll

= Eve'P(M„+ Mv+ v)F1P (q') 2P1 (q') D—(g')
+DP (qP) (Mv —M„+v)/(gP+MvP —M„'+2&vv) j.

Xv= (2p)—PMv/Zv. (II.S)

The last term on the right-hand side of Eq. (II.3) is
determined from the assumed equal-time commutation
rules:

8(xp}r Ap+(0), As-(x) j=2VpP(x)8~4&(x)

+ (more singular terms) . (II.9)

Vp' is the third component of the total isotopic-spin
current. We generalize the SU(3)XSU(3) algebra to
include commutators of time components of currents
with space components.

The more singular terms of the equal-time com-
mutator involve derivatives of delta functions. '5 In the
integral of Eq. (II.3a) these terms give polynomials in g.
Since the results of interest will be obtained in the
limy -+0, the derivatives of delta functions do not
contribute in this calculation. From the delta-function
term in Eq. (II.9) one has

d4X p*'4'vb(Xp) ig~

X(P[fAp+(0),A;(x)j[P)=V&,. (11.10)

Returning to Eq. (11.3) we have still to evaluate the
erst two terms on the right side. The equal-time com-
mutator LB~A +(0),A p-(X,O)j is presumably propor-
tional to b@&(x). This leads to a 6nite g-independent
terlll ill Eq. (III.3a)q

c= dpx e'p'B(xp)-
X(P)$8 A +(0),Ap

—(x)$)P}. (II.11a)

Let the 6rst term on the left side of (II.3) be denoted by

p(g, )=f4'x e "
X(P j T(8~A +(0),8&As (x)))P). (II.1ib)—

~4This is similar to the problem discussed by S. Fubini, G.
Furlan, and C. Rossetti, Nuovo Cimento (to be published), vrho
derive dispersion sum rules analogous to those presented here by
starting explicitly vrith the equal-time commutators for integrated
charges.

It ls straightforward to sllow ths, t, E(0 0)=C.
after evaluating E(g,v), we need keep only terms pro-

"J.Schwinger, Phys. Rev. Letters $, 296 (1959).



proportional to v.'"Since E involves Inatrix elements of
the divergence of the axial current, we assume that for
fixed v, 8 satisfies an unsubtracted disperions relation in
g2. FOI' v 0, g =0, we Rssuple that E ls dominated by
nearby singularities. These are the one-neutron Born
pole at q'+M '—M„'+2M„v=O and the one-pion
poles at q'= p,'.

There is, however, a possible ambiguity in defining
the residues of the poles." In this problem, the inde-
pendent variables may be taken as q' and o = v+aq',
and we can disperse in q' with fT=O. As we vary the
constant, a, diferent parts of the total dispersion rela-
tion for R(0,0) are associated with the residues of the
poles and the integral over the continuum. The problem
is to choose a to give the best pole approximation, to put
as much as possible of the contribution to E(0,0) into
the nucleon and pion poles and make the corrections
due to the integral over the branch cut, which will be
neglected, as small as possible.

In the context of dominance by nearby singularities
there is a natural, if somewhat arbitrary, criterion for a
best pole approximation, namely, choose u to keep the
threshold of the cut as far from the poles as possible.
The locations of the singularities in the Req'-Res plane
which follow from perturbation theory are plotted in
Fig. 1. For any Axed v, E. satishes a dispersion relation
in q'. For q' 6xed and not too time-like, R shouM obey
a dispersion relation in v with singularities on the Rev
axis. The anomalous thresholds come from the reduced
graph shown in Fig. 2. From Fig. 1, it is seen that the
criterion given above leads to the value a=0, or
0 = v=0, as the best choice of the 6xed second variable
for writing a pole-dominated dispersion relation for
R(0,0). For v=O, the cut has an anomalous threshold
at q'~8p, '.

The choice of v=0, (a=0), can be justified also by
general symmetry arguments. The thresholds are deter-
mined by the masses of intermediate states in the s and I
channels, where s, t, e are the usual Mandelstam vari-
ables. Here t=O, so s and u are related to q' and v by
s= M'+q'+2M v, u= M'+q' —2Mv. For the purpose of
specifying intermediate states in R, both s and I
channels look like vr™nucleon scattering and have the
sRme intermediate stRtes RVRllRble. Fol' a par tlculRI'
choice of a, denote the residue of the pion pole by
B(v= —ap'/M, p'). It follows from the statements
above tlla't 8 is a11 cvc11 filllctloll of c. To 1'cta111 tllc
symmetry between the s and I channels one should
disperse in q' with a=0.

'"H C=O, the p-independent terms yield Adler's consistency
condition (see Ref. 8) on the even m-nucleon forward scattering
amphtude at the crossing point. An analogous equal-time com-
mutator appears in Adler's Geld theoretic derivation if the standard
reduction techniques are used to remove the pions from the state
vectors More continuing oG the mass shell. The numerical success
of the consistency condition can be taken as evidence that Q
must be small. The author acknowledges discussions with J. D.
Iqljorken on this subject.

"This point has been emphasized to the author in cone-
spondence with 3.L. Adler.

qR 9 p
i?I

ANOMALOUS '::::;::.
THRESHOLDS;:. ':-:::

q2 p
2

~'": '-'-""" '.";:'.:.:-.:~ Mv

FIO. 1.Singularities of R(qm, v) in the Reqa-Rev plane which follow
from perturbation theory.

This Born term cancels the singular term of
q~q~R sn", Eq. (II.S), and clearly satisfies an un-
subtracted dispersion relation in q'. Therefore, E. has
no one-neutron pole and must itself obey an unsub-
tracted dispersion relation in q'. R has double and single
one-pion poles at q'= p,

' and a cut starting at q~8p, '. In
the spirit of our approach, the pole contributions
dominate for q'=0 and the integral over the branch cut
is neglected. In the same manner it will be shown that
the single-pole contributions are small. The result from
keeping only the double-pion pole term is

R(0,v) = —f 'T v(I1', v), -(II.13)

.2

PX

I

? [M +q +2Mv]?

FIG. 2. Reduced graph producing the anomalous threshold
shown in Pig. I. Invariant masses of the external and jnternal
lines are indicated for the s or I channel.

For fixed q'~0, R(q', v), which resembles a forward-
scattering amplitude, should satisfy a dispersion relation
in ~, and we can separate E into contributions from the
Born and continuum terms of the v dispersion relation.
Thus, for small q', v

R(q', v) =iiVv(g~'D'(q') (M„—M~+ v)/
(q'+M„' —M '+2Mvv)+P. (q', v)j. (II.12)



1306 % I L L I A M I. EISBERGER

where T -v(p', v) is the invariant forward s proton
scattering amplitude on the mass shell and with the
Born terms subtracted. From the usual dispersion rela-
tions" for the forward x-nucleon scattering amplitude,

R(o,v) = (—f-'/~) d"LA- .(4-")/(" v)—

+A-- (v1' —')/( '+ )j (II 13a)

If we eliminate f by the G-T relation, we can deter-
mine g& from strong-interaction cross sections only.

gx

2' ' "kdv
=1+ I

o -„(v)—o.+,(v)j. (II.14a)
2 2

&g~n ga

We discuss the neglected single-pion-pole terms.
These can be written as

R,.v.v (0,0)=f r(y, ',0)+H.c.

As an analytic function of q2, r has no pion-pole

1 " Imr(o', 0)
r (pP, O) =— — do'.

0 P

Imr~ Z (2~I jalopy)&mls A 10

(11.15)

(II.16)

If we considered the matrix element for forward creation
of a pion from a nucleon by scattering of the axial-

current divergence, pole dominance at q'=0 (off-mass-

shell pions) would imply

If T'-N6', 0) I» lr(0,0) I

Since oo' 8p' r(p'0) r(0&0), and r(p', 0) is similarly

unimportant compared to f T N(p', 0).

III. SUM RULES FOR AS=1 DECAYS

The results of the preceding section can be applied

to the 65=1 decays in the context of the Cabibbo

iv G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
phys. Rev. 106, t337' &195&l

From unitarity and crossing symmetry,

A —,(v) =ImT -„(v)=ko —,(v),
A -v( —v)=ko +v(v), v)p,

where o-'s are total cross sections and k is the magnitude
of the pion three-momentum in the laboratory system.

Recalling that we are interested in equating the terms

0(v) as v ~ 0 in Eq. (II.3) we collect the results from

Eqs. (II.8), (II.10), and (II.13a). Substituting we

obtain the sum rule

"kdv
g,'=1 (f.'/~) —

I .o- (v) v~.+—„(v)j (II..14)
gg P

theory of weak interactions if one accepts the generali-
zation of the G-T relation to E-meson pole dominance
for the divergence of the strangeness-changing axial
currents. We brieQy review the Cabibbo theory of
leptonic decays.

The SU(3) &(SU(3) commutation rules fix the rela-
tive scale of the vector and axial-vector currents. The
combinations,

Qy'= s (Vo'(&)+A o'(~))d'x, i= 1 8

form two mutually commuting octets of chiral charges.
The hadron current which couples to the leptons and is
measured in decay processes, is a component of one of
these chiral octets

J' had —costt(P 1+is A 1+is)

+slllg(I &is A +is) (III 1)

The Cabibbo angle 8, which determines the suppres-
sion of the QS= 1 decays relative to the AS=0 decays
is an input parameter to the structure of the effective
weak Hamiltonian. The problem of whether the right-
handed or left-handed current appears is determined
from experiment. In the limit of exact SU(3) symmetry
the vector currents are unrenormalized, and their
matrix elements between one baryon states have only
f-type coupling. For the corresponding matrix elements
of the axial current, we have in the SU(3) limit

&&'(p) IA.'(0) l~'(p))
=g~'*"N(p)V, Vog(p)

=g~L(1 ~)f';h+~dg. 7&(p)y„you(p),
(i, j, k= 1, , 8) (III.2)

where f and d are the usual Gell-Mann coupling coefE-
cients, and we have neglected trivial kinematic factors.

Empirically"' this description gives a satisfactory
6t to the presently available data on leptonic decays
even though SU(3) is a badly broken symmetry. The
origin of the small renormalization for the vector cur-
rents is suggested by the theorem of Ademollo and
Gatto, "which shows that there is no renormalization
of the vector currents to erst order in the symmetry
breaking because the space integrals of the time compo-
nents of the vector currents are the generators of SU(3).
This theorem is not applicable to the axial-vector
currents.

In order for (III.2) to be valid both the axial cur-
rents and the one-baryon states must transform as
octets. If we believe that the commutation rules of

'8 N. Srene, B. Hellesen, and M. Roos, Phys. Letters 11, 344
(1964); W. Willis et u/. , Phys. Rev. Letters 13, 291 (1964).

»M. Ademollo and R. Gatto, Phys. Rev. Letters 13, 264
(1964); C. Bouchiat and Ph. Meyer, Nuovo Cimento 34, 1122
(1964).
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the vector and axial-vector currents are unchanged
by the SU(3)-breaking interactions, then the axial
currents transform exactly as an irreducible octet
tensor even in the presence of symmetry breaking. The
experimental success of Eq. (III.2) in describing the
axial matrix elements suggests then that the one-particle
states may be nearly pure octet despite the large mass
splittings due to SU(3) breaking. 's

The divergence of the axial current, however, does
not transform like a pure octet tensor if SU(3) is
broken. Indeed, the Cabibbo theory gives explicit
SU(3) violation of the matrix elements of el~A ' due to
the mass splittings. The generalization of the G-T
relations to the strangeness changing decays implies
that the meson-baryon couplings have the same d/f
ratio as the axial current —baryon vertex but the meson
couplings show explicit dependence on the physical
baryon masses. The results are the same as those of
Freund and Nambu" who assumed that the currents are
conserved but the states are not pure.

To check the consistency of this picture we obtain
sum rules for the AS=1 decays. The procedure is
exactly the same as in Sec. II. Start with matrix
elements of T(A '+"(x)As~@(0)). Consider matrix ele-
ments of this time-ordered product between both one-
neutron states and one-proton states, respectively. In
the first case the Born terms are due to a Z pole. In the
second both Z' and A' contribute. These give the sum
rules"

&v
1= (g~"s )'+ —(Ax-„(v)—Ax+„(v)j, (III.3a)

2
vp

2= (gyve') y (gyve')

00 Qv

+ —LAx-v(v) —Ax+v(v) j. (III.3b)
7l s J,~p v

The A's are absorptive parts of forward scattering
amplitudes. For v&Mz they are proportional to total
cross sections, but the E-nucleon dispersion relations
have cuts in unphysical region owing to the hyperon-
pion channels. f& is a E-meson decay constant defined
in analogy to Eq. (11.7). In Cabibbo theory, fJr = f„,and
the gz's are given by Eq. (III.2). Making these sub-
stitutions in Eq. (III.3) and using the 6-T relation, one

"This implies that the oB-diagonal matrix elements of the
SU(3)-breakIng interaction between initially nondegenerate states
are small though the diagonal matrix elements may be large. In
a naive potential picture this means that the second-order eGects
on the mass splittings will be very small."P.G. 0. Freund and Y. Nambu, Phys. Rev. Letters 13, 221
(1964).

~ These sum rules have been discussed independently by D.
Amati, C. Bouchiat, and J. Nuyts, Phys. Letters 19, 59 (1965).
Equation (III.3b) has also been evaluated by C. A. Levinson and
I. J. Muzinich, Phys. Rev. Letters 15, 715 (1965);L. K. Pandit
and J. Schechter, Phys. Letters 19, 56 (1965).

obtains

= (1—2e)'
gx

2&st

egg ~

= (1—2n+-'scP)
g~'

M„'

Wg&7g2

~dv—)Ax-„(v)—Ax+„(v)), (III.4)
Vp

dv
$A x—v(v) -AJr+—„(v)j. (III.S)

pp

Evaluating the dispersion integrals in Eq. (III.4),
one determines gz, and o. or the d/f ratio. By considering
also the commutator of the hS= 1, AQ= 0 axial currents
and taking all possible diagonal matrix elements of the
three canonical commutators between baryon states,
one can derive six more sum rules. They involve un-
measurable scattering processes, but in the limit of
exact SU(3), they can each be shown to be equivalent
to Eqs. (II.14), (III.3a), or (III.3b).

o +v(v) —o.-v(v) =&v (IV.1)

The convergence of the integral in Eq. (II.14a) depends
on the validity of the Pomeranchuk theorem but the
numerical result is insensitive to the details of the high-
energy behavior. The result is

or
1—1/g~' =0.246 (IV.2a)

Is~I = IG~/Gvl =115 (IV.2b)

The best value calculated from experimental P-decay
measurements is"

(G~/Gv) v
———1.18&0.025. (IV.3)

The theoretical uncertainties in Eq. (II.14) are due
mainly to the continuum terms that have been dis-
carded. This approximation is used for R, Eq. (II.13),
and in deriving the Goldberger-Treiman relation. From
the comparison of the 6-T relation with experiments,
the errors inherent in this type of approximation may
be about 20% for the right-hand side of Eq. (III.2a)

~ We use the value g,„'/kr =14.6+0.03 given by . Hamilton
and W. S. Woolcock, Rev. Mod. Phys. 35, 737 (1963 .

2'C. Hohlen, C. Ebel, and J. Giesecke, Z. Physik 180, 430
(1964)."G. von Dardel, D. Dekkers, R. Mermod, M. Vivargent,
G. Weber, and K. Winter, Phys. Rev. Letters 8, 173 {1962)."C. P. Bhalla, Phys. Letters 19, 691 (1966).

IV. NUMEMCAL RESULTS AND
CONCLUSIONS

A. d S=0 Axial Current

The sum rule for the AS=0 axial current LEq.
(II.14a)j is evaluated" using tabulated values'4 of the
experimental pion-nucleon cross sections to &=5 BeV/c.
The very high-energy data is fitted with the exponential
form"
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but only about 5% for g~. For example, if we evaluate
Eq. (II.14) using f as determined from experimental
measurements of the lifetime of the charged pion, '7 the
sum rule yields

(IV.2b')

Errors in the calculated value of g~ from uncertainties
in the exact high-energy behavior of x-proton cross
sections and the best experimental value of g ~ are
about 1%. It is the effect of the (3,3) resonance in
Eq. (II.13) that makes ~gg~ )1.In fact, the (3,3) reso-
nance contribution alone gives

~
G~/Gv

~
1.35, and the

higher energy I=—', resonances reduce this value. Thus,
the (3,3) resonance does not saturate the sum rule.

From Fig. 1 some general conclusions can be drawn
about the expected domain of validity of pion-pole
dominance in this problem. From the postulated equal-
time commutation rules for the weak charges, one can
obtain directly' "a sum rule for g~

dv—(D+(O, v) —D-(0,v)$ (IV.4)
Is+@,~/2M &

with
D+(O, v) = ImR(O, &v), v) IJ+y'/2M. (IV.5)

D+ can be measured in high-energy neutrino reactions
when the lepton is produced in the forward direction. "

This result is obtained by writing a dispersion relation
in v for R(0,0) in Eq. (II.3). The result, Eq. (II.14),
is obtained by 6rst taking the pole approximation
in q' for R(0,0) and then dispersing the residue of
the pion pole in v. For the integrand in Eq. (IV.4),
however, one cannot justify directly replacing the
matrix element of D+ by their pion-pole contributions.

This follows from Fig. 1 where it is seen that in the
integration region for v of Eqs. (II.14a) and (IV.4), the
threshold of the cut in q' moves past the one-pion pole.
That is, for physical ~ there is no isolated pion pole, and

multiparticle thresholds in q' are as close to q'=0 as the
one-pion state."

Nevertheless, as v~+, a return to pion-pole
dominance can be justified for D+(0,v). The position of
the singularity from a state of invariant mass 3E,~ in

the s or I channel is given by

q'+2SIv =3f,~—M'.

Thus, as
~

v ~~~, the threshold for any state of fmite

mass moves oG to q'=& . The only singularities re-

maining near q'=0 are the one-pion pole and very
heavy inelastic states. The normal threshold at q'=9p'
remains 6xed. In the spirit of PCAC, with 8&A„assumed

to be a highly convergent operator satisfying unsub-

tracted dispersion relations one expects that very heavy
states are unimportant in the spectral functions for

» A. H. Rosenfeld, A. Barbaro-Galtieri, W. H. Bartas, . P. L.
Bastien, J. Kirz, and M. Roos, Rev. Mod. Phys. 36, 977 (1964)."S.L. Adler, Phys. Rev. 135, 3963 (1964).

2'In a 6eld-theoretic treatment these departures from simple
pole dominance might be identihed vrith the lour-energy threshold
corrections. See Ref. 1.

8"2„,. Therefore, as
~

v~
—+~, the only important con-

tribution near q'=0 comes from the pion pole at q'= p2.
This leads to a derivation of Adler's proposed tests of
PCAC in high-energy neutrino reactions. ".The pre-
ceding argument explicitly uses the PCAC hypothesis in
dispersion theory as a physical assumption about small
numerators as well as a geometrical statement about
large denominators or far-away singularities. Faith in
such arguments is needed also to justify E-meson pole
dominance of the divergence of M=1 axial current.

(a) UnPhysica1 region. v(3I»
We assume that the only important contributions

come from the I=1 p-wave resonance I'i*(1385), and
the continuation of the I=0, 1 Swaves below threshold.
The I"~* is a member of the decuplet of spin--', reso-
nances. To estimate the Y1* contribution to the
E-nucleon integrals we assume a phenomenological
B~BM (resonance-baryon-meson) coupling

~.«(*)= —"4' ( )k(*)~" (*) (IV 7)

where the P„(x), P(x), p(x) are the field operators for
the spin--', resonance, spin--,'baryon, and pseudoscalar
meson, respectively. The resonance is described by the
Rarita-Schwinger formalism. "

The decay width for a resonance is related to the
effective coupling constant X by

I'= (k')2/24x) D~se+~s)' p~' j/~s*' —(IV.g)

where k is the momentum of the baryon and meson in
the center-of-mass system. Mg*, M~, and p, ,~ are the
masses of the resonance baryon and meson, respectively.

TABLE I. Numerical contributions to the dispersion integrals
in the sum rules for the AS=1 axial current.

Unphysical region
Yi+(1385) 8 waves

Physical region
0 g+plab QI lab

&6 BeV/c. &6 Bev/c. Total

I(Kp)

I(Kn)

—0.010
—0.010
—0.021
-0.021

0.106
0.126
0.055
0.055

.' -0.205
0.198
0.134

. 0.107

0.048
0.048
0.027
0.027

0.349 (Kim)
0.362 (Sak1tt)
0.195 (Kim)
0.168 (Sakitt)

~ W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941).

B. Strangeness-Changing Currents

The numerical evaluation of the sum rules for the
AS=1 currents, Eq. (III.4), is complicated by the
presence of an unphysical region in the E-nucleon
channel extending below the elastic threshold. Above
the threshold the integral can be expressed in terms of
total cross sections as in the x-nucleon case. The sum
rules can be written as

1/gg' ——(1—2n)'+2I(ln), (IV.6a)

1/gg2= (1—2m+43m')+I(E'p) . (IV.6b)

The contributions of the diAerent energy regions to the
dispersion integrals for I(En) and I(Kp) are sum-
marized in Table I and discussed below.



UNSUBTRACTE0 0 ISP ERSION RELATIONS

%'e assume that the coupling constants, X, for all the
B*BM couplings are related by SU(3). The Yt*1lTE
coupling is computed from the observed width'~ for
d, (1235)~ tV+z. Then the I'te is inserted as a pole in
the ZX scattering amplitudes. Various estimates ' of
the effects of SU(3) breaking on the B*BM couplings
indicate that the I'~* contribution is uncertain within
a factor of 2.

To evaluate the I=O and I= 1 the 5-vrave contribu-
tion below threshold we use the complex-scattering
length, zero-eQective range E-matrix formalism of
Dalitz and Tuan. "Recent experiments on low-energy
E—proton scattering by Kim and Salatt eI, ul.~ give
very similar solutions for the two complex scattering
lengths. Each of their solutions shows resonance be-
havior below threshold in the I=0 channel at the mass
of the I's*(1405).

Both sets of scattering lengths were used to evaluate
the 5-wave contributions to the dispersion integrals
below threshold. The integrals were truncated at the
Z-x threshold.

(b) Physical regio n v)M'tr

In the physical region for EE and. XÃ scattering,
the integrands in the dispersion integrals can be
expressed in terms of total cross sections. For low
energies, Ptr"b&03 BeV/c, we use the Z1V cross sec-
tions given by the Kim and Sakitt solutions. The ES
cross sections at low energy have been measured; they
are small and smoothly varying. We have collected the
available experimental data" for the integrals up to
Ptr"b= 6 BeV/c. For Ptr"b) 6 BeV/c, the experimental
cross-section differences" occurring in Eq. (III.4) can
be reasonably well-6tted with an exponential form as in
Eq. (IV.1).For ZN cross sections we uses'

(IV.9)

» E. Johnson and E. R. McCliment, Phys. Rev. 139, 3951
(1965).See also references listed here."R.H. Dalitz and S. F. Tusn, Ann. Phys. (N. V.) 10, 307
(1960)."J.K. Kim, Phys. Rev. Letters 14, 29 (1965);M. Sakitt, T. B.
Day, R. G. Glasser, N. Seeman, J. Friedman, W. E. Humphrey,
and R. R. Ross, Phys. Rev. 139, $719 (j.965).+ See Refs, 4 and 5 of R. Good and ¹ Xuong, Phys. Rev.
Letters 14, 191 (1965};also, G. von Dardel, D. H. Frisch, R.
Mermod, R. H. Milburn, P. A. Piro', M. Vivargent, G. Weber,
and K. Winter, Phys. Rev. Letters 5, 333 (1960);P.L. Bastien, J.
P. Berge, 0. L Dahl, M. Ferro-Luzzi, J.Kirz, D. H. Millen, J.J.
Murray, A. H. RosenfeM, R.D. Tripp, and B.Watson, Proceedings
of the Isterssteosel Cosferesoe os Zegh Esergy Phyeeos, G-esses,
I96Z, edited by J.Prenkti (CERN Scienti6c Information Service,
Geneva, Switzerland, 1962),p. 373;W. F.Baker, R.L.Cool, E.W.
Jenkins, T.F.Kycia, R. H. Phillips, A. L. Read, K.F. Riley, and
H. Ruderman, Proceedings of the Sielee INternutioeul Coeference
os Eteesostsry Psrteetee (SocietiL Italians di Fisics, Bologna,
Italy, 1963),p. 634; V.J.Stenger, W. E.Sister, D. H. Stork, H. K.
Ticho, G. Goldhaber, and S. Goldhaber, Phys. Rev. 134, Bij.j.i
(j.964).» E.W. Jenkins, T.F.Kycia, B.A. Leontic, R.H. Phillips, A. L.
Read, and R. Rubinstein, Phys. Rev. 1BS, 8933 (1965).

~SR,. J. N. Pbit»ps and W. Rarita, Phys. Rev. i39, 31336
(1965).

The contributions from the asymptotic region, I'~'~b
&20 BeV/c, are about 10% of the total integrals.

The possible numerical errors for these integrals are
estimated to be 20%. This is in addition to errors
introduced by the pole dominance approximation.
Equations (IV.6a) and (IV.6b) can be solved simul-
taneously for 0. and gg. There are two solutions to the
resulting quadratic equation for n. One solution gives
m~4 and g~~0.85 and is discarded. . With the indicated
errors the other solution is'~

n=0.75&0.10,

( g, [
= 1.2S+0.10. (IV.10)

The solutions for the two sets of results in Table I
are closer than the statistical errors indicated above.
Correcting the I's for the errors in the G-T relation does
not affect the solution" for 0. but gives

) g, [ =1.20+0.10. (IV.10')

The consistency with the value for g~ obtained from
the M=O sum rule is quite good. The solution for +
agrees within error limits with the best 6ts of Cabibbo
theory to experimental data on semileptonic decays. »
These give

n=0.67+0.03 (Brene et al.)
=0.63+0.06 (Willis et al.) . (IV.11)

These results yield a consistent theoretical picture
of lo+-energy semileptonic processes with only two
imput parameters for the weak interactions, GT and
the Cabibbo angle 8. One should expect, however, that
future precise measurements of semileptonic decays
will show departures from complete SU(3) symmetry
of the matrix elements of the currents. The evidence is
quite strong, however, that the suppression of the DS= 1
decays relative to M=O decays by tantII lies in the
structure of the weak interactions and cannot be ex-
plained as a strong-interaction renormalization eGect. '9

» For comparison we note the independent results, see Ref. 22.
o.=0./3 (D. Amati, C. Bouchist and J.Nuyts);
go =0.63 (C. A. Levinson and I.J. Munnich).

38 The value obtained for a is insensitive to these corrections
because the contributions from the dispersion integrals nearly
cancel when we take the diBcrencc between (IV.6a) and (IV.6b)to solve for m. Either of these equations can also bc solved simul-
taneously with (H.14a) to obtain independent values for ~. These
results are generally consistent, but the precise answers are much
more sensitive to the errors discussed above.

eN R, Oehme, Ann. Phys. (N. Y.) BB, 108 (1965).
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