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Unitarity of the S matrix is used to bound the sum of the pole term and the left-hand contribution appear-
ing in a dispersion relation for a partial-wave scattering amplitude. An upper bound for the coupling constant
is then constructed for the case of an arbitrary distribution of any finite number of sign changes in the left-

hand cut discontinuity.

1. INTRODUCTION

IN the following we address ourselves to the question
whether unitarity and simple analytic structure of
the .S matrix are sufficient to restrict the coupling con-
stant g.

The simplest example that comes to mind is, of
course, the Lee model.! There a ghost state appears
provided g? exceeds a critical value dependent on a
cutoff function. Simultaneously one observes a violation
of unitarity of the .S matrix.

Unitarity as a minimal requirement to bound the
coupling constant has further been used by Ruderman
and Gasiorowicz? for both potential and static field
theories. Cutoff functions have been introduced which,
in contradistinction to the Lee model, are not necessary
to insure convergence. Their existence is an assumption,
strong enough to bound g.

Attempts to bound g for an unrestricted field theory
were made by Geshkenbein and Joffe} and Meiman.!
The function studied by those authors is not the scat-
tering amplitude but the propagator D of a particle.
Using complex analysis a bound for g has been given in
terms of the masses of the particles at the simplest
vertex. The necessary condition in their derivation is
the absence of a zero in the propagator or, alternatively,
of a pole in the vertex function I'. Geshkenbein and
Joffe assured this condition on the conjecture that the
zero in D (or the pole in T') would make itself felt in
the scattering amplitude. This conjecture, however, has
been disproved for both nonrelativistic® and for rela-
tivistic theories.®
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We further note attempts made by Barut and
Sawada’ to determine g2 from maximal analyticity.

We discuss below the question of a bound on g using
analytic properties of the scattering amplitude for a
given partial wave, but only in the physical sheet. We
consider the case that the amplitude has a pole cor-
responding tothe bound state between the left- and right-
hand branch points.

Both the real part of the scattering amplitude and the
contribution from the physical cut can be bounded for
a certain range of physical values of the energy. The
resulting function, called the unitary bound in that
region, constitutes an upper bound for the pole term
and the left-hand contribution in the same energy
interval.

We shall demonstrate that with square integrability
of the left-hand discontinuity as sole condition, the
bound for g? is infinite. In that case, the weight func-
tion of the left-hand cut necessarily has an infinite
number of sign changes. A weight function having any
distribution of a finite number of sign changes leads to
a bound for g2. (Rigorous information about the number
of zeros of the left-hand discontinuity is scanty. For a
lower bound see Ref. 8.)

Using unitarity we establish in Sec. 2 a bound for
the real part of the scattering amplitude and the con-
tribution from the physical cut. In Sec. 3 we discuss
the competition between the left-hand contribution and
the pole describing the bound state. We further present
the actual construction of the bound on g2 for the case
of any distribution of a finite number of sign changes of
the left-hand cut discontinuity.

2. UNITARY BOUND

We consider the simplest case of the scattering of
two spinless particles with equal mass M, center-of-
mass energy s/2, and momentum g=13(s—4M?)'/2,

It is assumed that for a given partial wave /, a bound
state with strength g2 is located at s=m? between the
left- and right-hand branch points s, s,.

Under general and weak conditions it has been

7 See, for instance, A. O. Barut and T. Sawada, Phys. Letters 13,
177 (1964); T. Sawada, Nuovo Cimento 38, 1889 (1965).
8Y. S. Jin and A. Martin, Phys. Rev. 135, B1369 (1964).
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proved that if the scattering amplitude

81/2
€1(2) sing; (s)

Fi(s)= 2.1)

q

possesses the standard analytic structure, no subtrac-
tion is necessary in a dispersion relation for F;.° How-
ever, in order to obtain a bound it will be necessary to
apply a single subtraction at some point s,. We thus
start from

ReF; (S) —ReF 1 (S,.)

S—3Sn
¢ Pre ImR)
—s)ri—s52) 1), (F—) (=)
12 R()
+;/ —w (’—5)(s"—54)

ds’, (2.2)

where R;(s) denotes the discontinuity of Fi(s) across
the unphysical cut.

We first focus on the parts of (2.2) dependent on
values of Fi(s) for physical s. From

Isz(s)=8—%;;n(s>le(s>|2, 2.3)

in terms of the inelasticity factor
M) =0t0ta1P (5)/ca P ()21,
one readily derives

8mst/2

<

Re
I Fi(s) ;oS> (2.4)

Im

q

Eq. (24) will now be used to bound the contribution to
Fi(s) coming from the physical cut. Normal threshold
behavior implies for s s,

.y sl
sin2;(s) « A1 (s—s,)'—.
q q

ImFy(s)= 2.5)

We further assume ImF;(s) to possess a maximum
at some finite s3r and a minimum s, possibly at .

One next chooses the subtraction point s, and s, as
well as finite intervals A; and A around s, and s, in an
arbitrary way, subject only to (see Fig. 1)

$,<Sp—Aq,

St A1<sy<s—Aq,
S""A2<3m.

(2.6)

9 R. Omnes, Phys. Rev. 133, B1543 (1964); A. Martin, Nuovo
Cimento 38, 1326 (1965).
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ImFy(s")
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F16. 1. ImFi(s’) and [ImF;(s")]/(s"—sn)(s'—s) as functions
of s’. Shown is a choice of the subtraction point s, and s with
respect to sar and sm, the (not necessarily first) extrema of ImF;,
satisfying the inequalities (2.6).

The contribution of the physical cut can then be split
as follows:

P pre | pen—A1 P sntAl
B
TS 3¢ TJ sy T J sp—A1
1 s—A2 P s+A2 1 p>
[ [ f @
TS spt+A1 T J s—Ag TJ s4Ag

We first consider the first principal-value integral on
the right-hand side of (2.7) by writing it as

P sntAl

TS onty (8'—9)(s"—5u)

P satAl 1
= <5———— ) ImF(s")ds’. (2.8)
T(s—5n)J snety \§'—s §'—5n

Since ImF;>0, the first contribution will be negative.
So will the second part, since ImF; increases in the
interval (s,— A1, s»+ A1) because of the choice of sn,
Eq. (2.6). The same reasoning holds for the fourth
term in (2.7). Their contributions as well as that of the
evidently negative third term can be discarded in
establishing an upper bound for (2.7). By use of (2.4)
one thus finds

P Isz(s') an—Al °
L ol (L)
™J sy (S""‘S) (S’—s”) 3r snt+Ag

sizgs’

X
(s'— 412 (s"—5) (s"—5n)

ImFl (Sl)

. (29)
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Defining
B(s,t)={[s(s—4M2) |2+ s— 22}
[S(S—4M2)]"2+ [e—amm)]

s—t

— 2M2 -1
- 4M2)]1/2}

t —1/2
x( ) , (2.10)
i—4M?

one establishes from (2.3), (2.5), (2.9), and (2.10), a
unitarity bound:

g Lre Ri(s)
+ s’
(m2—s)(m2—5,) wJ— (s'—5)(s'—52)
ReFi(s)—ReF(sn) P ImF(s) , ’
B §—Sn TJ s (5—3)(s'—5n)
S U(S,P-',‘Ii) (211)
with
( Y=U(s,M AyL,A,) 16|_2< ’ >1/2
U(s,0:,9:)=U(s,M,$1,Sn, = T
i ’ b s—sn'_ s—4M?
B(sp—A1, $)B(5r,5n)B(sn+ Az, $n)

n ] . (2.12)
B(sn— Ay, $2)B(5r,5)B(sa+ Ay, 5)

pi is the set of parameters su, Ay, Ag, as yet free within
the inequalities (2.6), while ¢; denotes fixed parameters
like M, s», Sary Sme

It is convenient to introduce the dimensionless vari-
able x=s/M? and mass ratio u=m/M, and further two
reduced functions (the index / will be suppressed from
here on):

M i~y
p(x)=— Ri(x),
TG X—%n (2.13)
”(x,ﬁi;q:')= (uz—x,,)MZU(s,p.-,q,-) .
Equation (2.11) then becomes
g )2 1 /"p(x')
— + dx' | <u(x,piq)  (2.14)
<M w—x J_ o2 —x puq

with all parameters p; and x(s) satisfying the inequali-

ties (2.6). Keeping for instance p; fixed, Eq. (2.14)

(now to be valid in an interval #;<x<x,) requires
max

. g\?] 1 @t p(x')
() = =
o(z) z1<z<72 =z J oo —=x

min
< max u(x,pi,q). (2.15)

r1<z<z2

The minimum in (2.15) refers to that obtained for any
as yet arbitrary function p(x) for which the integral in
(2.15) exists.
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Instead of searching for the function p, satisfying

1 N o p(x')dx
/.cz—ar:| /;w ¥—x
1 @t p(a')dx’
w—x J_ o, ¥—x

one may alternatively try to determine 7(x), the best
quadratic approximation of the pole term, satisfying

Gt [ 7)o
/(u_x fﬂp(x’) x>dx. 2.17)
Then,

1 s 1 @ 7 (x ')
’YEI: f ( +f )dx] (2.18)
d Xo—X1J 2 IJ-2_x — x’-—-x
certainly satisfies
1 2 p(x)
+/ dx'|.
w—x J_ o4 —x

A bound for the coupling constant is then derived
from (2.15), viz.

g 2
<M) <min max u(x,p:,q)/7,

pi 21<z<72

max
z1<z<z2

, (2.16)

< max
z1<z<22

y<min max (2.19)

p w1Lz<L22

(2.20)

where min,, refers to the sharpest bound obtainable for
an optimal choice of the parameters p; satisfying the
inequalities (2.6).

3. OPTIMAL QUADRATIC APPROXIMATION
OF THE POLE TERM BY THE LEFT-
HAND CUT CONTRIBUTION

We now consider the best quadratic approximation
to the pole term

Ap(%)=1/ (W—2) (3.1)
by functions of the form
% p(a')
MNzx)=Tp(x)= dx' 3.2)

0 X—X
In other words, we look for the minimum value of the

functional
A[P]= Ap—T,)"

A=d i

With respect to the class of functions p(x) we restrict
ourselves in the following to pE& Lo — 0, x,], the Hil-
bert space of all functions square integrable in the

>2dx. 3.3)



1298

interval — oo <x<x;. We further consider the linear
transformation A=Tp, Eq. (3.2), the mapping of the
Hilbert space £o[— ,#;] into a set of functions
T(Lo[— 0, x1]) defined on the interval x;<x<x,.

Lemma:

(1) T(Lo[— 0, 21 )C Lol #1,%2], where Lof#1,%0] is
the Hilbert space of functions A(x) square inte-
grable in the interval x;<x<x,.

(2) T(LL— o, x;]) is dense in Lo[x1,x2], i.e., for
any e>0 and any NS L[ %1,%], there exists a
Tp, pS L[ — 0, %1], with

(\—Tp)<e.

(3) A\,—Tp=0 has no solution.
(4) There is no pE Lo — 0, x;] with

Tp=0.

(5) The inverse transformation 7+ exists, but is un-
bounded, i.e., there is no finite constant «, such
that

172 <Al

for all A& L[ 1,22 .

The proof of this lemma is given in Appendix A. We
use here the first and second statements of the lemma,
which furnish the proof that in particular the pole term
\p can be quadratically approximated with¥arbitrary
accuracy. From (3.3), (2.18), and (2.20) we then infer
that for a pELo[— 0, x;] the upper bound of g is
infinite.

The last two statements imply that for a solution of

—Tp=0 one has to look for a p outside the Hilbert
space. Indeed allowing distributions for p one finds,

=3 (=) P60 (3—17) (w— )/

n=1

(3.4)

as solution of

zl x/
A () = =/ )

=1 J_o¥—x

(3.5)

The series (3.4) amounts to an expansion of A,(x) in
terms of poles of arbitrary order, all at the point x=x;.

pi z1<z<a

M
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The series (3.4) is by no means unique. The choice

o) =b(p—my—3 LWt

n=1 nl

n /0 .
sz=:0 <k> (=) (x—xi+n—Ek), (3.4a)

for instance, amounts to an expansion of A, in terms of a
sum over a product of an increasing number of equi-
distant poles at x;, 2;—1 (We are indebted to
Nitzan-Nussinov for ha,vmg brought to our attention
the existence of the so-called Waring series.?)

Equation (3.4) shows that an infinity of sign changes
in p is required for a solution of Eq. (3.5). We now
demonstrate that a p with any distribution of a finite
number of sign changes leads to a finite bound on g2

Let first z;,¢=1, -+, n—1 be the ordered set of
zeros of p(x)

0=2">2y, -, 3.6)

We then contend that
2 1 n—1 Olz(l) 2
LGEn)=
o \WE—% =0 x—3z
21 = p(a')
5/ ( —-/ dx)dx 3.7
z1 [l,z—x —0 x—x

with o;® given by

Sgp=—00,

n—1 z2
a®=3 Uyp®Usy® / A (%) (x—2z)Mdx.  (3.8)

2,k=0 1

The matrix elements Uy are determined by a
Schmidt procedure such that the system

‘/,ka)—z Up® E=1, -, n—1 (3.9)
x—Zz
is an orthonormal one.
Comparison of (3.7) with (2.17) shows that
n—1
TO=3 ;0 /(x—2z). (3.10)
=0

One is then in a position to calculate ¥ and g, Egs.
(2.18) and (2.20), in a straightforward manner, lead-

ing to
(xim)mm. (3.11)

If only the number of sign changes of p(x) for — « <x<x; is known, but not their position, the best quadratic

10 T, M. Milne-Thomson, Calculus of Finite Differences (The Macmillan Company, London, 1933), p. 293.
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approximation is achieved by a linear combination of poles up to order #—1, all located at the left-hand branch

point x; (=2o).
The upper bound (3.11) becomes in this case

pi  z1<r<ae

M
where now U@ is determined by
n—1
U@=3 Up® ,
* =1 (x—20)*
(,/,k(z),,pk, OY=§1,, k= 1,--

We shall prove the contention (3.7) here only for the
case n=1, i.e., the case of a p with definite sign for
— o <x<%;. For the case #>1 see Appendix B.

By use of the mean value theorem one writes

A= /”’ p(x ) i

A(n)

)
with £(x) some point between (— o, x;) and 5 chosen
to be larger than x,. One sees that

(3.13)

n—1.

(3.14)

x—g(x

Ax)< ~ xl)\ () for

x<n
X—X;
(3.15)
n—a
A(n) for a>7.
X—X1

Equation (3.15) establishes an inequality of the form
(3.7) for n=1. One then determines ay by the choice
of 7, which minimizes

z2 1 010(71) 2
[z
o MWE—x x—ay
Before concluding this section we wish to make the

following remark. Since there exists a finite bound on
g* for a finite number of sign changes of p, the function
which approximates X\, quadratically must necessarily
possess an infinite number of sign changes. Of course,
it is still possible that restrictions on the distribution
of an infinite number of sign changes of p will lead to a
finite bound for g2.

4. CONCLUSION

Starting from a once subtracted partial-wave dis-
persion relation (2.2) we have calculated under certain
conditions an upper bound for g% Egs. (3.11), (3.12).
The bound depends on details of the system and a
limited number of parameters. The details of the system
concern the position of a maximum in the imaginary
part of the scattering amplitude and the number of
sign changes (assumed to be finite) of the left-hand cut

<g(2)) <min max u(x,ps) / {[(xl— %) (#—w) I — (xz_xl)—l[g U,,;‘”(M»

=l I

discontinuity. The parameters, on the other hand, are
a subtraction point and arbitrary energy intervals,
which only have to satisfy certain inequalities (2.6).
These parameters can be adjusted in order to obtain
the sharpest bound within the framework of the tech-
nique used.

The case of an infinite number of sign changes has
been discussed, but no finite bound on g could be
established.
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APPENDIX A

Proof of the lemma in Sec. 3: We prove the lemma
point by point:

(1). By choosing correctly weighted Laguerre poly-
nomials 7,(x)=L,(x;—x)oc(x;—x)"/? as a basis of the
Hilbert space £o[ — «,x;] statement (1) is obvious,
since

Tr,C Lo #1,%2 ] (A1)
for all ».

(2). We have only to prove that there does not
exist an element N\& Lo %1,%2 |, A5%0, which is orthogonal
to T'(Le[— o, #1]). If for any p(x)E,G{—— 0, %7],

/ A=) / dx’ dx
(A2)
@)
= / (&) dxdx’
o o ¥ —2%
then '
x2
/ A=)/ (&' —x)dx=0 (A3)
or -
A(x)=0.
(3). Since the Hilbert integral equation
o ¢ (a')
/ dx' =\, (%) (A4)
— &

has a unique solution, which is ¢(x)=8(u?—=x), there
cannot be another solution, with ¢(x)=0 for x>ux;,
which would solve the equation Tp=AX,,.
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(4). This statement follows by an argument analo-
gous to that for (3).

(5). T exists, because of (4). The unboundedness
of T-! is equivalent to the following statement: There
does not exist a 6>0 with the property

(7ol 28llo]| forall pELa[— o, x:1].
Considering, e.g., the family of functions
pn=sinnx/x, (AS)
then since
sts ral o ginpx’ 2 =l sinnx
/ ( -—-—-—dx') de&,.f dx, (A6)
21 Mo & (2 — 1) o X?
we find

limé, =0, which proves (5).

n—o0

APPENDIX B

In order to prove the inequality (37) one represents
A(x) as follows:

“ p(a) n
- dx'=3

w¥—x =1/,

1 p(a’)
dx’

Ax)= -
¥ —zx

(B1)
with
p(2)#0 in z,<x<z,1.
Using the mean-value theorem we get
o ot p(x)) m—af

A@)=2 dx’

=1J,, &—n x—x

n /’zv"'! p(x') 5 ,771"5»(’71:") (B2)

g ’
=12 x,_ﬂl r— EV(ﬂlyx)

where 71> %, is an arbitrary reference point outside the
integration interval and £,(q1,x) denotes the mean

pix)

ya

= ZV

Fr1c. 2. Left-hand discontinuity p (x) and left-hand contribution
M) to scattering amplitude, illustrated, in the case where p(x)
has two zeros z; and z,. Here A®in(x) minimizes the area under
[A(x)+1/(u2—x) ] between x; and w2 under the condition that A
shall have the values A(n1), AM(52) at two points 71, 92.
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value,
2,<&,(n1,%) <21.

As a first step we prove for a given sequence of points
21 <m<ne< -+ - << o and corresponding values A (1)
> ++>\(n,) the existence of a function A(x) with the
properties:

o 5\(711') =\(n:).
(2) IfA={X(x)} is the set of all functions of the form

(B3)

z1 x’

A(x)= —da/ with p(2)=0, v=1, - -

¥ =z

-, n—1 (B4)

and
Am)=\(@.),
then the following statement holds for any XA (x)EA:
ANx)>K(@x) for x<x<mni,
<K(x) for m<a<ns,
?X(x) for ne<x<ns.

(BS)

The »n values \(y,) are sufficient to eliminate the 7
unknown constants

/ " @)/ (=)

14

which appear in the expression (3.13) for A ().

no @) | m—E () o

M) —2 dx =
v=1J, —m  x—E(,%) ’
n ot p()
An)—2 ; da/ =0,
=1/, r—m

(B6)

n ot p(xf) ; ,nl—Ey(ﬂl,n2) —0

An2)—2 ax o
. =1, & —m me—E(nme)
' n K p(x’) m—=é& (771)771':)
M) —2 da’ =

=), 2= 9a—E(1,0m)

The solution A (x) of this system of #4-1 linear equations
is given by

n—&1(n1,%) n1— En(n1,%)
A=) .
X— 51 (ﬂl,x) r— ‘Eﬂ (’71,3")
)\(711) 1 1
D=| 79 11— £1(n1,m2) ‘ ."71_27»("71;7]2) _o0, (B7)
. me—Elnyne) n2—Ea(n1,12)
' 111—51(mmn) nl—fn(ﬂh"ln)
A(n2)
ﬂn-fl(ﬂlyﬂn) Wn_fn('ﬂla"?n)
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which yields

1 =
@) =— = (—1)*DiA (ny). (B8)

00 =1

Here D;; denotes the minor corresponding to the
element % (i, k=0, 1, -- - ,») of the determinant D. In
the construction of the abovementioned function A (x)
one exploits the freedom of the mean values £, (%)
within the ranges z,<#(n1,5) <z,1. By regrouping the
terms in this expression we find

Da;i—1,0M (n2i—1) — Dai, o\ (n2:)

m—£1(n1,%)

x— £1(n1,)

. 71— £1(n1,2:)

A(n24)
noi-1— E1(n1ym2i-1) n2i— £1(n1,m2:)

mi— & (nymzica)

= | A(n2s-1)

m— £1(n1,0n)

Na—E1(n1,mn)

One may then convince oneself that (3.20) for x,<x<n,
consists of a sum of strictly positive terms which in-
crease for increasing £,. In the case of odd » the un-
paired term is positive and increasing; therefore we
have proved the first inequality of (BS).

For the proof of the other inequalities we use the
fact that from this first part if follows that

N (x)/88,(n,%) >0, x<x<n. (B11)
By construction,
ON()/08,=0, i=1,::+,n (B12)

so we conclude that dN/d¢, changes sign at x=7;. Thus
M (x)/95,<0, Mm<a<n. (B13)

Consequently, A(x) is smallest for £,(y1,%)=2,-1. By
repeating this argument one proves the proposition
stated above.

To establish the connection with the original mini-
mum problem we argue as follows:

Let 7; be the points of intersection of an arbitrary
function A (x)EA with the pole term 1/(x—pu?) and

1
Am)=X()=—or, (B14)

Ni—u

i=1,2’ -0-.

Because of (B15), there cannot be more than » such
points. So let us assume in the first place that there are
just 7 intersections, w of which may be located within
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n Dy
A(z) =i-21 (— 1)"+1D007\ (3)

"z:/2 Dai_1,0\(92i—1) — D2i,0M (92:)

= , 7 even
i=1 Doo
(n=1)/2 Da;_1,0\(n2i—1) — Dai, )\ (n2:) ~ Dhno
== Z ]L ’\‘(7"")1
=1 Dyo 00
nodd. (B9)

We note that the elements in the determinants Dg; 1,0
and Ds;, are equal except for those in the (2¢—1)th
row, which leads to the identity

m— &a(11,%)
Xr— Eﬂ ("71,35)

11— En(n1,m2i-1) 11— Ea(n,m2:)

A (772i—1) A (’12&) . (B 10)
N2im1— En(91,02i-1) N2:— En(1,02:)
m—En (771771")
Nn— En(ﬂl;nn)
X1, X2
xlSﬂrsnﬂ-lS . 'S"?r+w_<_x2- (Bls)

With this adjustment of the points 7; we get

! Ts[xocwr :

w—x w—x

[X(x)+ T; wi<x<xs (B16)

and therefore

./, jz[X(x)-l-#zl_x]zde / TRI:X(x)-}-#zl_x]zdx. (B17)

The minimizing function 7(x) is thus given by an
appropriate superposition of # pole terms located at
the positions

20, 81, ***y Zn—1;

n—1
TO@) =2 W/ (x—2), (B18)
=0

where the a; are to be determined by minimizing the
integral 4, Eq. (3.2). If the assumption of exactly #
intersections is not fulfilled, the number of zeros can
only be smaller than ». In this case 7@, Eq. (B13),
gives certainly the smallest value of 4, Eq. (3.3).

A trivial extension of this proof gives

O () =3 s/ (—)" (B19)
q=1
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in case only the number but not the location of the sign
changes of p is known.

As the last step one has to calculate the constants a;
in (B18) and (B19), which can be performed in the
same manner.

We define

¢:® (%)= (x—2:)7,

$:® ()= (—x)~*,
By means of the Schmidt procedure one may then
orthogonalize the linearly independent functions ¢; in
the interval x;<x<x,.

Calling the new sets of functions ¥?, =1, 2, one
thus has

i=0,1, -, n—1
i=0,1, -+, n—1.

(B20)
(B21)

\Pk(“) =Z Ukl(v)qsl(tr)
l

o (B22)
WY )= / i@ (@ (2)doe =y .

The minimizing function 7¢*(x) is a linear combination
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of the ¥4 (z) :
n—1 z2
T (x)=2 ( / Ap (B W@ (x’)dx’)¢k(a> ()
=0\ 4
n—1 x2
P> U""(”)U‘l(“)< / )\p(x’)%(’)(xl)dx')
=0 -
X¢(x). (B23)

Substituting (B23) into (B17) one obtains
22 1 n—1 2
/ <—‘——Z ar9¢, () (x)) dx
o WE—x =0
z2 1 xy p(x’) 2
< f ( ~ / dx’) dx  (B24)
a \W—x J_ o —x

n—1 2
()= Z Uik(")U,;z(”)/ )\p(x)qsk(")(x)dx; (BZS)

i, k=0 1

with

Eqgs. (3.7) and (3.8) are just (B24) and (B25) for o=1.
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Assuming that the equal-time commutation rules for the vector and axial-vector-current octets proposed
by Gell-Mann are valid and that the divergence of the AS=0, AI'=1 axial current is a strongly convergent
operator obeying unsubtracted dispersion relations and dominated by low-frequency contributions, we
derive a sum rule for the renormalization of the neutron axial 8-decay constant G 4, by the strong interactions.
The result agrees with that previously obtained. from the assumption that the axial-current divergence is
proportional to the pion field. The results are generalized to the strangeness-changing leptonic decays in
the context of Cabibbo theory and generalized Goldberger-Treiman relations, and are used to compute the
d/f ratio for the weak baryon axial-current coupling and an independent value of Ga.

1. INTRODUCTION

ECENT calculations of the effects of the strong

interactions in renormalizing the axial-vector
coupling constant in 8 decay,”? g4=G4/Gv, give good
agreement with the experimental value. These results
were derived from the following three assumptions.

(1) The equal-time commutators of the spatial inte-
grals of the time components of the hadron currents
measured to first order in the weak and electromagnetic
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interactions, the “charges” obey the algebra of
SU(3)XSU(3) as postulated by Gell-Mann et al.?

(2) The effective Hamiltonian for leptonic decay of
the hadrons is a current-current interaction which
couples the appropriate members vector and axial-
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to the usual v,(1—1vs) current of the leptons through
the simple combination V, 44,4

(3) Partially conserved axial current (PCAC) hy-
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