
P H VS I CAL R EV I E%' VOLUME 143, NUMBER 4 MARCH 196&

Bound on the Couyling Constant from Unitarity and Analyticity*
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Unitarity of the Smatrix is used to bound the sum of the pole term and the left-hand contribution appear-
ing in a dispersion relation for a partial-wave scattering amplitude. An upper bound for the coupling constant
is then constructed for the case of an arbitrary distribution of any finite number of sign changes in the left-
hand cut discontinuity.

1. INTRODUCTION
' 'N the following we address ourselves to the question
~ - whether unitarity and simple analytic structure of
the S matrix are su6icient to restrict the coupling con-
stant g.

The simplest example that comes to mind is, of
course, the lee model. ' There a ghost state appears
provided g' exceeds a critical value dependent on a
cutoG function. Simultaneously one observes a violation
of unitarity of the S matrix.

Unitarity as a minimal requirement to bound the
coupling constant has further been used by Ruderman
and Gasiorowicz' for both potential and static 6eld
theories. CutoG functions have been introduced which,
in contradistinction to the Lee model, are not necessary
to insure convergence. Their existence is an.assumption,
strong enough to bound g.

Attempts to bound g for an unrestricted 6eld theory
were made by Geshkenbein and Joffes and Meiman. 4

The function studied by those authors is not the scat-
tering amplitude but the propagator D of a particle.
Using complex analysis a bound for g has been given in
terms of the masses of the particles at the simplest
vertex. The necessary condition in their derivation is
the absence of a zero in the propagator or, alternatively,
of a pole in the vertex function I'. Geshkenbein and
JoGe assured this condition on the conjecture that the
zero in D (or the pole in J') would make itself felt in
the scattering amplitude. This conjecture, however, has
been disproved for both nonrelativistic' and for rela-
tivistic theories. '
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We further note attempts made by Barut and
SRwadR to determine g from maximal anRlytlclty.

We discuss below the question of a bound on g using
analytic properties of the scattering amplitude for a
given partial wave, but only in the physical sheet. Ke
consider the case that the amplitude has a pole cor-
responding tothe bound state between the left- andright-
hand branch points.

Both the real part of the scattering amplitude and the
contribution from the physical cut can be bounded for
a certain range of physical values of the energy. The
resulting function, called the unitary bound in that
region, constitutes an upper bound for the pole term
and the left-hand contribution in the same energy
lllterval.

We shall demonstrate that with square integrability
of the left-hand discontinuity as sole condition, the
bound for g' is in6nite. In that case, the weight func-
tion of the left-hand cut necessarily has an in6nite
number of sign changes. A weight function having any
distribution of a finite number of sign changes leads to
a bound for g'. (Rigorous information about the number
of zeros of the left-hand discontinuity is scanty. For a
lower bound. see Ref. 8.)

Using unitarity we establish in Sec. 2 a bound for
the real part of the scattering amplitude and the con-
tribution from the physical cut. In Sec. 3 we discuss
the competition between the left-hand contribution and.
the pole describing the bound state. We further present
the actual construction of the bound on g' for the case
of any distribution of a 6nite number of sign changes of
the left-hand cut discontinuity.

2. UNITARY BOUND

We consider the simplest case of the scattering of
two spinless particles with equal mass 3f, center-of-
mass energy s'~s, and momentum q= rs (s—4Ms)'I'.

It is assumed that for a given partial wave 3, a bound
state with strength g' is located at s=m' between the
left- and right-hand branch points s~, s„.

Under general and weak conditions it has been

7 See, for instance, A. O. Barut and T. Sawada, Phys. Letters 13,
177 (1964); T. Sawada, Nuovo Cimento 38, 1889 (1965).

8 Y. S. Jin and A. Martin, Phys. Rev. 135, B1369 (1964).
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interval —~ &x&x~. We further consider the linear
transformation X= Tp, Eq. (3.2), the mapping of the
Hilbert space Z~[—~, x&] into a set of functions
T(Z~[—~, x&]) defined on the interval x&&x&xs.

Lemma:

(1) 2 (22[—~, x&])E Z~[xq, x~], where Z2[xq, x2] is
the Hilbert space of functions X(x) square inte-
grable in the interval xg&x&x2.

(2) T(22[—~, x&]) is dense in 2m[x~, xm], i.e., for

any e)0 and any XQZ&[x&,xm], there exists a
Tp, p&P2[—~, x&], with

(x—Tp)'(e.

(3) X~ Tp=0 —has no solution.

(4) There is no p+22[—~, x&] with

Tp=0.

The series (3.4) is by no means unique. The choice

(&t'—x&) . (I' —x&.qn)
p(x) =8(x—xi)—g

/n
XP

~ (—)"b(x—x&+e—k), (3.4a)
& 04k

for instance, amounts to an expansion of X„in terms of a
sum over a product of an increasing number of equi-
distant poles at x~, x~—1, . (We are indebted to
Nitzan-Nussinov for having brought to our attention
the existence of the so-called Waring series. ")

Equation (3.4) shows that an infinity of sign changes
in p is required for a solution of Eq. (3.5). We now
demonstrate that a p with any distribution of a @nile
number of sign changes leads to a Qnite bound on g'.

Let first s~, i= l, , n —1 be the ordered set of
zeros of p(x)

x)=—s )sy, ~ ~, )s„=—~.
(5) The inverse transformation T ' exists, but is un-

ounded, i.e., there is no ate constant n, such We then contend that

that

(3.6)

for all X222[x~,xm]

The proof of this lemma is given in Appendix A. We
use here the Grst and second statements of the lemma,
which furnish the proof that in particular the pole term
) „can be quadratically approximated with~arbitrary
accuracy. From (3.3), (2.18), and (2.20) we then infer
that for a p&2q[—~, xQ the upper bound of g' is
infinite.

The last two statements imply that for a solution of
X„—Tp=0 one has to look for a p outside the Hilbert
space. Indeed allowing distributions for p one finds,

*~ p(x)( — A'
~

Cx (3.7)., ~'—x „x—x'

with n&&'& given by

n&&'&= Q U&"&U &&'& X (x)(x—s&)-'dx (3 8)
i,k=0

The matrix elements U,&(') are determined by a
Schmidt procedure such that the system

k=1, , n —1 (3.9)

as solution of
t p(x)

dS .
— x' —x

(3.4)
is an orthonormal one.

Comparison of (3.7) with (2.17) shows that

(3.5)
(3.10)

One is then in a position to calculate 7 and g', Eqs.
The series (3.4) amounts to an expansion of X„(x) in (2.18) and (2.20), in a straightforward manner, lead-
terms of poles of arbitrary order, all at the point x=x&. ing to

(
g(1&)2

~
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"'
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If only the number of sign changes of p(x) for —~ (x(xq is known, but not their position, the best quadratic

' J. M. Milne-Thomson, C'ulculgs of Finite Differences (The Macmillan Company, London, 1933),p. 293.



approximation is achieved by a linear combina, tion of poles up to order e—I, all located at the left-hand branch
poInt xI (=—s0).

The upper bound (3.11) becomes in this case

g(2)
&min max N(x, P;)

y& ~y&,'a(ag

1/2

[(xI—p')(x2 —p')]-I—(x2—xI) ' Q U&II2' X„,(3.12)
(x—SD)'

where now U~~('& is determined by

n—'i

g~(2&=Q @~I(2)
(x—So)'

(PpoI f ~2') =4p, k=1, ~ . , e—1.
(3.13)

*' ~(x'), ~—5(x)
Z(x) = dx'= X(~)„x-x' x-g(x)

(3.14)

with e(x) some point between (—~, xI) and g chosen
to be larger than x„.One sees that

We shall prove the contention (3.'/) here only for the
case a= I, i.e., the case of a p with definite sign for—~ &x&x~. For the case N&1 see Appendix B.

By use of the mean value theorem one writes

discontinuity. The parameters, on the other hand, are
a subtraction point and arbitrary energy intervals,
which only have to satisfy certain inequalities (2.6).
These parameters can be adjusted in order to obtain
the sharpest bound within the framework of the tech-
nique used.

The case of an infinite number of sign changes has
been discussed, but no finite bound on g' could be
established.
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APPENDIX A

$$
x(x) & x(rl) for x&g

(3.15)

Equation (3.15) establishes an inequality of the form
(3.7) for @=1.One then determines n0 by the choice
of q, which minimizes

Proof of the lemma in Sec. 3:Ke prove the lemma
point by point:

(1). By choosing correctly weighted Laguerre poly-
nomials r.(x)=l.„(xI—x)0.(xI—x)'" as a basis of the
Hilbert space Z~[—~, xI] statement (1) is obvious,
since

Tr„&Z&[xI,x2]
for all v.

(2). We have only to prove that there does not
exist an element ~6&2[»,»],~+0, wh~~h Is ort"ogonal
to T(g,[—m, xI]). If for any p(x) Ez2[—~, xI])

Before concluding this section we wish to make the
following remark. Since there exists a finite bound on
g' for a finite number of sign changes of p, the function
which approximates X„quadratically must necessarily
possess an infinite number of sign changes. Of course,
it is still possible that restrictions on the distribution
of an infinite number of sign changes of p will lead to a
finite bound for g'.

4. CONCLUSION
ol

0= X(x)
*' p{x')

ds dS

* X(x)
deals,

&1

X(x)—=0.

l~(x)/(x' —x)Cx= 0 (A3)

Starting from a once subtracted partial-wave dis-
persion relation (2.2) we have calculated under certain
conditions an upper bound for g', Eqs. (3.11), (3.12).
The bound depends on details of the system and a
limited number of parameters. The details of the system
concern the position of a maximum in the imaginary
part of the scattering amplitude and the number of
slgI1 cllaIlges (assumed to be fInlte) of tile left-llaIld cllt

(3). Since the Hilbert integral equation

has a unique solution, which is P(x)=8(p' —x), there
cannot be another solution, with p(x)—=0 for x)xI,
which would solve the equation Tp=
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value,

then since
p~ =Sllllh jh, (AS)

(4) This statement f oxbow

gous to that for (3)
{4) The unhounriedness

t to the following s a e
0 with the propertydoes not exist a 8& wi

llpll»ll pll

. the family of functionsConsidering, e.g.,

S„&&„(ter,h) &Z„1.

of ointswe rove for a given sequence o p
'

As a 6rst step we prove

) ~ ~ g„' of a function X(h) with the) ~ ~ &) (Ii„) the existence o a unc
'

properties:

(2) Ifh. ={5,(h)) istheseto a un

(-)dx' with p (s) =0, I = 1, ~ ~ ~,X(h)—
xg

-ch'
l
ch&8 dx, (A6)

) (~,)=) (~,),
limb„=0, which proves (S).

APPEIIX 8
a1it,37) one representsIn order to prove the inequa l y

X(h) as follows:

*"-' p(*')
dS

"p(*')
dx'= Q

statement holds for any $, h)gA:then the following sta erne

$, (x)& R(x) for xr(x&r)I,
(IlS)&K(h) for q«h(g&,)X(h) fOr gm(h(r)3.

0
0

are su nen t to eliminate the qThe I values X(ri,)
{Ii1) unknown constants

with

p(h)W0 in s.(h(s 1.
p (h')/(h' —I)1)Ch'

Using t e mea-h ean-value theorem we get

"-' P(X) I)1—h
dS)I(h) =g

*"-' p(h'), nr 5.(~»h)—
4$

x'—gr x—g, (rn, h)

rbitrary reference poinint outside thewhere Iir) h1 is an ar i ra y m
integration interval and $„{ter,h en

p(x3 X(x3

)t(x)—P

*"-' p(*')
=0,g(I)I)—Q Ch'

v=1

*"-' p(h'), nr —5 (~I n~)
)t(n2) —Z

v=1

(*') ," ~,(.;-)g'-) (~.)-Z
v=1

x ression (3.13) for ) {x).which appear in the expression . x .
*-' P(*') ~I 4.(~I*)—

x- P„(ter,x)

is s stem of I+1 linear equationsThe solution )I.(x) of this system o I
is given by

X~ p,
~ Xt qt

I g

Xg

J e - a
' ' it (x) and left-hand contribution

di h' hn {)htude dlustrat 1nX{x) to scattering p

shall have the values X gi,

nr —5-(nr, n2)

~.(. ,v.)

nr —4(nr, ~-)

~--~-(. ;-)

~I—h(~r, n2)
X(rir)

vr —6(sr,nr)

r.(~,~-)-
) (~.)—

~.-~ (~,~-)
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which yields

1 n

X (x) = Z (—1)'+'D'oX(g;) .
Bop t~l

(88)

Do
X(x)=P(—1)'+- X(~)

i 1 Boo

Ni2 D2i—1,Qadi('g2i —1) D2i, 0li(f21)
e even

Here D;I, denotes the minor corresponding to the

element ik (2, &=0, 1, ~,n) of the determinant D. In
the construction of the abovementioned function $, (x)
one exploits the freedom of the mean values („(gl,x)
within the ranges s„&$(ql,s) &s„ l. By regrouping the

terms in this expression we 6nd

i 1 Boo

D2i—1,Qadi ('g2i—1) D2i, lO(i'g2i) D00
= Z

'' ' ' + l(..),
i=1 BooBoo

n odd. (89)

Ne note that the elements in the determinants D2i 1,0

and D2;,0 are equal except for those in the (2i—1)th
row, which leads to the identity

D2i—1,0l~('g2i —1) D2iP(rj, 2i)

x—gl(gl, x)

'gl $1('glP/2' —1) 'gl $1(gl 'g2')
l (~.'-) -l (~;)

'gli —1 $1(rilgj2i 1) — g2i t'l ('gl)g2i)

&(~,~-)-
'V~ kl ('91Pln)

gl —$ (ltl, X)

x—$ (gi,x)

'Ql $n('glP/ 1—21) 'll $e('4'921)
X(212, 1)

—ll(g2;) . (810)
'g2i—1 $0(glig2i —1) rj2i fn(gP/21)

~.(. ,~.)
n- —k.(nl,e.)

One may then convince oneself that (3.20) for x„&x&p,
consists of a sum of strictly positive terms which in-
crease for increasing $„. In the case of odd n the un-

paired term is positive and increasing; therefore we
have proved the first inequality of (85).

For the proof of the other inequalities we use the
fact that from this 6rst part if follows that

X1) X2 ~

~ &g,+„&X2. (815)

1
R(x)+ & X(x)+

p x - p x-
xi &x&x2 (816)

With this adjustment of the points pi we get

W. (x)/Bt„(g,x))0, xi& x&2ll.

By construction,

W. (&,)/a~. =o, 2=1, ",n

and therefore
~B&S~

(812)

—2

dx& K(x)+
p,
'—x

1 -2
dx. (817)

so we conclude that N, /Bp„changes sign at x=pl. Thus

H. (x)/8&, &0, pl& x&g2.

Consequently, X(x) is smallest for $„(pl,x)=s, l. By
repeating this argument one proves the proposition
stated above.

To establish the connection with the original mini-
mum problem we argue as follows:

Let pi be the points of intersection of an arbitrary
function X(x)QA with the pole term 1/(x —p2) and

Spq 81) ' ' '~ S~

r&'&(x) =g u &'&/(x —s;),

where the 0.; are to be determined by minimizing the
integral 3, Eq. (3.2). If the assumption of exactly n
intersections is not ful6lled, the number of zeros can
only be smaller than n. In this case ro&, Eq. (81g),
gives certainly the smallest value of A, Eq. (3.3).

A trivial extension of this proof gives

Z(&,)=X(~,)=, 2=1, 2, ~ ~ ~ .
gi—p,

(814)

The minimizing function r(x) is thus given by an

(813) appropriate superposition of n pole terms located at
the positions

Because of (815), there cannot be more than n such
points. So let us assume in the irst place that there are
just rs intersections, ~ of which may be located within

r&2&(x) =Q aii2&/(x —xi)'
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in case only the number but not the location of the sign
changes of p is known.

As the last step one has to calculate the constants 0,,
in (818) and (819), which can be performed in the
same manner.

We de6ne

$;&')(x)= (z—s,) ', i =0, 1, , rt —1 (820)

@;&»(*)=(*—~,)-'-', '=0, 1, "., ~—1. (821)

By means of the Schmidt procedure one may then
orthogorialize the linearly independent functions &t); in
the interval xg&x&x2.

Calling the new sets of functions Ps&'), o=1, 2, one
thus has

lt&«) —Q U t&r)yt(r)

of the ps& )(x):

"(~)=z &.(~')r "'(*')«')«"(*)
k=0

n 1 CQ

x x oa~ &o;p' x,(x')ea~'(x')«')
Z1

Substituting (823) into (817) one obtains

2

—Q &rt&'&((()t&') (x) dk
p,

2—g

1 *& p(z')
dx' dx (824)

P, X &OS S

(6&') fs &'))= lie&') (*)4a "(*)d*=hss .
with

(822) n—1 4 $2

&xt& ) = Q U,e&'U;t&') X„(x)()4&'(x)dx; (825)
&t, k=o

The minimizing function r&'(x) is a linear combination Eqs. (3.7) and (3.8) are just (824) and (825) for o =1.
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Unsubtracted. Dispersion Relations and the Renoc~ialization of the Weak
Axial-Vector Coupling Constants*

Wll, EXAM I. WErasEROER

Stator(t Ieeear Aeeeterator Cereter, Stamford UNeeersety, Stamford, Calefonw'a

(Received 20 October 1965)

Assuming that the equal-time commutation rules for the vector and. axial-vector-current octets proposed
by Gell-Mann are valid and that the divergence of the 6$=0, AI= 1 axial current is a strongly convergent
operator obeying unsubtracted dispersion, relations and dominated by lour-frequency contributions, vre

derive a sum rule for the renormalization of the neutron axial p-decay constant Gg, by the strong interactions.
The result agrees with that previously obtained, from the assumption that the axial-current divergence is
proportional to the pion Geld. The results are generalized to the, strangeness-changing leptonic decays in
the context of Cabibbo theory and generalized Goldberger-Treiman relations, and are used to compute the
&t/f ratio for the weak baryon axial-current coupling and an independent value of Ge.

L INTRODUCTION

ECENT calculations of the eGects of the strong
interactions in renormalizing the axial-vector

coupling constant in p decay, ' ' gA=G~/Gv, give good
agreement with the experimental value. These results
were derived from the following three assumptions.

(1) The equal-tirue commutators of the spatial inte-

grals of the time components of the hadron currents

measured to 6rst order in the weak and electromagnetic

~ Work supported by the U. S. Atomic Energy Commission.
~ S. L. Adler, Phys. Rev. Letters 14, 1051 (1965); Phys. Rev.

140, 8736 (4965).' W. I. Weisberger, Phys. Rev. Letters 14, 1047 (1965}.

interactions, the "charges" obey the algebra of
SU(3) &(SU(3) as postulated by Gell-Mann et &tl.'

(2) The effective Hamiltonian for leptonic decay of
the hadrons is a current-current interaction which

couples the appropriate members vector and axial-
vector current octets of the strongly interacting particles
to the usual y„(1—ys) current of the leptons through
the simple combination V„&A„.4

(3) Partially conserved axial current (PCAC) hy-

' M. Gell-Mann, Phys. Rev. 125, 166'I (1962);Phymcs 1, (1964l.
R. P. Feynman, M. Gell-Mann, and G. Zweig, Phys. Rev. Letters
13, 678 (1964).

4 The relation of the algebraic relations to the speciGcation of a
universal weak coupling of leptons and hadrons has been discussed
by M. Gell-Mann and Y. Ne'eman, Ann. Phys. (¹Y.) M, 360
(1964).


