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The assumption of strict spin independence of strong interactions between elementary particles forbids
all three-meson and meson-baryon-baryon couplings, such as pm'-, NNw, and N*N~. It is shown that these
catastrophies may be avoided, even in the nonrelativistic limit, by adopting a modified definition of spin
independence, i.e., 8'-spin independence. A nonrelativistic definition of $Y spin is obtained which requires
only a trivial change to yield the relativistic description. The consequences of the assumption of 8'-spin
independence are explored.

IN'TROD UCTION

HE assumption of strict spin independence of the
strong interactions between elementary particles'

forbids the strongest known couplings such as pm. m and
ft'furr. Some of the relativistic extensions of SU(6) and
spin independence' which have been proposed attribute
this di%culty to the nonrelativistic nature of the static
SU(6) theory. Others require some form of symmetry
breaking' to allow these decays. In this work we adopt
a different point of view. We wish to find a higher sym-
metry in which the strongest couplings known in strong
interactions are already present in the nonrelativistic
version of the theory, and are not introduced by
"relativistic corrections" or "symmetry breakers. "

We first consider the implications of exact spin inde-
pendence and show that not only the pmr and E*Sx'
couplings but, in fact, all Yukawa strong couplings are
forbidden. ' We then show that these catastrophies are
avoided, even in the nonrelatieistic limit, by a modified
definition of spin independence, and that all the good
SU(6) results are retained. The assumption of this
modi6ed spin independence of collinear transition ampli-
tudes leads to results in agreement with experiment
and to interesting new predictions, and does not forbid
any processes known experimentally to be strong. The
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nonrelativistic definition of 8' spin requires only
a trivial modification to obtain a fully relativistic
description.

The modified spin can be combined with SU(3) to
construct a nonrelativistic SU(6) symmetry which is
different from the static SU(6) defined with ordinary
spin. ' Once this proper nonrelativistic SU(6) symmetry
is de6ned, no difFiculty arises in the relativistic general-
ization. The relativistic result is just the S" spin and
SU(6)s subgroups of U(6,6) and U(6))&U(6).s-s

In our treatment we shall make extensive use of
the combined rotation-space-inversion transformation
which has been used in various contexts~ and which is
described in detail by Bohr. This transformation which
we call R is just a refIection in a plane, i.e., has the
effect of an ordinary mirror. However, since it is not
immediately obvious what a mirror does to a spin,
and to phases of wave functions, we specify the trans-
formation as follows: R is a combination of a space in-
version and a 180' rotation about an axles perpendicular
to the plane. This transformation is particularly useful
for states in which all momenta lie in the plane. For
such states the R transformation leaves the momenta
invariant and transforms ately the intrinsic spirts uttd

ptsrities of the particles. It is thus just a 180' rotation
of all spins about an axis perpendicular to the plane
combined with an "intrinsic" space inversion.

For convenience, let us choose the case where all
momenta are in the y2' plane and denote by E, the
combined transformation of space inversion and a 180'
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rotation about the x axis. Then

=peso J~=p. eix8~ (!)
where J is the total-angular-momentum operator, 8 the
space-inversion operator, S the total-spin operator and
P; ~ the "intrinsic-space-inversion" operator. The nota-
tion 2@8 means that the operators A, and 8 are
equal only when acting on states in which all rnomenta
are ig. the ys plane.

THE DIFFICULTIES OF SPIN INDEPENDENCE

Consider the case where strong interactions .are
assumed to be "spin-independent", i.e., invariant under
rotations of all the spins of all the particles in a given
state without any change in the spatial degrees of
freedom. Consider a state in which all particles have
momenta in the ys plane. If we assume that strong inter-
actions are invariant under both ordinary rotations and
space inversion, then they are invariant under the R
transformation. The interactions are thus invariant
under the combination of the E, transformation
followed by a rotation of the spins about the x axis

by —180:

The E., transformation leaves the momenta invariant
and the additional spin rotation e ' 8 just cancels the
e8ect of the spin rotation in the R transformation.
Thus, the net eBect of the combination of these trans-
formations is just space inversion- in the intrinsic space.
The transformation (2) therefore simply defines the
total intrinsic parity of the state, which is the product
of the intrinsic parities of all the particles.

Invariance under the transforniation (2) means that
intrinsic parity is conserved. Thus the assumption that
strong interactions are invariant under rotations of the
spin variables alone, combined with the usual assump-

tions of invariance under rotation and space inversion,
leads to a selection rule forbiddzng a chango in theinternal

parity of a state in any trarisiiion where all znoznenia are
constrained to a p/ave All odd-.parity particles, including

pseudoscalar and vector mesons, can only be created in

pairs in any process which is coplanar in some Lorentz
frame. This selection rule forbids all baryon-baryon='

meson and three-meson couplings. In particular it for-

bids the nucleori-nucleon-pion vertex as mell as the pox
and Ã*lVm couplings.

The assgnzption of spin independence therefore does

riot lead io a good description of strong intez'actions ie the

noerclati6stic i&pit. Instead, it forbids all couplings

which are generally. assumed to dominate nonrelati-

vistic strong-interaction processes. For example, nu-

cleon-nucleon scattering by one-meson exchange with

Yukawa. vertices is forbidden by spin independence,
even:at low momenta where one should expect a' non-

relativistic approximation to be valid. The conventional

treatment of the nucleon electromagnetic form factors

via--intermediate vector mesons is also forbidden by
'spin independence for arbitrarily snsall momentum trarls-

fcrs where one would again expect a nonrelativistic
approximation to be valid.

A MODIFIED SPIN INDEPENDENCE)
W-SPIN INDEPENDENCE

Let us now attempt to modify the concept of spin
independence in order to obtain a higher symmetry
which gives the desirable SU(6) results but which

avoids the undesirable selection rule (2). We shall be
gui'ded by the following two interesting features of the
previous analysis:

1. The law of conservation of intrinsic parity (2) does
not appear as an absolute conservation law in a spin-
independent theory. Intrinsic parity is conserved only
in processes which take place in a plane. It is not con-
served in processes involving large numbers of particles,
e.g. , a 6ve-point function. The notion of a quantity
which is conserved only in processes involving small

numbers of particles is a fruitful one. The empirical dis-

covery of such "partially conserved" quantities may
lead to an understanding of more complicated dy-
namical properties of strong interactions which reduce
to a simple conservation law only in certain specific
cases.

The successful predictions of SU(6) all involve proc-
esses involving small numbers of particles: properties
of one-particle states, three-point vertex functions, and
forward-scattering amplitudes. Each of these processes
is "collinear"; it can be described in some Lorentz frame
in which all momenta are in the s direction. We shall

therefore restrict our attention to collinear processes
and consider only the invariance properties of the ampli-
tudes for such processes.

2. The undesirable selection rule (2) results from the
combination of a new higher symmetry, spin independ-

ence, with the E., symmetry already present. This com-

bination of the SU(2) spin group with the group of
transformations already present leads to a larger group
than SU(2), under which the three-point vertex func-

tion is required to be invariant. If this group larger than

the SU(2) is combined with the conventional SU(3), a
group /arger thun SU(6') is obtained. It is this larger

group which causes the trouble. There is "too inuch

symmetry" which leads to undesjred selection rules in

addition to the desirable features of SU(6) symmetry.

From the consideration of these points we reach the
following co'nclusions. We wish to define a higher sym-

metry which. need apply only to collinear processes. We
want these processes to be invar'iant under some SU(6)
group in order to obtain the good SU(6) results. How-

ever, we. do not want too much syinmetry. The mini-

mum symmetry group which contains SU(6) is of

course SU(6} itself. We can obtain this minimum

symmetry only if the SU(6) group is defined in such a
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g = p. eix'ss; —'eA'pi~ts~-
x ys int (3c)

From the exponential form (3c) of R„we see that
it can be generated by the operator: P;,&S-,. %e can now

way as to include all other intrinsic symmetry operations
snch as the operation (I) which are already present from
other considerations. In group-theoretical language we
can say that we wish to define an SU(6) group which
already contains the subgroup of the Lorentz group
which leaves invariant all momenta in the z direction.
Since SU(3) is extraneous to all these considerations, the
problem is one of finding an alternative SU(2) group to
replace the spin, where the new group should include
transformations like (1).

Let us now specify precisely those invariance proper-
ties of a collinear transition amplitude which follow
only from invariance under rotations and reQections.
We consider only transformations in the intrinsic vari-
ables, spin and parity, and choose one Lorentz frame so
that all momenta are in the z direction. Since there is no
orbital angular momentum in the z direction, J,=S„
and angular-momentum conservation requires invari-
ance under the group of continuous spin rotations about
the z axis. The transition amplitude- is also invariant
under the transformation P te'~s, by Eq. (1). For a
collinear process in the z direction, all momenta are also
in the xs plane and the transformation (1) can also be
defined about the y axis. This gives P;„&ei 8& as a sym-
metry operation. We thus 6nd that the collinear transi-
tion amplitude must be invariant under a group which
includes rotations about the z axis and reQections about
any plane containing the z axis.

We now wish to find an SU(2) group, or a set of
"spin" transformations which include this rotation-
reQection group. Clearly, 5, must be a generator of
this group. We now need to 6nd two more generators
which must satisfy angular-momentum- commutation
rules with S, and which must generate the finite trans-
formations Pi te'~s~ and Pintei~s„

For simplicity, let us restrict ourselves to systems of
spin-'-, particles. This describes all known particles, if
the quark model is assumed for higher spin particles.
However, once we define an SU(6) group and obtain
a consistent set of transformation properties for all
particles with the use of the quark model, we do not
need to assume the existence of quarks. They are simply
a useful mathematical device for finding the right
transformationpropertiesof the observed particle states.

For a spin--,' particle, we can write S=s/2, where
0-„ fr„, and 0-, are the usual Pauli matrices. Then 8 can
be written in a more convenient form with the aid of the
following identities:

g —p. eire p. eA &g/2

=P;„tLcos(s/2)+io, sin(s/2)g=iP;, to,. (3a)
ei&&inter —e i&&into'a /2

= cos(vr/2)+iP;„to, sin(s/2) =iP; io, (3b).
Thus

define three operators which have the desired properties:

8',=S„
W,=P; iS

W„=P;,oS„.
(4b)

These operators satisfy angular-momentum commu-
tation rules. Furthermore, W-spin transformation. s in-
clude the transformations E, and E„'as 180' W-spin
rotations about, the x and y axes:

pic Tv~ g
eire'y g

(Sa)

(Sb)

THE W-SPIN CLASSIFICATION OF PARTICLES

The W-spin SU(2) group, Eq. (4), is defined for
systems of spin-~~ particles, and has been constructed
so that W'-spin invariance of collinear processes does
not lead to the undesirable selection rule (2). We now
wish to examine the consequences of 8'-spin invariance
to see whether this is a better nonrelativistic approxima-
tion for strong interactions than ordinary spin inde-
pendence. The 6rst step is to de6ne the 8"-spin trans-
formation properties of mesons and baryons in such a
way that the W-spin group still contains the whole. rota-
tion-reQection group required by ordinary rotation-
reQection invariance. One way to de6ne these trans-
formation properties is to use a mathematical model in
which mesons and baryons are composed of spin- —',

quarks and antiquarks in relative S states with zero
relative momentum. This is just a mathematical device
and does not assume the existence of quarks. From the
definition (4) we see that W spin divers from ordinary
spin in haoing the component normal to the momentum
mstltiplied by the intrinsic parity of the particle. Thus,
the'8' spin de6ned for the antiparticle has a negative
sign in the definition of S', and W„because of the odd
intrinsic parity. Quarks, which are defined to' have
positive intrinsic parity, have their 8' spin equal &g

We see immediately- that the assumption of 8'-spin
invariance does not lead to the bad selection rule (2).
If S, is r'eplaced by W', on the left-hand side of (2), the
right-hand side is multiplied by an additional factor
P; t and the resulting transformation is just the identity
and gives no new selection rule.

(6)

From a group-theoretical point of view we can say
that the rotation-reQection subgroup of the Lorentz
group is isomorphic to a group in which the reQections
are replaced by 180' rotations perpendicular to the
z-axis. It is clearly possible to embed such a group
which contains only some of the rotations in a three-
dimensional space in a group isomorphic to the full
three-dimensional rotation group. The operators (4)
represent a specific construction of such a group.
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their ordinary spin at rest. The antiquarks which are
de6ned to have negative intrinsic parity have their g
and y components of 5' spin opposite to those of their
ordinary spin at rest. The directions of a W-spin rota-
tion about the s or y axis are thus opposite for quark
and antiquark. The 5' spin of a system containing
quarks and antiquarks is quite diBerent from the total
ordinary spin of the system. The s component of the
5' spin is just the s component of the total spin; hovr-

ever, the x and y components of the W' spin are the
differences betvreen the total quark spin and the total
antiquark spin.

Let us novr examine the classi6cation of the system
of a quark and an antiquark at rest, according to 5'
spin and ordinary spin. In both cases vre have two spins
of ~ which give rise to four states, a triplet and a singlet.
For convenience, we vrill denote the quark and anti-
quark states vrith spin up and spin dovrn relative to the
positive s-direction by

e~, Qt, Ql, d Ql

Since 8',=S, for thc system, the states having the
eigenvalues &1 for both S, and W, must correspond to
the triplet spin state in both cases.

IelQi&, S.=W.=+1; S=W=1 Pa)

Ieigl&, S.=W.= —1; S=W=1. (n)

The states having the zero eigenvalue of S,=S', can
be classi6ed as triplet or singlet according to S or 8'
spin by noting that the triplet state is obtained from

the state Pa) by the application of the corresponding
lovrering operator. %e see immediately that the S- and
S'-spin classi6cations are dÃerent because the lovrering

operators for S and TV spin have a different phase when

acting on the antiquark. In particular, the W-spin
lovrering operator when acting on a system of quarks
and antiquarks is the deference betvreen the S-spin
quark lowering operator and the S-spin antiquark
lowering operator.

where the superscripts Q and Q denote the part of the
particular operator acting only on quarks or on anti-

quarks. The S-spin triplet state is obtained by operating
on the state (7a) with the 5-spin lowering operator 5,
5-IQTQT&= 1(5-Ql)Qt&+ I QT(5-Qt)&;

S.= W, =O, 5=1. (9a)

Vfc have explicitly exhibited the tvro terms resulting

from the operation of S on the quark and on the anti-

quark vrithout actually carrying through the operation
In OI'de1' to avoid the necessity of choosing a phase coIl-

vention vrhich is irrelevant for our purposes. The
analogous 8"-spin triplet state is obtained by operating
with the W-spin lowering operator (8). Because of the

negative sign in the antiquark term vre obtain the

THE CONSEQUENCES OP W-SPIN INVARIANCE

Let us now examine the assumption that all collinear
vertex functions are invariant under W spin, vrith the
mesons and baryons classi6ed as indicated by the quark
model. This assumption has been shown to allow the
p and F*decays, 4 and to lead to no selection rules vrhich
forbid processes known experimentally to bc strong. 4 9

%e shall summarize these results here.
The p and X* decays are allo@red by 8' spin, as is

evident from the following relations:

N +

W.=-', R.=-*, 5',=0.
The follovring meson couplings have been shovrn to

be forbidden by W' spin4':

+ f' (forbidden)
W'=1 8'= j.
H.=o B,=O,

-+ Vs Vs (forbidden)
W'=0 TV=0
W=O 8'=0,

Te -+ P + Vs (forbidden)

+=0, 2 m =~ r=O
8',=0 8',=0 N', =0,

(11a)

(11c)

~ H. Hsrsri sad H. J.Lipirin, Phys. Rev. 140, 3161'I (1965).

opposite phase from that of Eq. (9a)

w-Iel@&= l(s el)Ql&- Ie&(s Ql&;
Ss= Ws=O, W=1. (9b)

Th«wo states (9a) and (9b) are obviously orthogonal
to one another. Thus, the W-spin triplet state, (9b) is
the S-spin singlet state and vice versa. Let us denote
the three states of the S-spin triplet by (V+r, Vs and
V r) and the 5-spin singlet state by P. The subscripts
denote the eigenvalue of S, and the letters V and E
denote vector and pseudoscalar for the case vrhere the
vector and pseudoscalar mesons are considered to be
made of a quark and an antiquark in a relative S
state. The TV-spin triplet then consists of the state
(V+r,P, V r) and the W-spin singlet is the state Ve.
The S'-spin classi6cation of the states E and Vo are just
interchanged from the corresponding S-spin classi6ca-
tion. This has been caHed "8'-SQip. "

The classi6cation of the baryons is trivial, since these
are composed only of quarks and no antiquarks in the
quark model. The F' spin of a baryon is therefore the
same as its ordinary spin.
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8* —+ 8 +Vgi
W=-,' W=-,' W=1, (12a)

+ Vo

W=-', 5"=-,' W=O. (12b)

We see immediately that the coupling of the longi-
tudinally polarized Ve is forbidden (12b). All the other
couplings are given by (12a).These all involve members
of the same W-spin multiplets 8*(W=ss), 8(W= —',)
and V~i(W= 1), and are therefore all proportional to
the same reduced matrix element with proportionality
factors which are just Clebsch-Gordan coeKcients. Thus,
there is only one coupling for the B*BVvertex allowed

by W-spin invariance. This turns out to be the M1
coupling. This prediction, which also applies to the
(8*By) vertex is in good agreement with experiment.

An SU(6) group can be constructed by combining
SU(3) with W spin. The assumption of invariance of
collinear three point vertex functions' under SU(6)s
leads to a number of predictions for various processes
which are in generally good agreement with experiment.

THE RELATIVISTIC FORMULATION
OF W' SPIN

Now that we have deined a spin whose conservation
in the nonrelativistic limit leads to no serious disagree-
ment with experiment, we can consider its relativistic
extension. However, it is immediately evident that the
definition (4) is already relativistic and needs no ex-
tension. If the spin- —', particles are described by Dirac
spinors, the operator P is just the intrinsic parity in the
rest frame. We can therefore express the W-spin

where T denotes a 2+ meson constructed from two
quarts and two antiquarks. The W spin of the To state
is determined by the same method used above for
I' and V.

These selection rules lead to no new predictions,
because they are also obtained independently from
angular momentum and parity considerations. The
connection between the two derivations becomes evident
when one considers the R transformation. All the mesons
in the relations (11) are eigenstates of R„P is odd, Vs
and Ts are even. Thus, all the couplings (11) are for-
bidden by E.. We now see that these couplings are
forbidden by the assumption either of W-spin in-
variance or by ordinary rotation-reflection invariance,
since either assumption includes invariance under R.

Interesting nontrivial predictions have been obtained
for the B*BVvertex, ' ' where B*and B denote spin-2
decuplet and spin--,'octet baryons, respectively. If onyl
ordinary rotation-reflection invariance is assumed, there
are three different independent amplitudes for this
vertex. They can be labeled either as helicity ampli-
tudes or, using the analogy between the vector meson
and the photon, as E2, M1, and L2. Here L2 denotes
the longitudinally polarized vector-meson state.

operators in terms of the Dirac algebra

W, =o,/2,

W, =P~./2,

lV„=Pa „/2.

(13a)

(13b)

(13c)

These operators are invariant under Lorentz trans-
formations in the z direction; therefore, the W-spin
classification for a particle with arbitrary momentum
in the z direction is the same as the classi6cation at
rest. This is all that is needed for a relativistic descrip-
tion of collinear processes.

The operators (13)have been well known in the treat-
ment of electron-polarization phenomena. ' For studies
of scattering of relativistic electrons and positrons the
relative phase of the W-spin operators deined for elec-
trons and positrons has no physical signidcance, and
W-S Hip does not appear. One might consider the use
of W spin for bound states consisting of both positrons
and electrons; however, this does not seem to have
been done.

The operators (13) have also been combined with
SU(3), without the W-S flip, for the consideration of the
nucleon electromagnetic form factors. e Here the W-5
lip is irrelevant as the antibaryons and zero helicity
meson states do not appear. The W-8 Qip appears
naturally in derivations of W spin as a subgroup in the
U(6,6) theory' and the positive-parity nonchiral
U(6) )& U(6) symmetry. '

'e M. E. Rose, Relativistic Electrort Theory Qohn Wiley R Sons,
Inc. , New Vork, 1961),p. 72.

W SPIN AND THE CLASSIFICATION OF
PARTICLES AT REST

The assumption that collinear vertex functions are
invariant under W spin or under the group SU(6)tr
implies the existence of a larger group which is used
for classifying the states of particles at rest. This can
be seen from the simple example of the W-spin triplet
containing the states (V+i,P, V i). Except for the
singular case of zero-mass particles, the existence of
the vector-meson states V+& and V & requires that the
third polarization state V0 must also exist. Thus, the
existence of this particular W-spin triplet requires an
additional W-spin singlet to form a "supermultiplet"
containing two W-spin multiplets, a triplet and singlet.

The structure of the larger supermultiplets is easily
obtained as follows for an arbitrary W-spin multiplet:
Let us consider the set of particle states corresponding
to a given W-spin multiplet in the rest frame of the
particle. From ordinary rotational invariance it follows
that an ordinary spatial rotation must transform any
particle state into another particle state having the
same mass. A rotation of a one-particle state in its
rest frame is simply a spin rotation. If we combine
ordinary spin rotations together with the W-spin rota-
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tions (4) we obtain a larger Lie group than W spin for
the classihcation of particles at rest. This is the group
having thesix generators (S, Sy Sz Pj,gS P' g„P' tS ).
This is just the group SU(2) XSU(2), the direct prod-
uct of spin rotations for all positive parity particles
and spin rotations from all negative-parity particles.
In a quark model, this is the direct product of the spin
rotations for all quarks and the spin rotations for all
antiquarks.

The addition of the SU(3) degrees of freedom to the
above analysis is trivial and leads to the group SU(6)
XSU(6). This is the direct product of an SU(6) group
for all positive-parity particles and one for all negative-
parity particles. This group contains SU(6)s as a
subgroup. One can clearly add the operators I'; t, and
the identity to the generators to obtain the groups
U (2)X U(2) and U (6)X U(6).

Note that for SU(6) w multiplets which contain only
quarks or only antiquarks, like the baryons and the
antibaryons, a given U(6) X U(6) supermultiplet con-
tains only a single SU(6) s multiplet. The representa-
tion of U(6)X U(6) is always a singlet in one of the
U(6) groups, either the quark or the antiquark. On the
other hand, for SU(6)~ multiplets obtained from states
containing both quarks and antiquarks, there is more
than one SU(6)z multiplet in the corresponding
multiplet of U(6) X U(6). The obvious example is that
of the mesons which must be classified in the (6,6)
representation of U(6) X U(6) which contains 36
states, corresponding to a BS and a singlet of SU(6) s .

The larger group U(6)XU(6) is needed for classi-

fying states of particles at rest, but cannot be used as
an invariance group for vertex functions. On the one

hand. , it contains the group of ordinary spin rotations
and therefore automatically leads to all the contradic-
tions with experiment found in any theory which

assumes spin independence. On the other hand, the
relativistic generalization Lanalogous to (13)j, of the

group U(6)XU(6) is not invariant under Lorentz
transformations in any direction. The subgroup of

U(6)X U(6) invariant under Loren. tz transforrnations

only in the z direction is just the group SU(6) s .
So far we have considered only the transformation

properties of states of physical particles. It is also of

interest to examine the classiGcation of Geld operators

and virtual particles oG the mass shell. For applications

to electromagnetic and weak interactions it is of interest

to examine the classiGcation of the currents which are

coupled in these interactions. These properties are not
automatically determined by the transformation proper-

ties at rest of the physical particles and depend on the

details of the particular theory. The relevant properties

are the Geld equations in the case of the Geld theory,

and the commutation relations of the currents in a
theory which begins with the algebra of currents.

In a Dirac quark field theory the U(6)XU(6) and
SU(6) s transformation properties of the field operators
are obtained as follows: The Geld operators which
create particles or antiparticles at rest are classiGed
into multiplets which are exactly the same as the corre-
sponding multiplets used to classify the state of these
particles at rest. The Geld operators which annihilate
these particles at rest are then classified in the corre-
sponding conjugate representation. The classiGcation
for Geld operators which create or annihilate a particle
having a Gnite momentum in the s direction is the same
in SU(6) z as for the operator of the corresponding state
at rest. This is not true for U(6) X U(6). This procedure
specifies completely the SU(6) s classification for quark
Geld operators which create or annihilate particles or
antiparticles moving in the s direction. The transforma-
tion properties for operators creating and annihilating
other particles are obtained by suitably combining
the quark operators. The Fourier components of current
operators with momentum transfer in the 2 direction
are bilinear products of quark creation and annihilation
operators and can be classified accordingly, in SU(6) z .

W SPIN WITHOUT A QUARK MODEL

The W spin and SU(6)~ classification of particles
has been constructed with the aid of a quark model.
Let us now consider other possible classihcations. We
assume that the classiGcations of particles at rest is
given by the group U(6)XU(6). Since W spin is a
subgroup of U(6) X U(6), the W-spin classification is
uniquely determined. The only remaining degree of
freedom not speciGed by these considerations is the
intrinsic parity of the particles. In a quark model the
parity of any U(6) X U(6) multiplet is uniquely deter-
mined. We can now consider the possible existence of
U(6)X U(6) multiplets having the opposite parity to
that deGned by the quark model. For states in such
"anomalous parity multiplets, "Eq. (6) is replaced by

Re-'~ g —1.

The quantity R e
—'~~ thus has the eigenvalue +1

for normal parity multiplets and —1 for anomalous
parity multiplets. If W spin, angular momentum and
parity are conserved, then R,e ' ~& is also conserved.
It then follows that particles of anomalous parity can
only be produced in pairs and cannot decay into par-
ticles of normal parity.
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