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&~+Is, l~+)=z„l

kg+ g ~+

On the other hand, from the transformation property Putting Eqs. (AS) and (A6) into the left-hand side of

of S;, we can write Eq. (A7), performing tensor calculations, and com-
paring the left-hand side with the right-hand side, we
find Ps, s~-—.

(A7) The other matrix elements can be obtained along the
same lines.
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The magnetic moments of the neutron and proton are calculated within the framework of the S-matrix
perturbation theory recently developed by Dashen and Frautschi. In the present context, this method ex-
presses the magnetic moments in terms of a dispersion integral involving photopion production. Evaluation
of this integral in terms of contributions from appropriate low-mass intermediate states yields results for
the individual magnetic moments which are larger than the experimental values by about a factor of two.
The calculation does, however, give an approximately correct value for the ratio of the isovector moment to
the isoscalar moment, and a value for the isoscalar moment that agrees with the experimental value to within
about a factor of two.

I. INTRODUCTION

ECENTL Yp Dashen and Frautschi" have sug-
gested a method for finding the changes in the

residues and positions of bound-state poles in the S
matrix when the strong interactions are perturbed by
the addition of another, weaker force. Dashen' applied
this method to calculate the proton-neutron mass
diGerence and obtained a result in good agreement with
experiment. It is our purpose in this paper to apply
these methods to calculate the magnetic moments of
the nucleons.

To discuss the nucleon magnetic moments from this
point of view, we need to study a scattering process in
which the magnetic moments appear as a residue of a
pole in the scattering amplitude. Photopion production
in the J=-,'+, T=-,' channel has a nucleon pole whose
residue, apart from kinematic factors, is proportional
to the nucleon magnetic moments. Therefore, this is an
appropriate process to study. Note, however, that it is
the residue of the photoproduction amplitude, not a
perturbation on this residue, which contains the
quantity we want to calculate.

To understand in what sense this may be regarded as
a perturbation calculation, one may consider a two-
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channel S matrix in which channel 1 is the J=-,'+,
T=-,'~X state, and channel 2 is the J=-,'+, T=-,'yÃ
state. %hen electromagnetism is turned o8, channel 1
is coupled only to itself, through the strong interactions,
and there is no scattering in the 22 amplitude. This
defines the unperturbed problem. If the electric forces
are turned on, and only terms offirst order in e are kept,
then the S matrix is chueged only by the appearance of
new nonzero matrix elements corresponding to photo-
production, which are of order t,. It is in this sense that
we speak of carrying out a perturbation calculation
here. 4

It may seem strange to think of the magnetic
moments as in any way connected with an electro-
magnetic perturbation, because it is, of course, true
that the magnetic moments are closely related to the
nucleon form factors at q'=0, which are determined by
the strong interactions alone. It is, therefore, important
to note that the basic formula to be used here for the
magnetic moments can also be derived in a way which
makes it clear that the magnetic moments are not of
electromagnetic origin (see Sec. II).

Thus, we consider the J=-,'+, T=-,' partial-wave
photoproduction amplitude. One would not normally
expect to be able to determine the residue of this
amplitude at the nucleon pole by purely S-matrix
methods, simply because analyticity alone is compatible
with any value whatever for this residue. However, if
we require a suitably rapid convergence at high energies

This point is discussed in Ref. 2.



1226 ABARBANEL, CALLAN, AND SHARP

for thc scattcllIlg amphtude) wc will find (III thc Ilcx't

section) that the residue itself is determined, and there-
fore, also the magnetic moment. We obtain by these
methods values for the proton and neutron magnetic
moments that are larger than the experimental values
by about a factor of two. The calculation does, however,
give an approximately correct value for the ratio of the
isovector moment to the isoscalar moment, and a value
for the lsoscalar moment that agrees w1th the experi-
mental value to within about a factor of two.

In Sec, II, we shall derive the basic formula for the
magnetic moments in terms of a dispersion relation
involving the photoproduction amplitude. In Sec. III,
we bxleQy summarize the klnematlcs of the photo-
production process. Section IV contains a discussion of
the analytic structure of the magnetic dipole amplitude
MI —(W), in which the nucleon appears as a pole.
Section V deals with the contributions to the invariant
amplitudes arising from the exchange of the nucleon

(iV), and the J=s3, T=~mX resonance (1V*) in the
I channel, and of the x, p, and co mesons in the t channel.
We assume that it is an adequate approximation to
include only the singularities associated with the long-
range part of the forces arising from the exchange of
these particles. In Sec. UI we take up the important
questions of the evaluation of the dispersion integrals,
the uncertainties inherent in this phase of this calcula-
tion, and the computation of the magnetic moments.
Section VII is a summary of the paper, while the
Appendix is devoted to a discussion of the determination
of the p and ~ coupling constants which enter into the
calculation.

II. DESCRIPTIOÃ OF THE METHOD

Although the basic formula for the magnetic moments
which we shall use can be obtained directly from the
Bashen-Frautschi formalism, ' we shall derive this
formula here by a slightly di6erent method.

We start with the pion photoproduction amplitude
in the J'= —,'+, 2'=

~ channel, A (s), where s is the square
of the total energy in the barycentric system. Assume
that A (s) has been defined so that it is free of kinematic
singularities. Then A(s) has a pole at s=M2, whose

residue E we wish to compute, as mell as a right-hand
unitarity cut extending from s= (M+@)' to s= ~
(M is the nucleon mass, p the pion mass). According to
the Fermi-Watson theorem, ' between s= (M+p)' and
the inelastic threshold at s= (M+2p)', A(s) has the
phase 5I—(s) of pion-nucleon elastic scattering in the
J=-,'+, 2'=-,,' state. We will assume that BI—(s) is, in
fact, the phase of A(s) all along the right-hand cut.
This is the assumption of elastic unitarity which is
commonly made in dispersion relation treatments of

'R. F. Dashen and S. C. Frautschi, Phys. Rev. D7, 31331
(1965).

6M. Getl-Mann and K. M. %atson, Ann. Rev. Mud. Sci. 4,
219 (1954).

1 D(s')A (s')ds'
(2.1)

2xi g s' —M'

where I, is a contour enclosing the left-hand cuts, and
C is the contour at in6nity. When we assume that the
integral over C vanishes, we have an equation for R:

E=
D'(M')

D(s') ImA (s')ds'

s' —M'
(2.2)

The functions D(s) and 2 (s) are both assumed known
on the left. In practi. ce, of course, approximations must
be employed for both of these functions. Once some
definite choice is made, Eq. (2.2) provides a method for
calculating E, the residue at the nucleon pole in the
photoproduction amplitude. This residue will involve
the nucleon magnetic moments, so that (2.2) may be
looked on as an equation for the magnetic moments.

The derivation of this crucial equation required that
the integral on the circular contour at infinity, Kq. (2.1),
vanish. This will only be true if D(s)A(s) ~0 suffi-

ciently rapidly as s ~.
We also know that the partial-wave dispersion rela-

tions for the photoproduction amplitude A(s), can be
solved for uey value of the residue E at the nucleon pole.
If we call this solution A (s; R), and remember that all
solutions A(s; R) have the same left-hand cuts and
discontinuities across these cuts, it may seem para-
doxical that we have nevertheless arrived at an equation
which purports to calculate E. in terms of an integral
over specihed left-hand cuts. Or could it really be that
specifying the left-hand cuts of a scattering amplitude
is suQicient to determine the residue at a pole in this
amplitude P In genera1, the answer to this question is no.
Let us then see what else is here.

The solution of the paradox, which is the essence of
the following work, is that for arbitrary 8, D(s)A (s; R)
does not go to zero at in6nity rapidly enough for the

pion photoproduction. In addition to these singularities
A (s) has certain left-hand cuts associated with particle
exchanges in the crossed channels.

Now, suppose we can find a function D(s) which has
the phase —BI—(s) on the right-hand cut, a zero at
s=3II2, and no other singularities. Then the function
J(s)=D(s)A(s) has no right-hand cut, no pole, and
the same left-hand cuts as A(s). Furthermore, we see
'tllat J(M ) =D (M )R. Tllls ls just thc approach sug-
gested by Dashen and Frautschi' who further inform
us that the appropriate D(s) is just the denominator
function of the pion-nucleon scattering amplitude

fI—(~).
Uslllg thc analytlclty pl'opcl'tlcs of J($) wc IIlay

apply Cauchy's theorem to Gnd at s=3P:

D(s') ImA (s')ds'

s M
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TABLE I. Values of the isospin functions for physical processes.

y p(+)

yp(
—)

(0)

y+p —+21-0p 7+p —+~++rl, y+e —+~0n 7+m —+~ p

1 0 1 0
0 K2 0 —v2

1 v2 —1 v2

FIG. 1. Photoproduction of pions
on nucleons.

integral around the infinite circle in Eq. (2.1) to vanish.
In fact, only for the E computed from Eq. (2.2) will
this be true.

If one requires D(s) to go to a constant at s= ~, then
in order for the integral around the circular contour C at
infinity to vanish, one must assume that A (s; E)~ 1/s',
e&0, as s —+~. This assumption must be judged by its
consequences, one of which will be a definite value for
the magnetic moments, as it cannot be justified on the
basis of analyticity in the energy plane alone. The
succeeding sections of this paper are devoted to calcu-
lating that value.

The following relations will also be used:

k = (W' —M')/2W, (3.3)
q= (l W' —(M+@)'jLW'—(M tj,)'])—'"/2W

ei = (W' —M'+)a') /2W,
Ei= (W'+M')/2W, (3 &)

Es= (W'+M' —ti')/2W.

The photopion production T matrix' may be written
as"
2'= 2'(+)+2'(—)+2'(s)

III. SUMMARY OF THE KIN'EMATICS
OF PHOTOPRODUCTIOH

In the preceding section, we pointed out that the
evaluation of the nucleon magnetic moments will in-
volve a knowledge of the partial-wave photoproduction
amplitudes. In this Section, we shall write down these
amplitudes, along with the necessary kinematics. The
results given here are to be found in the papers of Chew,
Goldberger, Low, and Nambui (hereafter called CGLN)
and of Ball, ' whose notation we adopt.

We consider the collision of a photon of momentum k
and polarization e with a nucleon of momentum pi,
resulting in a nucleon of momentum Ps and a pion of
momentum q and "type" P. We introduce the Mandel-
stam variables (see Fig. 1):

(3.1)

with s+t+st=2M'+p' Mis the nu.cleon mass; p, , the
pion mass.

In the center-of-mass system the above quantities
may be written

s= (Ei+k)'= (M+Es)'= W' (3.2a)

t =p' 2e)k+2qkx, —
u= M' —2E,k —2qkx,

(3.2b)

(3.2c)

where E and k are the energies of the incoming nucleon
and photon, while E~ and ~ are the energies of the
outgoing nucleon and pion. Also, q is the magnitude of
the meson 3-momentum, and x=q 1(/qk is the scat-
tering angle.

7 G. F. Chew, M. L. Qoldberger, F. Low, and Y. Nambu, Phys.
Rev. 106, 1345 (1957).

s J. S. Ball, Phys. Rev. 124, 2014 (1961).

where A, &+ ) are a set of twelve invariant functions,
free of kinematic singularities, ' which we assume satisfy
the Mandelstam representation. The 31; are a set of
four gauge-invariant spin matrices'.

3fg ——zysy By k

Ms 2iys(P——hq k P.kq 8), —
Ms —ys(y hq k —p kq h), —

(3.68)

(3.6b)

(3.6c)

(3.8a)

9 The photoproduction transition matrix T is related to the S
matrix as follows:

S=—i(2m)'5(') (P1+k—q —P2) t M'/4cokEgBQ»N (P2) TN(P1).
"A clear derivation of these results is to be found in M. L.

Qoldberger and K. M. Watson, Collision Theory (John Wiley
R Sons, Inc. , New York, 1964), Sec. 9.2."The charged pion 6elds are given by W= W(xI~i~2/V2), and
the Condon-Shortley phase conventions are used for the Clebsch-
Gordan coefBcients.

M4=2ys(y BP k ykP 8—i'—8y k), (3.6d)

where P=—', (pi+ ps), and the ds(+ ') are isospin matrices;

(3.7a)

(3.7b)

(3.7c)

and the rt) act in nucleon charge space. P labels the
isotopic spin of the pion. ' In Table I the matrix
elements of the 8p&+'&, between states of definite charge,
are summarized.

The matrix elements of T&+'~ are simply related to
those between states of definite total isotopic spin and
its s projection" ":
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TABLE II. Allowed multipole transitions
in photomeson production.

Parity Multipole

this partial-wave expansion it is convenient to introduce
the amplitude F(s,t) in the Pauli spin space of the
nucleons~ ":

1.
2

J+2
j+2

(—~)

(—s)
(

—(—s)'

+(j-1)+
+(j+1)-
M,+
3f;

(e tl)(e k&(S)
F(s,t)=ie 8Fr(s, t)+ Fs(s, t)

k

.(e lt)(ti &) .(e «)(ti ~)
+i — Fs(s,t)+ i — F4(s,t) . (3.9)

k 2

(s s (
T

(
-,' —',)= —gs(T++2T +3T'), (3.8b)

(s—s I
T

I s
—s) =V's (T++2T —3T') . (3.8c)

We shall require the partial-wave amplitudes for the
photoproduction process. For the purpose of obtaining

(We will suppress the isotopic spin labels in the follow-

ing considerations. )
The Ii; may be expanded in terms of multipole

amplitudes and Legendre polynomials. "These expan-
sions may be inverted to obtain":

M~(s) =
2 (/+1)

LPi-t(x) —P~r(x) j I

dx Ft(s, t)P((x)—Fs(s,t)Ps+r(x) —Fs(s, t)
2/+1

for /& 1, (3.10a)

+I LP~ r(x) P~+r(x)j
M( (s) =— dx Fg(s, t)Pg(x—)+Fr(s,t)P~r(x)+Fs(s, t)

21 2/+1
for /& 1, (3.10b)

~~+(s) =
2(/+1)

and

+1

F.~(s) =
2/ 1

LP~r(x) —Par(*)j
dx Fr(s, t)Pg(x) —F,(s,t)P~t(x)+/Fs(s, t)

2/+1

LP~(x) Pws(x) j+ (/+1)Fs(s, t) —,for /&0, (3.10c)
2/+3

LP~r(x) —P~r(x)3
dx F,(s,t)P)(x) —F,(s,t)P( r(x) —(/+1)F, (s,t)

2/+1

LPg s(x) —P((x)j
/F4(s,t)—

2/ —1
(3.10d)

for l&2. The allowed transitions in photomeson production corresponding to each multipole amplitude'4 are
summarized in Table II.

The kinematics of the problem are completed when the Ii; are related to our previously introduced A;. These
connections are given by":

p2

F,(s,t)=rr(s) A, (s,t)+(W—N')As(s, t) — (As(s, t)—As(s, t))
2(W—M)

(3.11a)

'2 The diBerential cross section is related to F by

(v+ft ~ ~+ft)—= &I (2 Ip I1)I'-
~ spin

where I1) and I2) are Pauli spinors. In writing Kq. (3.9), we have chosen a gauge in which h g 0="M. L. Goldberger (private communication).
'4 The multipole amplitudes introduced here are related to the partial-wave T-matrix elements for photomeson production by a

photon of angular momentum j, multipole type p Lp=electric E, or magnetic 3fj into a pion-nucleon state of angular momentum l,
total angular momentum J, Tt, ;,y(s), by

3f/ (s) = —AT/, /, kaid'+&(s)/D(1+1)g'/',

W (s) =—4s'T~, i, ss (s)/Ll (t+1)5
E~+(s) =+4 T~ ~+~a'+'(s)/Dt+, 1)(t+2) j'",
E( (s) =—4sTg, g g s' &(s)/D(t —1)j'~'.

Isospin indices are suppressed as usual.
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t—pm

Fs(s,f) =P(s) A—I(s,f)+ (W+M)A 4(s,f) — (A s(s,f)—A4(s, f))
2(W+M)

Ps (s,f}=qn(s) L (W—M)A s (s,t)+(A s(s,f)—A 4(s,f))1,

P4(s f) = qP(s) $—(W+M)A s(s f)1(A s(s f)—A4(s f))j,
n(s) = (W—M)L(Es+M) (El+M)g'('/8s W P {s)=qn(s)/(Es+M) .

(3.11b}

(3.11c)

(3.11d)

The explicit appearance of W=+s in these formulas will require us to work in the W plane in order to avoid
the square-root branch point at s=0. In the S' plane some interesting and very useful reaction properties hold
among the partial-wave amplitudes, ' "namely;

MH. (—W) = t:(l+2)M(H-I&-(W)+E((+I)-(W)j ~

M) (—W) =-((l 1)M(1 I)+(W)+EO I)+(W)), (3.12b)

E( &+(-W)=-CM-(W)-(l-1)E (W)S, (3.12c)

E(1+1)-(W)= tM)+(W) —(i+2)E~(W)J (3.12d)

Ke see from Table II, and as was pointed out in Sec. II, that the magnetic dipole amplitude for photomeson
production in the J=-+ channel will contain the nucleon pole and be of central importance in the remainder of the
CRlcllla, 'tloll. Fol this I'cason wc will close this scctlon bg wrltlng down lts cxpl'cssloll ln terms of tile A (s&/):

2M, (W) = —n(W) A, '(W)+(W —M)A, '(W)

opk qk+ (A s'(W) —A 4'(W))—F'—M (W+M)

L2(As'(W) —A4'(W))+A '(W) —A '(W))

GPQ gk
+P(W) —A,o(W)+(W+M)A, o(W)+ LA,o(W}—A;(W)j— LA, (W) —A, (Wg

W+M W+M
qn(W)

(W M)LAso(W) Ass(W) j+,Aso(W) A4o(W) Ass(W)+A4s(W) (3 13)
3

Recall that isospin indices (&,0) should be added to all
these amplitudes.

In the following section, we will discuss the analytic
structure of the M~ amplitude. That this amplitude is free of kinematic singularities

may be checked by expbcit calculation. "

where we have introduced the partial-wave amplitudes Ml (W) which is free of these kinematic singularities

+1 may be introduced as follows:.

A, (W) = A;(s, f)ZI(*)dx. (3.14) M, a.o) (W)

4~(W+M)L(W+M)s —I sg)(s

Ml (+'&(W). (4.1)
k

IV. ANALYTIC STRUCTURE OF THE Mj
Amu'X ITUDZ

One may see from an inspection of Eq. (3.13) that
Ml (W) has a kinematic pole at W=O and kinematic
bl'RIlcll CUts assocla'tcd wltll g (W) All anlplltUdc

"The verification that there are no branch cuts associated with
factors of (I(W) is aided by the observation that an odd power
of g always multiplies a factor Qo(—(E~/q)) or Q2(—(E2/q)), for
example, while an even power of q turns out to multiply a
Q1(—(E2/g)). Consequently, we will 6nd near q=0 only eeet
powers of q arising in the products of g and Q~, and no branch cuts
coming from factors of g.
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~
&

+

Flo. 2. Cuts due to Q&(—E2/g).
Signs are those of ImQg as one
approaches the cut.

fTlp
Ifl eo pm

Pro. 4. p-exchange cuts
with signs of ImQ~ as one
approaches the cuts.

Now let us examine the singularities which remain
in EII1 (W). There are, 6rst of all, poles at W=~M.
These arise from nucleon exchange in the direct photo-
production channel (s channel), as well as from one-
pion exchange in the t channel. The latter is generally
regarded as a "kinematic" pole in the sense that it is
introduced as a result of imposing gauge invariance.
One can not get rid of this singularity with the same
device that we used to get rid of the other kinematic
singularities, but we will see how to treat this point
in Sec. VI.

By writing out the Born amplitudes for nucleon and
pion exchange, wc can read O6 the residues of the pole
at W=+M in M (y,ol(W

These turn out to bc

E"'=—-'Mg. (l '+~-)
E"'=—sMg. (pu' —u.) (4.2b)

ps M«-'= —-:Mg, (p,
'—p.)—"g.+"g.l ——1

I
(4 2c)

&2p, i
In the above expressions, p„and p, are the total Inag-
netic moments of the proton and neutron, while p~' is
the anomalous magnetic moment of the proton. "Also
e„and g„are the rationalized charge and pion-nucleon
coupling constants; e„'/4lr=1/137, g,'/41r=14. The
term e,g,[-,'nM/p —1] is the one-pion-exchange con-
tribution.

The residues at the pole at 8"=—M are of order
(ll/M)' times the above, and the pole at W= —M can,
therefore, be safely ignored.

Now let us investigate the cuts arising from single-

particle exchange.

(1) Nucleon exchange in the crossed-photoproduction
channel (u channel): The cuts arise from terms of the
form:

+' Pl(s) 1
= ——QlL —(Es/e) jI—3P qk

(43)

The dynamical cuts come from Ql[—(Es/q)], which
has a branch cut when —1&—(Es/g)(1. This branch
cut runs along the imaginary axis from 8'= —i ~ to
tV=+i~. Approaching the cut from one side or the
other, one finds that ImQl —+ &-',nial[ —(Es/q)j. The
correct signs are shown in Fig. 2.
(ii). E*exchange, I channel: The cuts generated by Ã*
exchange are those of Q&((—2kE&+M' —M*')/2').
Here 3f~=mass of the S* resonance. There are
two short cuts in the 8' plane extending from
W =M[2—(M~/M)'jli'=0. 51M to W =M'/M*=0. 76M
and from 8'= —0.51M to W= —0.763II. There is also
a cut all along the imaginary axis. The signs of the
llllaglllal'y pal't of Ql are sllowll ill Flg. 3 ~ .

(iii) p and a& exchange, 3 channeP' The cuts generated
by p exchange are those of Ql((m, '—p'+2+k)/2qk).
They consist of the entire imaginary axis plus two arcs
of a circle of radius iV. These cuts alc shown ln Flg. 4.

exchange produces identical cuts, except that
sin8s ——m /2M (see Fig. 4).
(iv). n- exchange, 3 channel. The cuts generated by lr
exchange come from Ql(a&/q). This gives a cut along
the imaginary axis plus a, complete circle of radius

'

(M' —p')'l'. These are shown in Fig. 5.
This completes our survey of nearby cuts. We shall

ignore in our calculation all cuts which lie outside a
circle of radius M around the pole at W=+M. The
justl6catlon fol this assuII1ption %'ill be discussed
in Sec. VI.

-0.76 M ~ 0.76M
+

-M', » +M

-0.5lM'y0. 5) M

Fio. 3. E+ exchange cuts
with appropriate signs for ImQ~
as one approaches the cuts. ADIUS jm2-p, s

'6 The appearance of the anomalous moment here is a result of
our particular choice of the form factors F1 and F2 in terms of
which to write the yXN vertex. Had we instead used the form
factors GO=F1+(f/4M~)F2 and G~ ——Fj+Fg, then only the total
proton and neutron moments would have appeared. It is clear
that the entire calculation can be regarded equally well as a
computation of the total proton and neutron magnetic moments,
or of the anomalous moments.

FIG. S. ~-exchange cuts
with signs of ImQf, as one
approaches the cuts.

'7 In these calculations, we ignore the effects of the instability
of the p and ~ resonant states. This is no doubt quite a reasonable
approximation for the ~ and perhaps a tolerable one for the p.
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TABLE III. Coupling constants of p and ts) which enter the calculation of p2p' and p,„.

123i

fp, =0.16(e,/P)
P1&NN/ (47')1/2 V2

~2PXW/(4 )'"=~2(I2' —I n)/er

f „=—0.4~3 (e,/p, )
Pi~+~/( )'"=—3 0
I,.~Z/(4 )1/2=-3.o(py'+pa)/. r

I

f,p, (Ptpprzr/(4rr)'~) =3(e„/2M)
f~ (P /~/(47') 4) 5.{j(g„/2~)

f~p„(P&~rrrr/(4e)'~) =1 34(e. /rp)

f „(Pe„rrN/(4e)'~) = 0 16—(e,./2M')

V. CONSTRUCTION OF THE INVARIANT
AMPLITUDES

To perform the integrals entering into the evaluation
of the magnetic moments, we require some approxima-
tion to the discontinuity of the partial-wave amplitude
M& '+'&(W) on the left-hand or unphysical cuts. We
shaH replace the";true amplitudes there by their Born
approximations, including only x, X, S*,'p, and ~ as
one-particle intermediate states. Then we takegthe
discontinuity of these. amplitudes as our value for
disc(Mr &+ e&(W)) on the left-hand cuts. We begin by
constructing the invariant amplitudes A;(s, t) in the
Born approximation, then form A (W), Eq. (3.14),
and finally combine the appropriate A (W)'s to build
Ml —(W)Born.

First we consider the A;&'&(s,t). This amplitude
describes transitions induced by an isoscalar photon.
The isostopic spins of the particles we allow are such
that only Ã exchange in the s and I channels and p
exchange in the t channel may contribute. It is.a simple
matter to compute A;&" (s,t) for these graphs:

tfp~~Feprrrr
A r

t'& (s,t) = -,'e,g, + ~+, (5.1a)
s 3P u 3'— t m'— —
ergr f;~Feprrrr

Ae&e&(s, t) = (5.1b)
(s—Me) (u—3P)

( 1 1
A e"'(s, t) = —2g.(u.'+u-)

I

t s 3P u —3PJ—
t—m2

p

A."'(s,t) = —lg.(t.'+t -)I +
ks 3P u —M'I—

fpprFlpxN
X —

~ (5.1d)
t—m2

p

The couplings e„g„,p~', and p,„have all been defined in
Sec. IV. fp„r, F»err, and F&prrrr are defined by the

following expression for the, p-exchange contribution:

(p exchange) =f, ve„„„e„fe,q, l

V—m,&/

X(v,Frpnr pr+xseFspzrrrDrs prv—,j)rpu(pr)4 p* (5 2)

The kinematics are defined in Sec. III, while Pp* is the
isospin part of the pion-wave function. We see that
I'g, NN and F2P~~ may be looked upon as the "charge"
and "magnetic" couplings of the p to the nucleon. As

.the p couplings are very. important to the calculation,
we have devoted Appendix A to a discussion of them.
The values wee find. are listed in Table III.

The A;&+&(s,t),are rather more complicated. They
describe all the transitions induced by an isovector
photon. This means that S, S*,~, and x"exchange all
contribute. G-parity conservation forbids the p to
enter hare. The contributions of m, co, and X are not
dB5cult to' construct. The E* contribution is more
involved. We have chosen to approach the problem
through the Mandelstam representation for the
A;&+&(s,t) as given in Eqs. (8.29) to (8.32) of Ball's
paper. s These dispersion relations are dominated by
Mr+er'(W) multipole amplitude which contains con-
tributions from S~ in the direct channel. The contribu-
tion of the ¹ to Mt+et'(W) in the Born approximation
-has beeri given by Gourdin and Salin. ' They find

Mti' '(W)/qk=R/(W' Me'+eM—*I'), (5.3)

where 8 is a constant evaluated by comparison with
experiment; We then make the approximation that the

¹ is a sharp resonance (I'/M* small) and write for the
imaginary part of Mt+ere(W)

ImMr+'r'(W) =—s Eb(Ws —M") (5.4)

When this expression is substituted into the dispersion
integrals given by Ball' and the X, x, arid co contribu-
tions are added, we find for the Born approximation
to A;&+& (s,t):

1 1 ) 2) M*'—M' —te' ) ( 1 1 ) /1) tf„,Fs„Nrr
+t+u' (I ~ ~+I

s—M' u—3PJ 1/ 2M* / is—3P' u —3f '/ l0/ t—m„'

—e,g, ( 1 1 ) 2) 1 1 1)f„p„Fe„N~
Ae"'(»t) =

t—te' Es—M' u —3P/ 1) s—M*' u—M*' OJ t m„'—
'e M. Gourdin and Ph. Salin, Nuovo Cimento 27, 193 (1963); 27, 309 (1963).

(5.5a)

(S.Sb)
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1 1 y t2y~ p" &(»t) = —sag. (t' —t -)I
Es 3P—I—3P) El)

p3 t—p' M*' 3P—+p,' 1 1
XI —— — + —(M*+M) II w I, (S.sc)

I 2 M*+M 2M* I ks —M*' I—M~i'

1 1 ~ ~2~
~4"'(»t) = pg

—(t p' t )—I

I s—3P I—3P) k1l

f3 t—pP M™~ 3P+p'— ) f 1 1 (1 f««~Fi«xw
XI - + +2(M'+M) II

~ —I, (s.sd)
k2 M*+M 2M* 2 ks—M*' I—M*' (0 t—ns„'

where
e„ 3M*'+4MM*+M' M*'—M'

t&=—
I

(M~+M)' —&a') 'I' cp+ c, —
18 2M*@ p' p

pMg. (Pn—'+P«) .
c=+3stt=+11.8s (e„/M') (5.6)

As indicated earlier, the cuts of 3f~ &" consist of the
arcs of the circle coming from p exchange as well as cuts
along the imaginary axis. We will temporarily neglect
the latter. The circular cuts (radius of circle is

I
W

I
=M)

extend from Hp=cos 'I 1—(M,'/2M')j to s —8p, and
from s+Hp to 27r Hp. The distance from the nearest
endpoints of the circular cuts to the pole at 5'=3l is
2.83p,. We will integrate over the circular cut from go to
an angle 8, ~ which corresponds to a distance approxi-
mately M away from the pole. This procedure is
motivated by the fact the Born approximations for
p-exchange result in a integrand in Eq. (6.1) which is
very sharply peaked around the nearby part of the
cut. We shall discuss the question of convergence
shortly.

With these remarks in mind, we write

will appear often in the next section. f„~, F~„~N, and
Ii p NN are defmed for the p& as in Eq. (5.2) for the p.

We may now compute M& (W), using Eqs. (3.13),
(3.14), and (4.1), and likewise its discontinuity across
the unphysical cuts using the results of Sec. IV. This
brings us to the task of evaluating the dispersion
integral of Eq. (2.2), to which we turn in the next
section.

VI. EVALUATION OF THE DISPERSION
INTEGRALS AND CALCULATION OF

THE NUCLEON MAGNETIC
MOMENTS

This section will describe the evaluation of the dis-
persion integrals and the calculation of the magnetic
moments. The dispersion integrals may be evaluated in
two ways; erst using the formula (2.2) as is, and then
in, a form in which @ subtraction is made at
W= —(M+@). This choice of the subtraction point
enables us to evaluate the subtraction constant analyti-
cally. Comparison of the results obtained with the
subtracted and unsubtracted form of the dispersion
integrals would allow us to get some idea of the sensi-

tivity of the answers to the high-energy behavior of the
integrals.

Equations (3.8b) and (3.8c) suggest that it will prove
convenient to evaluate the residue in 3iIq &p&(W) and

M& '+'(W)+2M&& &(W), separately. These two
independent equations will enable us separately to
compute p„' and p~.

First we compute the residue in&~ &'&(W). Our basic
formula (2.2) applied to this amplitude yields

s D'(M)E&P&

D(Me") ImMg "(Me")k"dH

(e"—1)

pp D(Me+) fm3/Iq & &(Me p)te'pdH

(eiP 1)—ttend

D(Me") ImM& '& (Me")ie"

(e"—1)

&end

dH . (6.2)

It is convenient to split the integral into two parts; one
associated with the charge coupling of the p to nucleons,
the other with the magnetic moment coupling. We then
have

prD'(M)R&'& = ps M(fp. ,Fgp~~)Ig(8«p)
+-',sM'(f, ,Pp p~~)Ip(8.-p), (6.3)1 1 D(W') ImM~ &P& (W')dW'

g(o) =
D'(M) s r, W' —M'

(6 1)
where Iq(8«p) and Ip(8«p) are the values of the charge

and cg, c4, .and A. ~ are dered and evaluated in the papers where E.& & is the residue of Sf' ~'~ at 8'=Ã:
of Gourdin and S@lin."The particular quantity
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ALE IV. Values of the charge and moment integrals
for the p meson using a linear D.

TmLE V. Values of the charge and moment integrals
for the p meson using a curved D.

~ena

0.41
0.70
1.00
1.30
1.57

0.00—8.14—10.49—11.31—11.57

sm(e, a)

0.00—7.37—8.89—10.56—11.99

dna

0.41
0.70
1.00
1.30
1.57

r, (e..a)

0.00—6.65—8.24—8.60—8.63

0.00—5.30—6.69—7,85—8.52

and magnetic-moment contributions as functions of
8, g.

To complete the specilcation of the problem, we
must choose an approximate form for the D function
of mS scattering. Two di6erent choices were made.

The 6rst was a simple linear D function:

D(W) =W™
Here we have chosen to normalize D to one at the pole.
Note that the normalization constant of a linear D
would drop out of our equations anyway. This approxi-
mation is extremely crude away from the pole, and in
particular has an incorrect high-energy behavior.

An alternative form for D(W), which has a high-
energy behavior consistent with our initial assumptions,
was obtained by Dashen' as a 6t to the D function ob-
tained by Balazs ' in the course of obtaining an approxi-
mate solution to the xX-scattering problem. This is

D(W) = (™(Wo—M)/(Wp —W), (6.4)

with 8"p—3f=9p,.
In Tables IV and V the values of Il(8„e) and Im(8,„e)

are given as 8, q varies from m/3 (a distance M from the
pole), to m/2 (a distance 42M from the pole) for both
the curved and linear D functions.

A short survey of Tables IV and V will reveal that
the "charge" integral Ij seems to be converging rather
well as we move away from the pole, especially when
the curved D function is used. The magnetic integral
I2, on the other hand, is probably not converging. That
this is really the case is con6rmed by an inspection of
Ml "'(W), where the coeflicients of f, „F~,~N are seen
to diverge linearly at indnity, if a linear D function is
used. The use of a curved D function results in a con-
stant behavior at in6nity. This divergent behavior is
due, of course, to our having used the Born amplitude
to describe p exchange, neglecting the momentum-
transfer dependence of the form factors at the pe%
and pup vertices. Almost any reasonable behavior of
these form factors at large t, say 1/t behavior, would
result in a convergent integral. By keeping the p-
exchange cuts only along the circular arcs, we have
electively placed a cutoff on our integrals, which
approximates the e6ect of the form factors.

An alternative procedure would be to make a sub-
traction in the dispersion integrals. This possibility will

' L. Balazs, Phys. Rev. 128, 1935 (1962).

be considered later. One should bear in mind. that the
magnetic integrals associated with ~ and S* exchange
have similar diseases, and analogous procedures will

be used there.
The reader will note that we have ignored the con-

tributions from the cuts along the imaginary axis.
These contributions have been systematically-dropped
from the calculation. This has been done, for the
following reasons: (i). We do not claim to know a
reasonable approximation for Ml (W) any further
than 3II away from the pole at 8'=35, and this is, of
course, just where this contribution would begin. The
Born approximation is probably a very poor one along
the imaginary axis, and would result in an incorrect
estimate for the value of the integral: (ii). The contri-
butions from the integrals which were kept are seen to
come primarily from the parts of the cut nearest 8'= M.
(See Tables IV-VIII and Fig. 6): (iii). An explicit
evaluation of the contributions of the cuts along the
imaginary axis, using the Born approximation for the
amplitudes, was made in the case qf nucleon exchange
in the N channel and x exchange in the t channel. The
nucleon exchange cut, both with and without a sub-
traction at W= —(M+J"), contributed 10'P~ to the
answer in a direction which would improve the values
of p„' and pN which we shall subsequently, determine.
The pion-exchange contributions gave a term of order
(p/M)' compared to the other contributions to the
residue E& &. (iv). Any reasonable attempts to include
these cuts would demand a knowledge of the form
factors at the various vertices involyed for large
momentum transfers. (v). To do these integrals properly
would require a knowledge of the D function in an
unphysical region rather far from the pole. This is
simply not known at present.

Now let. us complete our evaluation of the isoscalar
moment. Eqs. (4.2a) and (6.2) give

'3Mgr(pp+t"e) 6M(fpwyFlpNN)I1(8end)

+6M'(fp. ,F2,»)I-2i(8,&) ~ (6.5)

Using the values of the coupling constants given in
Table III, the curved D function of Eq. (6.4), and
taking 8, s to be ~/3 (corresponding to a distance M
from the pole), we flnd

p~+ p„=1.65(e„/2M), (6.6)

compared to the experimental value of 0.88(e„/2M). If
our estimates for the coupling constants of the p meson
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TABLE VI. Values of the charge and moment integrals
for the ~ meson using a linear D.

TABLE VII. Values of the charge and moment integrals
for the~ meson using a curved D.

arena

0.43
0.70
1.00
1.30
1.57

11'(e. a)

0.00—7.53—10.08—11.00—11.33

0.00—6.97—8.68—10.41—11.88

~ena

0.43
0.70
1.00
1.30
1.57

11'(e, a)

0.00—5.99—7.66—8.04—8.10

I2'(e..a)

0.00—4.83—6.24—7.38—8.05

are too large by a factor of 2, we would find

p~+p„=0.83 (e,/2M), (6.7)

which is certainly much better, but. commands no
greater respect in view of our ignorance of the p coupling
constants. It is of interest, however, that the p-exchange
contribution appears to be of the right sign and order
of magnitude to account for the isoscalar moment.

Now let us compute the isovector moment. This will

come from the residue of M~ &+&(W)+2M~ & &(W);

1 1

D'(M) s.

D(W')tImM~ &+&(W')+2 ImM~ & &(W')7dW'

R&+&+2R&—
& =

W' —M
(6.8)

whereR&+& andR& & aregivenbyKqs. (4.2b) and (4.2c).
The contribution from the "pi-exchange" cut (so-

called because it arises from a term 1/(t —p') in the
Born amplitudes7 can be calculated quite simply. The
only term in the one-particle exchange amplitude having
this cut is

around W=+M is just the residue of 2M& at the
nucleon pole, or 2(x~xM/p —1)e„g„. This cancels an
identical term" in 2E& &, Kqs. (4.2c). The contribution
from the pole at W= —M is of order (p/M)' and is
neglected. The integral around the pole at Wp gives

L(WO+M)'p'7 e,g„
(2) (Wp —M)

3q (Wo) Wp' —M'

X (Qo((o/q) —Q2 ((o/q)) = —3.40e„g„. (6.11)

(Increasing Wo from M+9IJ, to ~ changes the con-
tribution by about 50/o). Therefore, the contribution
of the "pi-exchange" cut to Kq. (6.8) is —3.40e„g„
on the right-hand side, providing we drop the term
L(s/2) (M/p) —17e„g„in 2R& &.

The discussion of the ~-exchange contribution
proceeds along lines identical with those given for the

p above. The only changes are to note that the ~-meson

5.0—

4.0—

L(W+M)' —p'7 e,g,

3g

XLQO(~/q) —Q2(~/q)7 (6 9)

5.0—

2.0—

urved D

This amplitude goes to zero at infinity. Using the
approximate D function of equation (6.4), the integral
to be done is

1 lVp —MI =— ImL2M~ t &(W)7dW. (6.10)
I, Wp —8"

The "nearby" part of L is a circle of radius (M' —p')'I'.
The quantity Im(M& ) is of order Q/M)' on the whole

of L except that part of the circle which passes near the
pole at W=+M. In fact, to order (p/M)', the whole

integral over L comes from the half of the circle nearest
TV= M.

Since M& goes to zero at infinity, Cauchy's theorem

says that the integral of the left-hand cut of the
integrand equals the integral around all other singu-

larities of the integrand. The other singularities in this

case are poles at 8'= +M and 8'=S"p. The integral

I.p—

0 g I I

0.5 .5 5 0.6 .6 5 0.7
W in units of M

I i I

.75 0.8

Fro. 6. Value of the u-channel integral. The abscissas give the
position of the right end of the N'* cut as we vary it from 0.51
to 0.76 M.

~ The cancellation of the pion contribution to the residue of
the pole at W =+M in the MI amplitude by the pion-exchange
cut is an exact result, and does not involve an approximate
cancellation of two large numbers or uncertainties about the
high-energy behavior of the amplitudes. This point has been
studied by one of the authors (DHS) and R. F. Dashen in the
case of pion production of massive photons, using the partial-wave
expansions of I iu and Singer /Phys. Rev. 135, 31017 (1964)j.
Here one can see explicitly that there is no pion pole contribution

to the residue of the M1 amplitude at W=M for any finite
photon mass, and that none appears in the limit when the photon
mass goes to zero. The part of the pion-cut contribution which is
not cancelled by the pole has an analog in the massive photon case.
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Tmrx VIII. Values of p„+p„,p„'—p„, p,„', and p for various choices of the coupling constants listed in Table III. '

Column I is the answer accepted here. d& f,——»~Flp&r»& &4 fp»yF2, &&&r& and di' f„——~„F&,»&&

Value of
dI,A,d1

d, = 3.O 4 (e„/2M}=~
d,
:
—{5.6} 4.(e„/2~ }=b

d1' ——1.34 47r (e,/p) =c

+i.65(e,/2M)
+6.64(e,/2M)
+3.65 (e„/2M)—3.00(e,/2M)

d1 ——u/2
dg ——b/2

d1 =e

+O.83(.,/2M)

+3.23 (e,/2M}—3,40(e,/2M)

d& =3a/2
d2 =3b/2

d1' ——3c/2

+2.48 {e„/2M)
+7.57 (e,/2M)
+4,03 (e„/2M)—3.04(;/2M)

d1= c/2
d2 ——b/2
d' =2c/3

+0.83 (e,/2M)
+6.03(~/2M)
+2.93(e„/2M)—3.20(e,/2M)

Experimental
value

+O.88(.,/2M)
+3.70(e,/2M)
+1.79(e„/2M}

cut begins at 00=0.43, and that it contributes only
to M, &+&. The values of the charge integrals Ii'(e„e)
and magnetic integrals Is'(e,„a) for the curved and linear
D function are shown in Tables VI and VII. The
remarks about the convergence of Ii(8„a) and Is(8„q)
apply here.

E*exchange in the I channel has been shown to lead
to three cuts in the TV plane: The cut along the imagi-
ne, ry axis, the cut from W= —M'/M* to —M[2—(Me'/
M')]'" and the cut from W=+Mt 2—(M*'/M') /is
=0.51M to W= (M'/M*)=0. 76M. Of these we keep
only the third cut as the other two are "faraway"
singularities. In Fig. 6 we plot the contribution of this
cut to the dispersion integral as a function of the
endpoint nearer the pole for our two choices of D(W).

With these remarks and numbers in mind we may
write for Eq. (6.8):

m(E&+&+2R& &)

D(Me") ImM1 &+&(Me*')M"
Re d8

(ei&& 1)

ImM1 &+&(x)+2 ImM1 &
—

&(x)
+ D(x) da

0.5lM

—3.4(bre„g„, (6.12)

—83lg,
(~' I -) 2"g.=— —

3

M
+ (f»»y+1»&&1N)11 (ee»&i)

6

M'
+ (f„,Fs„~~)Is'(8. d—) 3.40e,g„(6.13)—

6

I„ is the E~ contribution" and is =4.19; the values of
the o&-coupling constants are given in Table III (and
Appendix A). We again choose &&,„q=ir/3 and use the

"We see that an important contribution to the isovector
moment comes from E+ exchange. That this would be the case
was suggested by R. Dashen, Phys. Letters 11, 89 (1964), who
studied the relationship between the total nucleon isovector
moment and the magnetic dipole pe~ coupling from the
reciprocal bootstrap point of view.

curved D. Then Eq. (6.13) gives

P„'—&1„=6.64 (e,/2M) . (6.14)

Combining Eqs. (6.6) and (6.14) allows us to deter-
mine p,„' and p„separately. We find

&1~'= +3.65 (e,/2M),

&1„=—3.00 (e„/2M) .

(6.15)

(6.16)

These values diR'er in magnitude from the experimental
values by nearly a factor of two. It is interesting, how-
ever, that the isovector moment is much larger than the
isoscalar moment. Using our calculated value, Eq. (6.6),
for the total isoscalar moment &a, and Eq. (6.14) to
compute the total isovector moment p, „we find that
the ratio of isovector moment to isoscalar moment is

4.6, compared to an experimental value for this ratio
of ~5.4. The values for p„~p» p,„', and p~ are collected
in Table VIII where they are compared with the
experimental results and with the values one obtains
for diEerent choices of the p- and cv-coupling constants.

It is clear that our answer for the magnetic moments,
and especially the isoscalar moment, depends critically
on the values of the p-coupling constants. Ball' has
considered the eRect of the two-pion intermediate state
on the photoproduction process. He summarizes this
effect in a parameter A. If we approximate the two
pion state by the p resonance, we can compute A. One
finds

F (1) 8&2 fp.,
(A/e) =

(a+mal'),

1+a 3 yp~
(6.17)

Ball shows that the experimental data constrain A to
lie between &1.8e. Our value, Eq. (6.18), certainly
satisfies this constraint. Increasing f, ~ and f, would
tend to move A out of the allowed region, while de-
creasing them by a factor of 1.5, for example, would
keep us in the allowed region and improve our answer
for(the isoscalar moments.

where F,(1) is the pion form factor at t= &is and g=5@'
is a constant. Ball givess P (1)=1.08 which, together
with the values for f, ~ and y»= e„m,'/f, gi—ven in
the Appendix, yields

A= —0.64e.
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jv~(+) —{) (6.20a)

(6.20b)

(6.20c)

We are stopped at this point by two practical
problems. (i). We have no idea of how to get a reliable

approximation for the M~ amplitudes in the left-hand

W plane. Moreover, subtracting at W= —(M+@) will

make the integrals over the cuts in this part of the plane
as important as their counterparts in the right-hand
plane. (ii). We do not know a sensible approximation
for the D function in this faraway unphysical region.
If these difhculties could be surmounted, this method
would provide an attractive alternative to the un-

subtracted approach as the questions of convergence
for large 8' are not so severe. "
"N. M. Kroll and M. A. Ruderman, Phys. Rev. 93, 233 (1954).
2'If one ignores these warnings and proceeds to compute

y„'~p„, using the curved D function of Kq. {6.4) to the left of
5'=0, a "good" answer is found for the isoscalar moment and a
fair answer for the isovector moment.

We have pointed out that the Born amplitudes which
we have used to approximate the true amplitudes do
not converge rapidly enough to permit one to write the
unsubtracted dispersion relations which were assumed
in Sec. II. Of course, there is no reason to believe that
the Born approximation gives a reasonable description
of the high-energy behavior of the amplitudes. Our
point of view has been to suppose that the bulk of the
contribution comes from a region near the pole (within
a circle of radius M), and that a correct description of
inelastic processes would give the amplitude an ap-
propriately convergent behavior.

One way to check this conjecture would be to make
a subtraction at some point where we know the ampli-
tude, and see if our answers are greatly aGected.

For reasons to be made clear in a moment, we will

subtract at W= —(M+p). The dispersion relation for
D(W)M~ (W) then reads

D(W)Mg (W)=DMS (W= —M—p)

W+ (M+@) D(W') 1m' (W')dW'
(6.19)

r, (W' —W) (W'+M+p)

We see that we must know D(W)M~ (W)
W= —(M+p). By the reflection symmetries of Eq.
(3.12), we observe that M~ (—W) =Eo+(W). If we can
determine Eo+, the s~~2 electric dipole amplitude, at
threshold we will have our subtraction constant. Now,
according to the Kroll-Ruderman theorem, " the Eo+
amplitude is given correctly (to order p/M) at threshold

by the Born approximation. This gives

VII. SUMMARY AND CONCLUSIONS

In this Gnal section we will brieQy review the calcu-
lations explained above and try to comment on
them.

Ke began, after the tedious but straightforward
kinematics of Sec. III, with the construction of the
invariant amplitudes A;(s,1). These were evaluated
under the assumptions: (i) that only a few low-mass
intermediate states (S, X+s, m, 2', 3s.) need be kept;
(ii) that few particle intermediate states could be
adequately approximated as one-particle resonant
states (S~, p, &o), and (iii) that the Born approximation
could be used to compute the discontinuity of each of
these amplitudes.

Next, we performed a partial-wave projection and
found that the resulting partial-wave amplitudes
M& (W) had kinematic singularities. These were
eliminated in Sec. IV and we were instructed to consider
M~ (W) instead.

Finally, we wished to evaluate the integrals of Eq.
(2.2) which determine the residues R&+'+2R~ & and
E.&'& and consequently the magnetic moments. To carry
out these integrations necessitated a number of further
approximations. The first of these pertains to the use
and form of the D function. (i). It was necessary to
assume that the denominator function for elastic pion-
nucleon scattering in the Pj~2 state cancels out the
right-hand cuts in M~ (W). This it does up to inelastic
threshold. After that we were forced to assume that
states like E+27r and X+3m. would not severely affect
the phase on the unitarity cuts in the region of interest.
This amounts to the neglect of intermediate states
X+p, 1V+or, X+3. (in the T= 2 state) in the direct
channel. (ii). In addition to this, we had to approximate
D by simple expressions in the nearby unphysical
region.

The second approximation made in evaluating the
integrals was to keep contributions only from those cuts
within a circle of radius M around the pole. The
reasons for this have been discussed in detail in Sec. VI.
We shall let it suKce here to repeat that this approxi-
mation was motivated not only by our ignorance of
M& (W) and D(W) outside this region, but also by the
fact that those contributions outside this region which

we mere able to evaluate turned out to be small.
With these approximations one finds, upon evaluation

of the dispersion integrals, the values for the proton and
neutron magnetic moments given in Sec. VI and
Table VIII. Our results, while producing values for the
magnetic moments that are uniformly too large by a
factor of about two, do suggest that an approximately
correct model for the magnetic moments has been
achieved. It is dificult to isolate which of the many
approximations made are responsible for the lack of a
closer numerical agreement of the calculated moments
with experiment. The fact that the calculated moments

are all somewhat too large indicates that the use of the
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Born approximation, which is notorious for overestimat-
ing things, may be the source of the problem.

The values for the moments, especially the isoscalar
moment, depend rather sensitively on the p- and
co-coupling constants. The methods used to estimate
these coupling constants are outlined in the Appendix.
It is far from our intention to claim that our estimates
for these coupling constants represent anything like a
"best value. " On the contrary, our estimates must be
regarded as uncertain perhaps to within a factor of two.
In Table VIII, we have indicated how the values of the
isovector, isoscalar, proton and neutron moments
depend on the choice of these coupling constants. We
feel that the values given in Eqs. (6.6), (6.14), (6.15),
and (6.16) (see the first column of Table VIII) represent
a conservative choice for these constants.
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APPENDIX A: DETERMINATION OF THE
AND ~ COUPLING CONSTANTS

In this Appendix we shall briefly discuss the deter-
mination of the various p and co coupling constants used
in this calculation. Unfortunately, these cannot be
determined directly from experiment in a model-
independent way at the present time. Here, we shall
employ the arguments introduced by Gell-Mann and
Zachariasen, "and extended by a number of workers, ""
who discussed the dispersion-theoretic basis for the
approximation of the 2m and 3x resonances as vector
mesons coupled to conserved currents.

We shall consider 6rst the T=1, J=1 + vector
meson p and the T=O, J=1- vector meson I', which
we suppose are members of a unitary symmetry octet.
The p meson is furthermore assumed to couple univer-
sally, with strength fp, to the conserved isospin current,
while the I' meson couples universally, with strength
fV, to the conserved hypercharge current. That is, the
p and F mesons are assumed to couple universally to
the same currents as the isovector and isoscalar parts

'4M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 965
(1961)."M. Gell-Mann, D. Sharp, and W. Wagner, Phys. Rev. Letters
8, 251 (1962)."R. I".Dashen and D. H. Sharp, Phys. Rev. 133,31585 (1964),
and references there.

of the photon, respectively. Then one may write"

e esp
2

(~li.'l P&=-
p pt—m2

(A2)

e„
pity Ypm' y

2
(AS)

e„
7I''y 40PX' ' (A6)

As a consequence of Eq. (A3) and (A4), one may
write

fri ~= ofay~ ~f~i ~. (A7)

A study of the available data on the decays of the p
and cu mesons strongly suggest that"

l f„, l« l f „l,
so we have

(A8)

and

fp.v= &(e./2fr)f--" (A9)

In unitary symmetry, fz = (gr3) f„and from uni-
versality we find f,=f, Estimati. ng f, from the p
width (assuming 100 MeV for this width) gives

f,'/47r= 2 0 We see, the. re.fore, that we could evaluate

f, ~ and f„~, if wg knew f, This may be r. elated to
the ~ width, "if one assumes that the decay co —+ 3x takes
place through the process o& ~p+s, followed by
p —+ 2m. One finds, for a width of ~9.5 Mgf 26 27

f,.'/47r = (0.4)/m '. (A10)

The corresponding values of f„~and f, ~ are then

fp „'/4m =0.024(e,'/m ');
f .,'/4n = 8 4(f, ,'/4n). . -

(A11)

27 A. H. Rosenfeld et al. , Rev. Mod. Phys. 36, 977 (1964).

At this point we may introduce a third vector meson,
8, which is coupled universally to the conserved
baryonic current, and is a singlet in unitary symmetry.
When unitary symmetry is broken, the

l » and
l 8)

states may mix" to give the two states

(A3)

(A4)

The leo& is identified with the T=O, 5=1, 3s reso-
nance at 780 MeV, and the

l y& with the T= 0, J=1-
KE resonance at 1020 MeV. The mixing parameters
have been roughly estimated to have the values
@=0.78, 5=0.62.

We may now take matrix elements of Eq. (A1) be-
tween a p and a s. state, and of Eq. (A2) between an &o

and a m state, to find at t=0



ABARBANEL, CALLAN, AN D SHARP

Approximately the same value for f„~ is obtained
directly from the radiative width of the co. Now let us
turn to the couplings of the nucleons to a p and co. The
charge couplings may be roughly estimated if one
assumes that the p and ~ dominate the isovector and
isoscalar charge form factors of the nucleons. A simple
analysis, made without the introduction of a soft core,
gives

and"
F1pÃN fp

4&F1 NN1/4'& 16.

(A12)

F2pNN +3F1pNN ~ (A14)

In our Eqs. (6.5) and (6.10), we need f, ~FipNN,

fpp~FmpNN, f„~F1„NN, and f ~F2„NN. We shall neglect
the last of these, on the basis of Eq. (A13).

Our equations require us to know the relative sign of

f, ~ and Fi,NN. (Given these, the relative signs of

f„p~F1„NN and of the magnetic couplings are deter-
mined, assuming universality and unitary symmetry. )
This relative sign is physically meaningful and could
be determined, for example, by looking at the photo-
production of p's at low momentum transfers (but not

In Sec. VI, we used Fi,NN/4m =2 and Fi„NN'/4' =9.
To arrive at a crude idea of the magnetic couplings,

we proceed as follows: If both the electric and magnetic
isoscalar form factors are dominated by the & meson,
then

F2~NN/F1~NN= (I1,'+11„)/e,=Fp,'(0)/Fip(0). (A13)

This would mean that the magnetic coupling of the ~
is small compared to the charge coupling. This result is

probably not greatly a6ected by p-~ mixing, because
the couplings of the p to nucleons and to ~y are sub-

stantially weaker than the co couplings. "
A similar analysis of the electric and magnetic

isovector form factors, on the assumption that these
are both dominated by the p, leads to the result:

from decay rates). In the absence of such information,
we must rely on an indirect argument, or a guess.

One such- argument is provided by some recent work

by Adler and Drell, 's who study the p-m contribution
to the exchange current which sects the magnetic
moment of the deuteron. The contribution of this
current is proportional to f, ~F1»N Th.ey find that if
this relative sign is +, then this contribution is of the
right sign and order of magnitude to account for the
discrepancy between the observed moment p&=0.857
nuclear magnetons, and that obta, ined using a wave
function with a 7%D-state probability for the deuteron,

p TH =0.840 nuclear magnetons.
The relative + sign is the same as we have chosen,

and if we were to choose a —sign, our values for the
moments would be much worse."This calculation and
the Adler-Drell calculation's support each other in this
respect then, although (of course) neither is a substitute
for a direct measurement of the relative sign.

Combining all the above statements, we arrive at the
values for the coupling constants given in Table III.

In closing, we wish to emphasize that in this Appendix
we do not in any way purport to have determined the
"best" values of these coupling constants. Other
methods of estimating the coupling constants, for
example using photoproduction data in the case of

f, ~ or f„„orpion-nucleon scattering data in the case
of F»», have an equal claim to validity. These
estimates produce values of the coupling constants that
may differ by as much as a factor of two from ours.
This range of uncertainty in our knowledge of the
coupling constants is rejected in the range of values
we quote for the magnetic moments in Table VIII. We
feel that the values we have used in the text and give
in Table III represent a conservative value for the
couplings, but by no means a definitive or best value.

~ R. J. Adler and S. D. Drell, Phys. Rev. Letters 13,349 (1964).
~9 See Table VIII.


