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Current-Generated Algebra and Mass Levels of the Hadrons
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The mass splittings of the U(3) Lor SU(3)jmultiplets of the hadrons are investigated under the following
assumptions: (i) The Hamiltonian decomposes into an invariant part plus an eighth component of an octet
of U (3),and the latter is a space integral of the scalar current transforming like —,

' (qtPI sq), where 9 stands for
the quark. (ii) An algebra of the positive parity operators generating a nonchiral U(3) XU(3) is a "good
symmetry, " vthere the generators consist of the scalar currents and the fourth components of the vector
currents. It is shorn that if a universal constant vrith the dimensions of a mass together vnth the average
mass of the multiplet are given, then the splitting is calculated exactly for any multiplet under the above
assumptions. A kind of competition of the kinematical group U(3) and the dynamical group U(3) &(U (3)
can predict the average masses of U(3) multiplets if they belong to the same multiplet of U(3) XU(3). The
multiplets that concern us are the ~+ octet, &~+ decuplet, $ octet, 0 nonet, 2+ nonet, and 1- nonet. The
results shove good agreement vrith experiment.

l. INTRODUCTIOÃ

"T has been emphasized that a set of equal-time

. . commutation relations of various currents de6nes
an algebraic (or a group) property that underlies the
structure of the hadrons. ' The currents consist of the
space integrals of components of 5, V, A, I', and T
densities, which obey the same commutation rules as
if the currents were equal to those of the quark.
Lagrangian model. It was further suggested that the
algebra of the positive parity operators generating a
nonchiral U(6)X U(6) should be a "good symmetry"
of the hadrons at rest.~ Many applications of the current
algebra have been tried and many results were obtained
in various 6elds. ' ' One of the authors (K. K.) applied.

it to the mass-splitting problem of baryons and mesons
in a previous paper, ' hereafter referred to as (I), where

it was shown that relations connecting the meson and
the baryon mass splitting could be calculated although
no symmetry higher than the approximate U(3) was

used.
It is the purpose of this paper to clarify the algebraic

properties of the mass-splitting operator introduced in

(I), and to extend the calculation method to obtain
more complete mass formulas. The mass formulas will

be improved in an exact form if a nonchiral U(3) X U(3)
gl'011p, R sllbgl'oup of U(6) X U(6) 1ntroduccd by soIIlc

authorsq ' ls a good synlIIlctry of the 11Rdl'ons Rt 1'est.

Ke may lay emphasis, in the present work, on the
analysis of the mass splittings of the J~= ~+ baryons
and the J~=O- mesons, since some discrepancy with

I M. Gell-Ms, nn, Phys. Rev. 125, 1067 (1962) and Physics 1, 63
(1964);R. P. Peynman, M. Gell-Mann, and G. Zweig, Phys. Rev.
Letters 13, 678 (1964).

I B.%.Lee, Phys. Rev. Letters 14, 6/6 (1965); R. F. Dashen
and M. Gell-Mann, Phys. Letters D, 142 (1965); 17, 145 (1965).

3%'. I. %'eisberger, Phys. Rev. Letters 14, 1047 (1965); 3. L.
Adler, ibid 14, 1051 (1965);.H. J. Schnitser, CERN Report
(unpubhshed).

4 K. Kikkavra, Progr. Theoret. Phys. (Kyoto) 35, No. 2, 1966.
' K.Bardakci, J.M. Cornwall, P. G. O. Freund, and B.W. Lee,

Phys. Rev. Letters 13, 698 (1964); 14, 48 (1965);14, 264 (1965).
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H. GENERAL FORMALISM

The assumptions on which our work is based are that
the Hamiltonian consists of an invariant part Ho plus
a term 58 transforming like the eighth component of an
octet of U(3), and that the latter is the space integral
of the scalar current transforming like sr (qtPXsq):

where bm is an unknown universal parameter. This
assumption means that the U(3) violation originates
in the mass splitting of the quark. In connection with

S8, other scalar quantities are introduced, denoted by
5;, which are the space integrals of the scalar currents
transforming like —',(qtPk;q) ps=0, 1, ,7]. If we can
calculate all the matrix elements of Ss between states
with zero momentum, the mass splittings of given
multiplets can bc obtained by the diagonalization of
the Hamiltonian (2.1).

To obtain the matrix eleme~ts we use the commu-

tators of 5; and V;,4,

P4Pj] &fiisl s,4y (2 2)

the formula was found in (I). The predictions of the
baryon mass splittings will be greatly improved. It will
be pointed. out that the splittings of the pscudoscalar
mcsons ale de%.cult to treat satlsfactollly.

In Sec. II the assumptions on which the general
formalism is based will be presented. This formalism is
used for obtaining the mass splittings and for seeing the
connection between the splittings and thc average
masses of the U(3) multiplets. In Sec. III the mass
levels of the 1 nonet and the 2+ nonet will be discussed
emphasizing the predictions for the q(1020) mass
and f'(1525) mass. In Secs. IV and V the ~+ octet
baryons together with the +~+ decuplct and ~3 octet,

,and the 0 nonet pseudoscalar (ps) mesons will be
treated, respectively. The 6nal section will be devoted
to summarizing the results obtained. A few additional
'remarks will close this scctlon.
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PV;,4, V;,4]=if;;sVs, s,

PV;, s,S;]=if;;sSs,

(2.3)

(2.4)

should be noted that all state vectors
I ) stand for the

eigenstates of Ho, so that we can use the Wigner-Eckart
theorem for' &a!S;!y):

where V;,4 is the fourth component of vector current
transforming like -', (qtX;q) and fys is the structure con-
stant of U(3). These V's are the generators of the U(3)
group with which we are concerned, and are assumed
to commute with the unperturbed part Bo of the
Hamiltonian. The relations (2.2), (2.3), and (2.4) deine
a group' U(3) X U(3) which is a subgroup of the non-
chiral U(6) X U(6). Namely, defming

we obtain
G;(~) =-,'(V;,s+S;),

CG, (+) G.(+)3=if,,„G (+)

LG.(+) G (~)]=0

(2.5)

(2 6)

The second assumption, which may, however, be
removed in some part of our arguments, is that the
group U(3) X U(3) is a "good symmetry" of the hadrons
at rest, at least in classifying the particles. That is,
when we apply S; to a one-particle state with zero
momentum belonging to an irreducible representation
of U(3) X U(3), it leads mostly to a one-particle state
belonging to the same irreducible representation. %e
refer the reader to other papers for a discussion of the
validity of the assumption. '

Now, we are in a position to calculate the matrix
elements of S;.We take the matrix element of Eq. (2.2)
between one-particle states of IIO, which have zero
momentum. Since VI„4 is a conserved quantity in the
unperturbed system, the normalization of the right-
hand side of Eq. (2.2) is readily determined. For
example, (a!Vs,4!a) must be the hypercharge of la)
times —,'V3. Inserting a complete set of states between
the two operators on the left of Eq. (2.2), we get

(8 8 8)i (8 8 8s)
(8-IS'I8.)=Fs! . I+Fs.l

i ai kT i ai '

(8 8 10'
&10 I S'I 8())=Fro! . I i etc.

EP i a i
(2.8)

As will be shown in the Appendix, we have the following
sum rules:

IFs, f'+ IFal'+ IFtl'/4 —9IFsrl'/4=3, (2.9)
—4IFsrl /5+ IFtl /4+(IFtols+ IFlo I )/2

—9!Fsvl'/20=0, (2.10)

2 Re(Fs Fs,*)+(+5)(IFto'fs—IFto fs)/2=0. (2.11)

These sum rules are independent of the second
assumption. But if the second assumption is taken into
account, the intermediate states may be approximated
by one-particle states at rest. Now suppose that la)
and !P) belong to the octet representation of, say,
(6*,3*)=8+10*,where (m, ss) stands for the representa-
tion of U(3) X U(3) and the single bold-faced number
stands for that of U(3). In this case there are 18 par-
ticles with the same spin parity but perhaps with
diGerent masses. The intermediate summation may be
dominated by 8 and 10e, and in that case the relations
(2.9), (2.10), and (2.11) can be solved to get

Fs = g(5/3) Fs =2/~ and !F10'I =8/3.
(2.12)

Some manipulations (see Appendix) lead us to obtain
another amplitude

~„& Is, l»b fs;IP&-Z, (i ~)

=if;;,(af V, .IP& (2.7). where
Gio — (/3 q (2.13)

Comparing both sides we obtain sum rules of the scalar
amplitudes. For example, let

I a) and IP& be particles of
an octet. Then the intermediate state Iy& must belong
to one of the representations 1, St, Ss, 10, 10*, and 27,
which in general may be a many-particle state. It

(10* 8 10*)
&»*.IS;!10*s&=Gto! !. (2.14)

EP i ai
Quantities (2.12) and (2.13) are enough for us to get

the eigenvalues of the total Hamiltonian. Namely,

det!P—Xf =

(8 8 8)i (8 8
ms —Bm FsJ !+F..l

ka 8 ai Ea 8

(8 8 10*i
!

—3mF)o ~
!

ka 8 ai'

8,i
ai

(8 8 10'~
!

—i)mF, o
l(a 8 ai

=0, 2.15
(10* 8 10*

,.-3.G,.I'
(a 8 ai

where n stands for the isospin and the hypercharge of
the particle concerned. Note that the unknown param-
eters contained in Eq. (2.15) are ms, mtoi, and Sm. By

s The group U(3), which commutes with Ho should be dis-
tinguished from that when we refer to U(3) XU 3).

the average mass m; we mean the expectation value of
Ho in the given state. Equation (2.15) gives all mass

~ Notations in the following papers are used throughout this one.
J. J. de Swart, Rev. Mod. Phys. SS, 916 (1963); Nuovo Cimento
31, 420 (1964).



levels of 8 and 10* if we assume the three parameters
are known. Conversely, if we give the three mass
dlGcrenccs~ sayq of 8, thc posltlons of thc members of
10* are completely predicted. For other multiplets of
U(3) X U(3) the levels can be obtained along the same
linc s.

The essential point of our model is that the quantity
&n is common to all multiplcts regardless of the spin
and parity of the particles. s In the following sections
we will show that any multiplet gives bm= j.40 MCV

, j.65 MCV.

NE AN N N

Masses of the classical vector mesons (p, E*,co, s,nd @)
and the recently discovered tensor mesons LE*(1430),
A, (1310), f(1250), and f'(1525)$' are very good
examples of our model. If we assume that both multi-
plets are represented by (3,3*) in U(3)XU(3), we get
the fo/lowing equations,

m, —X, (Q-,')8m

{g;)8m,-m,+ ',v38m-

E=m, (C3/30+—-,'v3)8m,

A= m, —(VZ/15)8m,

z= ~+ (v3/15)8m,

=-=m,—{v3/30—',v3)8m.

(4.2)

splitting, where the value of bm was also a little too
large ( 180 MeV). As another candidate we take
(15*,3)=8+10*+27. All these must be —,'+ baryons.
Matrix elements of 58 are obtained by a straightforward
calculation, and the diagonalization of the total
HaImltoIDan gives thc exact Inass relations. Herc,
however, we calculate the mass levels in the perturba-
tion theory assuming 8m/m o and 8m/m;&&1. Second-
order perturbation calculation gives

Z.(8)=m, —8m(8. ( S,(8.)
+L(8m)'/(m8 —mlo )j ( (8, ( Ssi 10*)i'

+t (Bm)'/(ms —mmr) ji (8 [S8)27) i'. (4.l)

The average masses ns~o. and m2y are supposedly very
large, so we may neglect the second-order terms. Then
the octet baryons are given by

for I=O, I'=0, and

p ol' A 2= ms 31/38m—1

E* or E*(1430)=m8+611/38m.
(3.2)

(tan8) 1-——1.24, (tan8) &+= 1.95,

while the experimental values are

(tan8) I- p.
——1.26 and (tan8)1+, P.

——2.00.

(3.3)

The fact that nearly equal bm's are obtained for j.—

and 2+ encourages us to continue the analysis.

In (I) the baryon octet was assigned to an (8,1)
representation, and turned out to be a pure f-type

Taking as inputs thc masses of E, p, and eo foI' 1, and
of E~(1430), A2(1310), and f(1250) for 2+, respectively,
we obtained the P mass= 1031 MeV and 8m= 148 MCV
for 1 „and the f' mass= 1528 MeV and 8m= 140 MeV
fol' 2+. These Illasscs of Q and f ale ill good agrcclllcn't
with the observed values. Of course ma takes diGcrent
values for 1 and 2+, respectively. %C can also predict
tile la'tlos of (jan-6) mlxlng and of f fxnlxlllg w-ltllout

kllowlllg 'tllc physlcRI IIlssscs of f allll f slllcc wc
already know the OR-diagonal elements in our method.
Thc rcsGlts arc

Taknlg g and. g as Inputs, we obta~n 8m=160 McV,
m8= 1137MCV, A= 1118(1115)MeV and Z = 1155(1190)
MCV. The 6gures in the parentheses are experimental
values. They agree very well with the calculated values.

One might say about the above argument that the
assumption of U(3) X U(3) as a good symmetry for the
~+ baryons would be violated, that the baryons should

be assigned to (8,1) rather than to (15*,3) in the lowest

order, and that the contributions from the low-mass

continuum should be taken into account as the violation
cGcct. This is onc possibility. Herc wc rather assign
the 12+ baryon to (15~,3). Using quarks (3,1) and anti-
quarks (1,3*) as a guide for constructing representa-
tlolls, lt. ls caslly sccI1 'tllat tlm sta'tc (15,3) CBI1 bc
composed of 6vc quarks and two antcquarks
(3'=15~+ ~ 3~'=3+ ). The F/D ratio of the
mass spllttlIlgs ls glvcn fairly well ln this asslgnIncQt.

As other candidates wc 11Rvc examined (6 ~3 )
=8+10~ and {8,10*)=8+10*+27+35*.The results

of a calculation for the case of (8,10~) are as follows: If
wc usc thc Inasscs of ~ Z and A. as Inputs lt glvcs
111'=900(940), Q+= 1244, E*=1462, Z= 1466, and

K~=1536. Ã* may be identified with the observed
111'*(12+)(1480), but the predicted 0+ is stable for the

strong interactions. The situation is similar in the case
of (6~,3*).The constant 8m is 165 MeV for (8,10~) or
230 MCV for (6*,3~). The experimental absence of 0+
and the large calculated value of bm seem to rule out
thc possibility of these two I'cpI'cscntations.

8 This was Grat suggested by S. Ishida from a difkrent point of
view. Soryusiron Kenkyu (in Japanese) 30, 3'l2 (1964).' S. L. Glashow and R. H. Socolow, Phys. Rev. Letters 15, 329
(1965); S. L. Glashow, Tokyo Summer Institute of Theoretical
Physlcsp Olsos JaPans I965 C,unPubl1shed),

'0 Moreover if the new term 80 in addition to 88 is taken into
account, the ratio of the average mass of the &~+ baryons to that
of 3+ baryons is reasonably interpreted under a certain assump-
11011.LDctR118 w111 b8 pllb1181Nd Pl'Ogl. Tllcozt.'t. Plus. (Kyotol 1&g

one of the present authors (Y.- L).j
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We may remark that the -,'-+ decuplet and —,
'—octet

LZ*(1810), F*(1512), I'I*(1660), and Yea(1520)j give
885= 165 McV Ill both cases If wc RssIgI1 tllcII1 to (10,1)
and (8,1), respectively. 4 The octet must correspond to
a pure f-type splitting in our model. The discrepancy
of Fee(1520) with the prediction suggests that the ss

baryons might be (8,1)+(1,1) and. another Fsa might
be found at 1660 MeV which is degenerate with Y1*.
Finally we may remark that the three multiplets have
given almost the same bfIs, though it is 10% larger than
in the case of mesons.

V. 0- MONEY

Finally we go on to the case of 0 nonet mesons
fE, E, s., g, X(959)j, where the possible representations
are (3,3*)=1+8, (6,6*)=1+8+27, etc Firs. t we con-
sider (3,3*).For E and s. we can easily write down the
following relations

representation is not irreducible. However, if the 0-
mesons really belong to a higher dimensional representa-
tion than (3,3*) or (6,6*), then this approach may be
meaningful as the approximation to it. Now using the
same value for bm, we can consistently 6t the masses
of E, x, q to the observed ones, but for X a too large
value is obtained, i.e., X.=2701 MeV. Conversely, if we
fit X to the recently discovered resonance (1420 MeV),"
we obtain the following result; E=498 MeV, g=510
MCV, Rnd s =290. So If We Rsslgll 'tile (EErr) I'CSO11RI1CC

(1420 MeV) rather than X(960) to 1 of (3,3*), this
result is satisfactory. Although the pion mass is larger
than the observed one, it is smaller than that in the
(3 3*) scheme (368 MeV) "

All the trouble comes from the fact that among the
octet members the pion has a very small mass, and to
our knowledge no one has succeeded in dealing satis-
factorily with this difhculty by means of. a lineal mass
relation.

There occurs mixing between g and X and the eigen-
value equation for them is

mI —)i, —(gf)lirIs
=0.—(gs')Bws, ms+ (Q's)bm —)t

(5 2)

Taking &8= j.50 MeVq which Is cons1stent with the
values for the vector mesons and baryons, and using
the observed values of E and X as inputs, the masses
of q and x can be predicted. The resuII;s are

ri=506 MeV, 7r=368 MeV. (5.3)

Tile rf Inass Is prcd1ctcd wltllIII Rll error of 8%, but wc
cannot be satis6ed with the value of the m mass. If we
use another value larger than 150 MeV for bm to
increase the mass diGkrence of E and ~, then the q ends
up with a smaller mass, and the situation cannot be
improved.

ln the case of (6,6*),using the same value for bm and
taking the approximation of m27 —+ ~,"we can obtain
a mass difFerence of E and m. which is 7/5 as large as
that for (3,3*).But if X is 6xed at 960 MeV, the pre-
dicted value of g is 465 MeV, which is too small, and
the difhculty remains.

Another possible way to deal rather satisfactorily
with this situation is to assign the 0 mesons crudely to
(3,3e) and take into account the effect of very massive
scattering states by including the contribution from 27
of the unperturbed state. "In this approach the commu-
tation relations (2.2)-(2.4) are surely satisfted, but this

» Keeping m27 Gn1te, we can obtain a set of solutions, E=S1/,
~=12fp', q=530, X=930, but the masses of the members of 27
appear too small (the average mass mg7=300 MeV) and it is very
diKcult to reconcile these results with the present experimental
data.

'2 In this case mq7 also becomes smaller than m8, if we look for
a solution with m27 f1nite, so that we take the very massive states
(mrz~ ~) as 27

VI. CONCLUSION

We have investigated the relations of the mass
splittings for ~+, ~~+, ~3, 0—,1,and 2+ families, assuming
that the U(3)-violating term in the Hamiltonian is the
eighth component of the scalar current, and that the
positive parity algebra generating U(3) )(U(3) is a good
symmetry of the hadrons at rest. The fact that most
of the known multiplets give almost the same value of
5ns may be a strong support to our model, The predic-
tions are shown in Table I. One of the interesting points
is the interrelation between the meson and the baryon
masses when the universal constant bm is given. Such
a relation cannot be predicted by, say, the classical
SU(6). Miyazawa ef al. and Cocho sf el.rs tried to unify
the mesons and the baryons under a higher symmetry
SU(9), and obtained some mass formulas relating them.
But a uni6cation of that kind encounters a serious
difhculty if a correct treatment of the statistics is
attempted.

In Table II we show the masses of the particles of
the various multiplets that are predicted, using the
same value of bns (8m= 160 MeV).

e may remark that the quadratic mass should not
be used in our formulas, since we have estimated the
expectation values of the Hamiltonian between the
states at rest. In the case of the mesons, the Gell-Mann-
Okubo formula has been applied. to the quadratic
masses in conventional treatments. In our opinion it
should be applied to the linear masses and should be
calculated by adding the second-order correction. In

» A. H. Rosenfeld, A. Barbaro-oaltieri, W. H. Barkas, : P. L.
Bastien, J.Kirz, and M. Roos, Rev. Mod. Phys. 37 633 (1965)."If we add the contributions from the 10 and 0* states both
masses of v and g can be determined to Gt in with the observation.

'6 H. Miyazawa and H. Sugawara, Progr. Theoret. Phys.
(Kyoto) M, 771 (1965) and 34, 263 (j.965); Q. Cocho and E..
Chacon, Phys. Rev. Letters 14, 521 (1965); Y. Iwasaki, S.'

Matsuda, H. Miyazawa, H. Okamura, and H. Sugawara (private
communication); G. Cocho, Trieste (unpublished report).
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TABLE I. The veri6cation of the universality of bm and the predictions of masses. The numbers
in parentheses stand for the observed values.

1-; (3,3*)=1+8
2+; (3,3') =1+8

$+ (15*3)=8+10*+27
g+; (10,1)=10

—,'; (8,1)=8
0; 1+8+27{scatt)

Input (MeV)

E~=891 p=763. au='N3
X~= 1430 2 = 1310 J'= 1258
X=940; =1315;mip', m27&2000

%+=1238 F '=1385
%*=1512 =-'= 1810
8m=150 (EEn) =1420; E=498

Output (MeV)

y =1031(1020); an&=148
f' =1528(1525); &m=140
x=1118(1115);x=1155(1190);Sec=160

a+—™+==*—F,*=145(145) hm =165
I,*=1661(1660) I",*=1661(7); S~ =165

e=510(549); e =290{140); ~ ~ ~

TAsxz IL The mass levels of the hadrons +hen bm =160 MeV. The numbers in parentheses stand for the observed values.

1-; (3,3') =1+8
2+; (3,3') =1+8

$+ (15',3) =8+10&+27
$+ {10,1)=1Q
~- (8,1)=8

0 (6 6') = I+8+27

Input (MeV)

E~=891 ca=783
E*=1430 f=1250
N =940; tnlP', m27 &2000

%*=1518
X=498; esi,m27&3000

Output (MeV)

q = 756(N3); y =1040(1020)
f'=1551(1525) A =1291(1310)
A = 1118(1115);Z =1155 (1190);"=1315(1315)

a-—„=*==*—I",*=1;*—Ã*=140{145)
F|~=1660(1660); Fo*——1660(P); *= 1800(1810)

e =562(549) n =304(140)

our model, however, a satisfactory prediction of the
pion mass couM not be so obtained. This may come
from (i) the violation of the dynamical symmetry of
U(3)X U(3) and/or (ii) the wrong choice of the group
representation for the ps meson. It is our feeling that
the light particles such as ps mesons would not be
consistent with U(3)X U(3), since the internal kinetic
energy part, which is not invariant under our group,
vrould become comparable to the invariant part under
the group.

F1nRlly we v7ould like to remark that 1n our approachL

we cannot go so far as to predict all the average masses
of the various multiplets. However, if we are to be able
to 6nd R g1'oup or an Rlgebr"R which may plobably be
noncompact that can predict all the average masses of
the 6nite or inhnite series of multiplets, then our method
can predict the mass splittings of all the multiplets only
if a single-value Bm is given.

APPENDIX: THE MATMX ELEMENTS OP 8;

In evaluating the matrix elements of 8;, vte used turbo

methods. In one, @re used the sum rules obtained by
employing crossing matrices. In the other, we calculated
the matrix elements explicitly by tensor techniques.

1. Sum Rules

-4iF"l /5+lF. l /4+(lF .l'+ lF 'l')/2
—9lF,pl'/20=0, (A2)

2«(F.,F..*)+l(v'5)(lF 'l'- lF .I') =0,

i6G:+iOG,P+9G,,2—35G,,t=60, (A4)

where F's have been dered in the text, and

pip* 8 Ci
(C l8 lio*p)=Gcl

5 IS i ni

When a multiplet is represented by (3,3*), for
example, this method is simple and powerful. In this
case, only iFe, l' and lFil' are not zero. So using
Eqs. (Ai), (A2), and (A3), the matrix elements are
determined uniquely except for trivial ambiguities.

2. Exyhcit Calculation

To obtain the matrix elements of 8; it is merely
necessary to calculate the matrix representation of the
generators of U(3)X U(3). For example we calculate
the matrix element for the case of (6,6*).

Taking one of the states of (6,6e), say, s+(F=O,
I=i, I8——I), we write itin terms of U(3)XU(3) as

s+= (g~)(2'(»)g(ttj+2'(22)g(t2)+2'(23)g(tsj)
& (A$)

%e obtain sum rules by rewriting the left-hand side

of Eq. (2.2) by means of crossing matrices and com-

paring it arith the right-hand side. For reference we

write down here the sum rules in the case that the initial
and anal states belong to 8 L(A1)-(A3)$, and 10
L(A4)j.

vrhere T and S are the tensors transformed by G+ and

G, respectively. Let us calculate (s+lSale+), the
expectation value of

Se=-',V3(F+—F ).
Here F+ and F are hypercharge operators LF+

lF, l'+iF, l'+lF i'/4 —9lF, l'/4=3, (Al) =xv3G+g.
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(8 8 Sg
&~+Is, l~+)=z„l

kg+ g ~+

On the other hand, from the transformation property Putting Eqs. (AS) and (A6) into the left-hand side of

of S;, we can write Eq. (A7), performing tensor calculations, and com-
paring the left-hand side with the right-hand side, we
find Ps, s~-—.

(A7) The other matrix elements can be obtained along the
same lines.
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Calculation of the Nucleon Magnetic Moments by Dispersion-Theory Methofis
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The magnetic moments of the neutron and proton are calculated within the framework of the S-matrix
perturbation theory recently developed by Dashen and Frautschi. In the present context, this method ex-
presses the magnetic moments in terms of a dispersion integral involving photopion production. Evaluation
of this integral in terms of contributions from appropriate low-mass intermediate states yields results for
the individual magnetic moments which are larger than the experimental values by about a factor of two.
The calculation does, however, give an approximately correct value for the ratio of the isovector moment to
the isoscalar moment, and a value for the isoscalar moment that agrees with the experimental value to within
about a factor of two.

I. INTRODUCTION

ECENTL Yp Dashen and Frautschi" have sug-
gested a method for finding the changes in the

residues and positions of bound-state poles in the S
matrix when the strong interactions are perturbed by
the addition of another, weaker force. Dashen' applied
this method to calculate the proton-neutron mass
diGerence and obtained a result in good agreement with
experiment. It is our purpose in this paper to apply
these methods to calculate the magnetic moments of
the nucleons.

To discuss the nucleon magnetic moments from this
point of view, we need to study a scattering process in
which the magnetic moments appear as a residue of a
pole in the scattering amplitude. Photopion production
in the J=-,'+, T=-,' channel has a nucleon pole whose
residue, apart from kinematic factors, is proportional
to the nucleon magnetic moments. Therefore, this is an
appropriate process to study. Note, however, that it is
the residue of the photoproduction amplitude, not a
perturbation on this residue, which contains the
quantity we want to calculate.

To understand in what sense this may be regarded as
a perturbation calculation, one may consider a two-

*National Science Foundation Graduate Fellow.
t Minnesota Mining and Manufacturing Corporation, Post-

Doctoral Fellow.
'R. F. Dashen and S. C. Frautschi, Phys. Rev. 135, 81190

(19m).
'R. F. Dashen and S. C. Frautschi, Phys. Rev. 137, 81318

(1965).
~ R. F. Dashen, Phys. Rev. 135, 31196 (1964).

channel S matrix in which channel 1 is the J=-,'+,
T=-,'~X state, and channel 2 is the J=-,'+, T=-,'yÃ
state. %hen electromagnetism is turned o8, channel 1
is coupled only to itself, through the strong interactions,
and there is no scattering in the 22 amplitude. This
defines the unperturbed problem. If the electric forces
are turned on, and only terms offirst order in e are kept,
then the S matrix is chueged only by the appearance of
new nonzero matrix elements corresponding to photo-
production, which are of order t,. It is in this sense that
we speak of carrying out a perturbation calculation
here. 4

It may seem strange to think of the magnetic
moments as in any way connected with an electro-
magnetic perturbation, because it is, of course, true
that the magnetic moments are closely related to the
nucleon form factors at q'=0, which are determined by
the strong interactions alone. It is, therefore, important
to note that the basic formula to be used here for the
magnetic moments can also be derived in a way which
makes it clear that the magnetic moments are not of
electromagnetic origin (see Sec. II).

Thus, we consider the J=-,'+, T=-,' partial-wave
photoproduction amplitude. One would not normally
expect to be able to determine the residue of this
amplitude at the nucleon pole by purely S-matrix
methods, simply because analyticity alone is compatible
with any value whatever for this residue. However, if
we require a suitably rapid convergence at high energies

This point is discussed in Ref. 2.


