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The generation of echoes in classical systems is discussed with particular reference to cyclotron echoes in a
plasma. A system of oscillators subjected to a sequence of pulses will produce an echo if the interaction con-
tains appropriate nonlinear terms. A formal description of the echo mechanism is given for the case where
nonlinear effects are confined to the times at which pulses are present, with emphasis on wave-propagation
aspects. Diagrams are introduced for the classification of various nonlinear processes. The generation of
echoes in a plasma interacting with microwave pulses propagating normal to an applied magnetic field is
analyzed in a small-signal approximation. Echoes are found to arise from nonlinear terms associated with the
convective motion of the electrons, and from the interaction with the magnetic component of the microwave
pulses. Equations for the echo amplitude, in terms of the pulse widths and intensities, are given for transverse

and longitudinal propagation.

I. INTRODUCTION

HE recent observation of an “echo” (an analog to
“spin echo”) at cyclotron resonance in a plasma'
is interesting on several accounts. The magnitude of the
echo indicates that the interaction must involve the
electron orbit, rather than the spin, and therefore
represents an entirely new effect. In addition the cyclo-
tron echo provides a direct means of measuring and
displaying relaxation processes such as momentum
transfer, energy transfer, and diffusion. In itself it
provides an example of a strictly classical system dis-
playing a very pronounced manner a phenomenon
normally associated with two-level quantum-mechanical
systems.

The reader is assumed to have some familiarity with
Hahn’s original paper? on nuclear-spin echo. Briefly, a
system of nuclear spins placed in a magnetic field is
excited by a pulse at resonance and then left to precess.
Because of slight inhomogeneities in the field, the phases
of the precession of individual nuclei become rapidly
incoherent and the macroscopic precession of the total
magnetization disappears. At a time 7 after the first
pulse another pulse is applied, which causes a rearrange-
ment of the phase of individual nuclear precessions, so
as to cause the reappearance after the lapse of an ad-
ditional interval 7, of a resultant component of the
magnetization. This magnetization radiates a short
electromagnetic pulse, referred to as an echo. Weaker
echoes appear at other integral multiples of 7. In a
similar manner, a sequence of three pulses gives rise to
an echo whose separation from the third pulse equals
the separation between the first two pulses. The very
graphic description of the spin echo mechanism which
Hahn presents is based essentially on the Bloch equa-
tion,® which treats an ensemble of spins as a classical
system of precessing gyroscopes. Hahn’s description
can be easily extended to any ensemble of two-level
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quantum-mechanical systems. In fact, as shown by
Feynman,* the evolution of any two-level system can be
conveniently described in a fictitious three-dimensional
space, where it obeys gyroscope equations completely
analogous to those of a spin vector in real space. The
various echo phenomena observed in the past, e.g.,
electron-spin echo,® echo from optical transitions,® and
ferromagnetic echo,” all fall into this class, although the
last of these involves a more nearly “classical” many-
body problem.

A plasma, in contrast to the above, represents a truly
classical system. At cyclotron resonance, its quantum
mechanical description (in the nonrelativistic domain)
is essentially analogous to that of an ensemble of
harmonic oscillators with an infinite number of equally
spaced energy levels, that is, systems as unlike as
possible to two-level systems. Moreover, under normal
conditions the average quantum number of the exci-
tation is enormous. A classical treatment is therefore
required.

One must first point out the obvious fact that in a
truly linear system there is no echo. To clarify the use
of the term linearity, let us consider the interaction as
taking place in a “black box,” with a series of pulses
impinging from the outside. Eachpulsebyitself generates
a response, e.g., in the form of a decay function. If it is
now assumed that linear superposition holds, then a
sequence of pulses will give rise to a response which is
simply the sum of the individual responses and no
more. An echo can appear only if the response to a given
pulse depends on the “preparation” of the medium by
previous pulses. This requires some nonlinearity. The
deviation from linearity may take diverse forms, and the
behavior of the echoes will vary accordingly. Experi-

¢R. P. Feynman, F. L. Vernon, Jr., and R. L. Hellworth, J.
Appl. Phys. 28, 41 (1957). A step in the opposite direction is
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formalism for spin echo; see E. T. Jaynes, Phys. Rev. 98, 1099
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ments so far seem to indicate that in the formation of
cyclotron echoes in a plasma more than one process is
involved. The present discussion will confine itself to
one particular class of nonlinearities, namely those
which involve the direct interaction of the plasma with
electromagnetic pulses, which relate to such other
phenomena as harmonic generation and mixing.® This
case presents the direct classical analog of the spin-echo
process.

Since the nonlinear equations in question are not
soluble in closed form, the treatment employs various
approximations in order to simplify the mathematics
and to expose the underlying physical principles. The
presentation is thus confined to (a) a formal description
of the echo mechanism in a system of oscillators whose
interaction with an accelerating field deviates from
strict linearity, and (b) an analysis of some nonlinear
effects of this type in a plasma.

II. FORMAL DESCRIPTION OF ECHO PROCESS

In this section we deal in a formal way with some
general aspects of echo generation in classical systems.
The phenomena which we consider are generalizations
of Hahn’s spin echo,? with an unspecified oscillator in
the role of the nuclear spin. To simplify the discussion
we asume that the system is almost linear and regard
the nonlinear effects as perturbations to be treated in the
small-signal approximation.

The system under consideration is a very large
ensemble of oscillators whose natural frequencies are
spread in a narrow range (Aw)max about a central fre-
quency wo. [ In the spin echo case, (Aw)max would corre-
spond roughly to Hahn’s 1/7%*.]] The oscillators might
consist of atomic entities, e.g., individual electrons, or
of suitable normal modes in an interacting many-body
configuration. Excitation is produced by a series of
short pulses at wo, of duration £, such that ¢, (Aw) max<<1.
For a pulse of such short duration the excitation of
each oscillator seems in effect to occur at resonance,
since the Fourier spectrum of the pulse incorporates all
the natural frequencies of the system. Between pulses,
however, the phases of individual oscillators drift
apart, resulting in the disappearance of coherent
macroscopic moments after times large compared to
1/(Aw)max. During these intervals the excitation of an
oscillator can be described in terms of a complex
amplitude 4 with a time dependence of the form
exp[ —iwod—iAwt], where Aw is characteristic of the
individual oscillator. (This behavior is of course modi-
fied by relaxation mechanisms of various kinds, e.g.,
collisions or diffusion.) Since #,Aw<1, {Aw can be con-
sidered as constant for the duration of a pulse. We will
refer to Awt as the relative phase angle, or when no
confusion is possible, simply as the phase angle of the
oscillator.

The macroscopic moment at any time is obtained by

8 R. F. Whitmer and E. B. Barrett, Phys. Rev. 121, 661 (1961).
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summing the amplitude 4 for all oscillators, or, in
effect, integrating over the range of values assumed by
Aw. For (Aw)maxt>1, such an integral is normally
negligible since the oscillators can be expected to be
evenly distributed among all phases. However, ex-
ceptions to this statement may occur at particular
prescribed times. These arise in the following manner.
Suppose we start with a pulse at /=0, and assume that
it imparts equal amplitudes to all oscillators. Consider
the ensemble at a time /=7, and in particular, that class
of oscillators whose relative phases are within a narrow
range about some angle 6. For 7(Aw)max>>1 this class,
henceforth referred to as a 6 class, does not correspond
to a single natural frequency. In fact, it includes a
large selection of natural frequencies distributed over
the entire available range. Hence, at times other than
t=r the phase angles in this class do not coincide and
the total moment of the class vanishes. It will be also
noted that at multiples of ¢, i.e., when /=77, the phases
in a given 6 class will coincide again at a value 6. To a
second pulse, introduced at =1, all oscillators in a class
will look the same and will therefore manifest an identi-
cal response. The total moment imparted to the 6 class
by the second pulse will rapidly disappear as oscil-
lator phases separate to reappear only at integral multi-
ples of 7. (This consideration must be .somewhat
modified if the natural frequencies are themselves
affected by the pulses.) Thus, if a macroscopic moment
(which is the sum of all §-class moments) is to appear,
it can do so only at /=#n7, when each of the classes can
contribute a finite moment. Similar considerations apply
also to 3-pulse sequences. The existence of a finite
macroscopic moment is of course not guaranteed and
depends on the presence of a nonlinear mechanism which
in some way will cause different 6 classes to behave in a
different manner.

In a first attempt to understand echo processes it is
useful to assume that the nonlinearity is a small per-
turbation, so that at least over an interval of many
cycles one can employ the linear concepts of natural
frequency and phase angle. The following are examples
of echo-producing nonlinearities :

1. A dependence of the natural frequency on ampli-
tude. Since the amplitude after pulse 2 is a function
of 8, the frequencies of various 6 classes will have shifted
by varying amounts. Each 6 class will return to coinci-
dence at =27, not at the angle 20 but ataslightly shifted
angle. This results in bunching of the phases and in
the appearance of a resultant moment.

2. A dependence of dissipation on amplitude, e.g.,
through an amplitude dependent collision frequency.
This process, suggested by Gordon,? involves the selec-
tive elimination, after pulse 2, of those 6 classes which
correspond to high collision frequencies.

3. Nonlinearity confined to the interaction of the
oscillator with the pulsing field. This process differs from

? J. P. Gordon (private communication).
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the mechanisms of 1. and 2. in that the echo effect is
instantaneous, i.e., it does not require a finite length of
time 7 in order to manifest itself. Of the various
processes, this type is closest to representing the classi-
cal analog of spin echo.

In the present work we shall deal exclusively with
processes belonging to the third type. Accordingly, we
assume that the oscillators are strictly linear in the
absence of a pulse. Moreover, we assume that the non-
linear interaction with the pulse is nondissipative, and
can be treated in a small signal approximation.

The principal manifestation of this type of nonlinear
interaction is the generation of “beat” signals whose
phase angles are sums and differences of the phase angles
of the various disturbances present in the medium.
Such beats arise in the formalism whenever a product of
signal amplitudes appears in the equations of motion.
The relation of these beats to the echo problem is sum-
med up in the following statement: whenever a par-
ticular beat-signal amplitude is independent of the
value of Aw characterizing the individual oscillators, an
echo will appear. This is because integration over all
Aw of the ensemble will then amount to integration over
a constant amplitude, and this must yield a finite
moment. The identification of beat signals possessing
this property therefore constitutes the first step in
searching for echo conditions. The following example
will clarify this procedure.

Consider the case of the so-called 3-pulse sequence.
Pulse 1 at time ¢=0 is followed after an interval 7 by
pulse 2, to be succeeded by pulse 3 at /=T Consider
the phase angles associated with excitations of a par-
ticular oscillator at the time ¢{=T of pulse 3. The
excitation produced by pulse 1 will have acquired the
phase angle 6,=a+wi+AwT, that produced by pulse 2,
0:=B~+wi+Aw(T—7) and pulse 3 will have the phase
03=+-+wt. (Here we have made use of the fact that, for
the duration of the pulse, Awt can be regarded as con-
stant. @, 8, and v are phase constants associated with the
three pulses. Since they appear equally in the phases of
all oscillators they could as well be set equal to zero.)
Consider now a beat signal of phase 6., obtained by
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adding 6 to 65 and subtracting ;. We find
.= 02+03— 01 = (B+v—a) +wi— Awr

at the time of the third pulse. After the lapse of another
interval 7, 6, will have again increased by the drift
angle Awr, and will equal

0= (B+v—a)+wt.

Thus, at =7+, there appears a component whose
phase is independent of the individual oscillator, and
hence an echo.

In the mathematical formalism the beat signals arise
from products of exponential terms, each multiplication
producing a sum or difference of phase angles. The beat
signal corresponding to the above echo results from the
combination of three phase angles associated with each
of the three pulses. It therefore corresponds to a third-
order term in the expansion of the nonlinear interaction,
and the echo is proportional to each of the three pulses.

A more elegant formal approach to the combination
of phase angles can be obtained by considering the wave
aspects of echo generation described in the next
paragraphs.

Wave Picture of Echo; Diagrams

The generation of an echo in a plasma involves the
interaction with a propagating electromagnetic wave,
which establishes a phase pattern in the plasma. It is
therefore useful to provide a visualization of the echo
process in the context of wave propagation. At present
we shall view the medium as consisting of independent,
localized oscillators. A pulse traversing the medium
leaves in its wake a disturbance characterized by the
local resonance frequency w, and the propagation
constant &y of the pulse. We now assume that v, varies
slightly within the medium, and for the sake of sim-
plicity confine this variation to be along the direction of
propagation (the generalization to arbitrary variation
is easily made). At the end of the pulse each oscillator
continues to oscillate at its own natural frequency, with
a phase angle given by

0=Fkox—w.(x)t, (1)

where ¢ is the time elapsed after the pulse.

Since w, is now itself a function of x, the apparent
wave number (or wavelength) varies slowly with time.
One can define a local, instantaneous wave number £,
by putting

k=030/3x=ko—w, (x)t, (2)

which, during short intervals, describes properly the
phase relations in a given neighborhood of #, the de-
phasing of the medium is thus displayed as an adiabatic
change of the wave number. Now in order for themedium
to reradiate, a disturbance in the medium must itself be
characterized by an identical wave number ko; other-
wise, the radiation is eliminated by destructive inter-
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ference. Hence, an echo indicates the reappearance in the
medium of a wave with 2= Z,.

The nonlinearity which comes into play in the inter-
action of the pulses with the medium is displayed in the
form of beat signals. We have assumed that the inter-
action is lossless. It is a well-known fact from the theory
of parametric systems that in such interactions both
frequency and wave number must be conserved.!® In
other words, if we characterize each wave by the pair
(w,k), then the outcome in mixing 7 such pairs (wi,k1),
(wa,ke2), * + +, (wmykm) are waves of the form (#w1+n9ws
+ - A Bmom, makrtnoket - - - +nnmkn), where the n;
are integers.

A graphic representation of the possible processes is
given by the familiar diagrams representing each wave in
terms of a “quantum” characterized by a given (w,k)
pair. At a vertex (i.e., at the time of a pulse) such
“quanta” combine to give various mixing products,
such that the sum of all w’s and of all #’s is conserved. It
should be noted that conservation applies only in the
case of pulses which are short compared to the dephasing
time. Between pulses, the value of %2 for each wave
varies according to Eq. (2). An echo consists of a mixing
product represented by the pair (wo,k0) at the time of its
appearance.

Examples of echo processes are described in Figs. 1
and 2. Figure 1 represents a diagram for the 2-pulse
echo. Pulse 1 at {=0 produces a wave (wo,ko). By the
time ¢= 7 the phase of this wave has drifted and it is now
described by (wo,ko—w’7), where w’=0w,’(x), for short.
The mixing process at {= 7 is given by the equation

2(wo,k0) = (wo,ko— ')+ (wo,ko+w'T).

The quantum (wo,ko+w’7) then changes into (wo,ko) at
t=27 to give an echo. The diagram actually represents
the stimulated emission of a quantum at (wo,ko—w’f) and
an “idler” (or Raman) quantum at (wo,ko+w’t), and
requires for its occurrence the presence of the stimu-
lating quantum (we,ko—w's).1

Figure 2 represents two of the possible diagrams
describing a 3-pulse sequence. The first, (a), is ana-
logous to the diagram in Fig. 1. The interaction occurs
entirely at the time (=7 of pulse 3, and the role of
pump is played by the combination of a quantum
[wo,ko—w’ (T— )] arising from pulse 2 and a quantum
(woyko) from pulse 3. The second process, (b), involves
an interaction at i=r in which a pulse-2 quantum,
(woyk0), splits into 2 quanta, (we,ko—w'r) and (0,w'7).
The latter pair presupposes the existence in the medium
of zero-frequency (dc) resonances, and such resonances
do in fact exist in a plasma. The wave number of this
dc wave is unaffected by the phase drift associated with

0 See, e.g., W. H. Louisell, Coupled Mode and Parameiric Elec-
ironics (John Wiley & Sons, Inc., New York, 1960), Chap. 5.

11 The analogy to parametric mixing (or stimulated Raman
scattering) is obvious, with pulse 1, as modified by the drift
period, in the role of signal, pulse 2 (or rather its second harmonic)
in the role of pump, and the echo in the role of idler.
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the spread of natural frequencies at wo, and therefore
remains intact during the drift period. At the time
t=T, it combines with a quantum (wo,ko) of pulse 3 to
give the echo. In either mechanism, the function of
pulse 3 is to retrieve the information relative to the
phase of individual oscillators at {=r, and restore it
with opposite sign. Between pulse 2 and pulse 3 this
information must be stored in some manner, and it is
here that the chief distinction between the two processes
is displayed. In the process of Fig. 2(a) the information
is stored in terms of the amplitude of the oscillation,
which depends on the difference between the phase of
pulse 2 and the phase of the oscillation just prior to
pulse 2. In the process of Fig. 2(b) the information is
stored in the amplitude of the dc resonance.

In similar manner one can describe higher order
echo processes. For example a second echo (at time
t=37) in a 2-pulse sequence can (if we ignore dc modes)
be described by a fifth-order diagram. Three quanta
(wo,k0) combine with 2 quanta (wo,ko—w?) at time ¢=7
to give, among others, a quantum (wo,ko+2w’r) which,
at =3, gives rise to an echo. The procedure can also
be extended to signals at several frequencies. For ex-
ample, a pulse at (wo,ko) followed by a pulse at the
second harmonic, (2wo,2k,), will give rise to an echo
at the fundamental.

The Echo Coefficient

The wave formalism developed above enables one to
select in a given nonlinear expansion those terms which
can be expected to give rise to an echo. The nonlinear
interaction is, however, a property of the individual
oscillator. For the type of echo processes discussed
here, one can ignore the initial and final drift periods
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and describe the echo in terms of the response of any
particular oscillator to the given sequence of pulses.
This is done by introducing a so-called echo coefficient
which relates the echo-generating component at the
end of the last applied pulse to the amplitude of the
original disturbance.

In the following we refer to the pulse (or pulses) whose
echo is reproduced as the signal pulse and to the remain-
ing pulses as pump pulses. We are concerned only with
the latter, since the echo mechanism is implicit in the
relation which these pulses establish between the initial
and final excitation of an oscillator, a relation akin to a
partial time reversal.

Let the initial excitation at the time of arrival of the
first of the pump pulses be given by 4 ; exp(—iwet) and
at the end of the last pulse by A4 ; exp(—iwef), where the
phase-drift term exp(—7Awt) is included in 4;and 4.
We shall define the echo coefficient by the expression

S=YAsA:;/3A*4;, €)

where 4;*is the complex conjugate of 4, and where the
summation is over all oscillators. That S indeed
measures the effectiveness of the pulses in generating
an echo can be seen as follows. Suppose that a short
signal pulse arrives at /=0, to excite a uniform real
amplitude 4 which is the same for all oscillators. Let 4;
represent the excitation of a particular oscillator at the
time 7, i.e., just prior to the pump pulses. Then

A=A exp(—ilwr),
and according to (3)
S=(1/nAo)A ;Y exp(—ilwr),

where 7 is the number of oscillators. Now 4 s exp (—zAwT)
represents the amplitude of the oscillator at a time 7
following the last pulse. Hence >_A4 ; exp(—7Awr) is the
echo moment at that time. On the other hand n4, is
the initial moment. S therefore represents the ratio of
the echo to the original signal. The calculation of an
echo thus reduces to that of the echo coefficient S.

In general A, is given as a function of initial

conditions;
As=f(4,45), 4

where the function f is determined by the nature of the
pump pulses. (The dependence of 47 on 4, as well as
on A; itself, arises in the complex formalism of oscil-
lations whenever nonlinear interactions are included.)
In the small signal approximation, Eq. (4) can be ex-
panded in the form

Ar=Ai+Q+RAASAF, ©)

where Q, R, and S are functions of the pump pulses, and
do not depend on the individual oscillator. The first
two terms represent the linear superposition of the
initial excitation and the excitation produced by the
pulses. The remaining terms result from the nonlinear
interaction. That S in Eq. (5) is indeed the same as in
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Eq. (3) can be seen by substituting the former into the
latter equation and noting that 3~ 4, and Y 4. vanish
for 7Aw>>1. In this approximation the echo coefficient
is thus defined as the coefficient of 4;* in the expansion
of A ;in terms of the initial excitation, and in calculating
an echo we will simply seek to establish this coefficient.
This approach no longer requires integration over the
ensemble. The existence and magnitude of an echo can
now be established from the study of the response of a
single oscillator.

The echo coefficient has been defined and can be
calculated without reference to the wave formalism
previously developed. However, in the detailed mathe-
matical manipulations, the diagrams are of considerable
help in selecting, out of the multitude of terms in the
nonlinear expansion, those which are associated with an
echo.

Example

As an example we consider the case of a harmonic
oscillator whose driving term depends on the absolute
displacement from equilibrium. For very small ampli-
tudes the equation can be put in the form

G4 (wotAw)2x=E(1—aa?)[exp (—iwet)+c.c.], (6)

where « is a constant and ax?1. The term c.c. as used
here, and subsequently, represents the complex conju-
gate of the preceding expression. E is in the form of a
short rectangular pulse of duration ¢,. For short 7, the
deviation Aw may be ignored in Eq. (6) for the duration
of a pulse. It must however be included in describing
the oscillation between pulses.

The solution during the presence of a pulse is obtained
in the approximation of slowly varying coefficients. One
puts

x=A () exp(—iwdt)+c.c.tother harmonics. (7)

On substituting Eq. (7) into Eq. (6) one neglects time
derivatives higher than first of the harmonic coefficients.
By comparing coefficients in Eq. (6) one obtains a
hierarchy of equations, of which we require only the
first,

—2iwed = (1—22AA¥)E, (8)

where only lowest order interaction terms are retained.
Next, 4 is expanded as a power series in Ef,, which is
substituted into Eq. (8). Comparison of the linear
coefficients gives the first-order solution

A(toFta) = A (1) i/ 200)[1— 204 (1) A*(t)) 1Etw, (9)

where ¢=1, represents the onset of the pulse.

Equation (9) is sufficient for calculating the “three-
pulse” echo effect. In such a sequence pulse 1 is re-
garded as a signal and pulse 2 and 3 as pump pulses. The
initial excitation A4 ; as defined above thus represents 4
at a time just prior to pulse 2 and 4 represents 4 at
the end of pulse 3. The only possible echo mechanism is
the one described by the diagram in Fig. 2(a). The
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process is first order in each of the pulses and the non-
linear interaction (or mixing) takes place during pulse
3. Hence, just after pulse 2, using only the linear part
of Eq. (9), we can put

A=A+ (i/2w0) Extus,

where E; and ¢, characterize pulse 2. Just prior to pulse
3, on account of the phase drift associated with Aw,

A=A+ (i/2w0) Estws] exp[ —idw(T— 7],

which substituted into Eq. (9) will yield 4 ;. Actually, to
obtain the echo coefficient .S, we require just the coef-
ficient of 4;* in the expression for 4. This is given by

S'=(0/20¢?) (B2 uy2) (Estws) , (10)

which shows the echo as depending directly on the
intensity and duration of each of the pump pulses and
on the nonlinear coefficient a.

To obtain the echo coefficient for a 2-pulse sequence
one must carry the calculation to the quadratic term in
Et,. One finds

S= (a/4we?) (Eatws)?. (1)

The 2-pulse echo can be obtained as a special case
of the 3-pulse echo by allowing pulse 2 and 3 to coin-
cide. A factor of 2 is introduced because of coherence
considerations.

III. ECHOES IN A PLASMA

The interaction of an electromagnetic wave with a
plasma, in the neighborhood of cyclotron resonance, is
usually studied in one of two configurations. In the
first the wave is propagated in a circularly polarized
mode, in a direction parallel to the constant magnetic
field Bo. In the second, both the direction of propagation
and of the electric vector are perpendicular to B,.
Cyclotron echo has so far been observed primarily for
transverse propagation.

In the following discussions a cold plasma is assumed ;
i.e., effects associated with the electron temperature are
ignored.\* This is justified by the fact that in the experi-
ments the excitation energy produced by the pulses is
large compared to thermal energy. In addition, the
usual assumptions of small deviation from neutrality is
made. Ion motion is neglected.

The equations describing this system are given by
Maxwell’s equations, coupled to the moments of the
Boltzmann equation for an electron plasma. The latter,
for a cold plasma, reduce to the Lorentz force equation
as applied to the average electron velocities.? The exact
solution, for a plane-wave pulse incident on the plasma
at resonance, is exceedingly complicated. The difficulty
is aggravated by the need for a nonlinear analysis and
because of the presence of a nonuniform magnetic
field. Whether such an exact solution, even if feasible,

2 Formulation and detailed discussion of the assumptions can
be found in Ref. 8.
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would increase our understanding of the physical
processes is doubtful. We therefore make the simplifying
assumption that the electromagnetic pulses can be
described, at least locally, in terms of a wave with a
given propagation constant ko. Such an assumption is
certainly valid for relatively low electron densities, but
even at higher densities the qualitative conclusions of
the analysis should be meaningful.

In an inhomogeneous field, the behavior of the dis-
turbance during drift periods between pulses is roughly
described by Eq. (2). It is seen that % rapidly becomes
large, and the wave assumes the characteristics of an
essentially longitudinal-type wave. Under these con-
ditions different regions of the plasma are not strongly
coupled, and in an inhomogeneous field will possess
different local resonance frequencies. In this sense one
can treat the plasma as a collection of independent
oscillators, which can produce an echo, provided that
there exists a proper nonlinear interaction with an
electromagnetic pulse. Following the procedure indi-
cated in the preceding section we shall calculate an echo
coefficient from the response of a single “oscillator” to a
sequence of pulses.

The Echo Coefficient in Transverse Propagation

For the extraordinary transversely propagating mode
one can show from symmetry considerations that with
By along z, and propagation along x, the nonvanishing
field variables are E,, E,, b,, v,, v,, where E, and E,
are electric field components, b, the rf magnetic field,
and v, and v, the components of the average electron
velocity. The electromagnetic pulse is assumed to
be given in the form exp[—iw({—x/w)]+c.c.,, and
b.=(1/w)E,, where w is the velocity of the wave.
E, and b, are considered as driving terms and v,, v,
and E, (which results from space charge) as oscillator
parameters.

Before writing the equations we introduce the follow-
ing definitions (in the mks system):

8.:=—(¢/m)E,, 8,=—(¢/m)E,, w,=— (e/m)B,,
Q.= —(e/m)b,= (1/w)8,, wr*=mnee/me,

where ¢ and m are the electronic charge and mass,
respectively, e is the permittivity of free space, and no
is the electron density at equilibrium.

The equations will be given in the “Lagrangian” form,
where they follow the motion of a particular particle
in the plasma. The particle in question is a fictitious
“average electron” whose initial rest position is given by
(%0;%0,%0) and whose velocity is given by (2,7,,0). The
equations are

Dy = —wey— 8a— sy,
Vy=ws— E,+Q,0,,

Eo=wp,,

(12)

where the time derivative is with respect to the moving
particle. The first two equations represent the Lorentz
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force, and the third is equivalent to Poisson’s equation.
Before studying nonlinear aspects it is convenient to
diagonalize the linear part of Eq. (11) by means of the
substitution
9= —iwo(e—a*),
1,=w,(a+a*)—b,
8,=w(a+a*)+wb,

where wo= (w2+w,?)!/? is the cyclotron resonance fre-
quency as modified by space-charge effects (also known
as upper hybrid frequency). The resulting equations are

(13)

(@/dt+iwo)a= — 8o/ 20— 1 (Qs/ 2w0) (2wea—b), (14)
with its complex-conjugate equation, and
db/dt= 8,02/ wi+1i(w2Q./w0) (a—a*) , (15)

where @ represents the normal coordinate of a mode
whose resonance is at wo, and b represents the coordinate
of a dc mode. The resonance excitation of the latter
mode consists of a standing wave in which the electron
density is modulated longitudinally, along the x di-
rection, whereas the electrons move transversely, along
9, at such a velocity as to exactly balance the magnetic
and electric forces. The two modes are coupled by the
external electromagnetic field.
&, and Q, are given explicitly as

8,= 8 exp[ —two(t—x/w) +c.c.,
Q,=Q exp[ —iwo({—x/w) ]+c.c. (16)

The dependence of &, and €, on the electron coordinate
# introduces nonlinearities into Egs. (14) and (15) which
are associated with the convective motion of electrons
along the direction of propagation. A second non-
linearity is associated with the products Q¢ and Q.b and
arises from the interaction with the rf magnetic field.
Both give rise to an echo mechanism. For small orbits
Eq. (16) can be expanded to second order in (x—o),

8,= 8 exp[ —iwo(t—xo/w) ]
X [14i (wo/w) (x—x0) — (wo/w)?(x—x0)2]+c.C.\

with a similar expansion for Q..

We now apply the approximation of slowly varying
coefficients and follow the procedure described in detail
in connection with the example in Sec. II. We put

)

a=A exp[ —iwo(t—x0/w) ]+other harmonics,

and assume that 4 as well as b in Eq. (14) are slowly
varying. In this approximation one can make the
substitution #—x¢~a-+a* in Eq. (17). A lowest order
system of coupled equations is obtained from the
coefficient of exp[—iwo(f—x/w)] in Eq. (14) and the
dc term in Eq. (15),

A=—0,8/20¢+i0b/ 20+ (we/w?) (§+wR) A 4*
+ (weo/21?) (8—2wR)A4 A ,

b=1(w2/w)Q(4—A4%).

(18)
(19)
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The third term in Eq. (18) is analogous to a similar
term in Eq. (8), and represents an amplitude dependence
of the excitation rate. It includes an echo process de-
scribed by the diagram of Fig. 2(a). The second term
of Eq. (18) together with Eq. (19) includes a process
described by Fig. 2(b).

Continuing the procedure described in the example in
Sec. II we find the echo coefficient for a 3-pulse sequence
as given by

S= (wp2/2w02)92tw293tw3— (wc2/2wo2w2) 82tw253tw3

—_ (w,,2/2wo2w) ggtw?,ﬂ;;twg y (20)

where the subscripts numbering @, 8, and f,, refer to
the pulse in question.

So far we have purposely not made the substitution
wQ=_§, in order not to disguise the physical origins of
the various terms in Eq. (20). If we make the substi-
tution we find that the two last terms are exactly equal
and that S is given by

S= [(wpz—" 2wc2)/2w02w2]825w283tw3. (21)

Now &t, equals the total velocity imparted to an
electron by a pulse. The echo coefficient is thus pro-
portional to the square of the ratio of the velocity im-
parted by a pulse to the velocity of the wave (or to the
ratio of cyclotron orbit to wavelength).

For very low electron densities w=c¢, the velocity of
light, and the effects would be relativistic. However, at
resonance the index of refraction for a plasma becomes
infinite, and, except for extremely short pulses or very
low density plasmas, the spectral distribution of a
pulse near resonance must be associated with relatively
large values of the refractive index. One might there-
fore expect that the disturbance left in the wake of a
pulse is characterized by a wavelength considerably
shorter than the free-space value.

Physical Interpretation

Since even the simplest of the echoes of the type dis-
cussed arise from third-order processes, it is not easy to
provide a simple physical picture for the processes
involved. There are three principal mechanisms which
give rise to the echo coefficient in Eq. (20). These are
presented respectively by terms proportional to (a)
(8atws) (8stws), (D) (Batuwn) (Qstws), and (¢) (Lotwz) (Latws).
The processes (a) and (b) both arise from the term
AA*in Eq. (18), and result from the dependence of the
interaction between the field and the electron on the
absolute magnitude of the amplitude, or if one wishes, on
the kinetic energy of the electron. The echo mechanism
in such a situation operates as follows. At the arrival
time of pulse 2, the excitation produced by pulse 1 has
assumed various phases for different oscillators. The
absolute value of the amplitude of a given oscillator,
obtained by superimposing the excitations produced by
pulses 1 and 2, depends on the relative phase of the
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two excitations. The information relative to the phase
of the initial excitation is thus stored in terms of the
absolute value of the amplitude (or energy) of the
oscillator. Now the interaction with pulse 3 depends on
this amplitude and thus on the initial phase angle 6.
If we consider the class of oscillators which prior to
pulse 2 were all at the phase 6, then the average dis-
placement for this class after pulse 3 will be a function
of 6. After the lapse of another interval 7, this average
displacement will have drifted again by an angle 6,
and there will be established at that time a definite cor-
relation between phase and amplitude giving rise to a
finite moment and to the appearance of an echo.

The nonlinear process in (a) which causes the ampli-
tude dependence of the interaction arises in the follow-
ing way. Because of forward and backward motion
relative to the wave, the field which an electron sees is
not strictly sinusoidal, but contains various harmonics.
These harmonics appear at the expense of the funda-
mental and cause a reduction in the resonance inter-
action, proportional to the square of the amplitude.

The process (b) involves in part the interaction with
the rf magnetic field. Since this field is parallel to B,
it alternately adds to or subtracts from it. An electron
is thus exposed during part of its cycle to a field smaller
than By and during the other part to a field in excess of
By. For small orbits the two parts of the cycle are of
equal duration. However, at large orbits, the two parts
may differ in duration because of the motion along the
direction of propagation. Depending on its phase, an
electron will be subjected to an average field which may
be smaller or larger than By, and its natural precession
frequency will be accordingly modified. The class of
electrons corresponding to a given absolute amplitude
will therefore experience phase bunching giving rise to
a resultant moment which again is proportional to the
square of the amplitude.

The process (c) results from purely magnetic inter-
actions and involves coupling to the dc mode. The initial
phase is stored after pulse 2 in terms of the amplitude of
the dc mode and then coupled back to the cyclotron-
resonance mode. It is interesting to note that this process
is proportional to w,? and hence a true plasma effect not
exhibited by isolated electrons. In the experiment re-
ported so far! w,?<w., and hence process (c) is not
expected to contribute substantially to the observed
echo.

There is an important difference between process (c)
and processes (a) and (b) with regard to relaxation.In the
latter processes the initial information is stored during
the period between pulse 2 and pulse 3 in terms of the
magnitude 4 4%, which is independent of the phase of 4.
The echo therefore relaxes at a rate characteristic of
energy relaxation, a process which is much slower than
momentum relaxation. The energy is here analogous to
the longitudinal magnetization in the spin-echo process,
whereas the momentum would correspond to the trans-
verse moment. In process (c), however, the information
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is stored throughout in terms of magnitudes which
decay at the rapid rate of momentum relaxation.

Longitudinal Propagation

The formal analysis of the longitudinal right-
circularly polarized mode is considerably easier than
that of the transverse mode. Since the experimental
observation of an echo in this configuration is still
somewhat marginal, we shall dispense with a detailed
analysis and merely describe the principal process. There
are two natural resonances associated with this mode.
The first consists of circular motion at w, in a plane
perpendicular to By, and the second of a dc drift along
the field lines. A possible echo mechanism is associated
with the coupling of the two modes by means of the
interaction with the rf magnetic field. This process in
fact should give rise to an echo coefficient of magnitude

3QalweQstuws

which is comparable to the coefficient for transverse
propagation given by Eq. (21). The reason why the
observed echo is so weak is not clear. The distinction
between the two directions of propagation may be
related to the role of electron diffusion, which takes
place largely along magnetic field lines. If the wave-
length is indeed very short, then, in the case of longi-
tudinal propagation, diffusion can destroy the proper
phase relation between the electron and the wave.

IV. CONCLUSION

We have described a certain class of echo-producing
processes which are associated with nonlinear inter-
actions between the electrons in the plasma and the
electromagnetic pulses. This class is distinguished from
other echo processes in that the effects take place
completely during the presence of the pulses and do
not require an additional finite waiting period 7 in
order for the echo to be generated.

Cyclotron echoes have now been observed under
widely varied conditions, extending over many orders of
magnitude in gas pressure and electron density. For
the most part the behavior is so complex that one
must conclude that diverse mechanisms are at play,
with different ones predominating in various regimes of
operation. The processes described in the present work
are likely to play a role in some of these regimes.
Further experimental work, and a more detailed knowl-
edge of the plasma-wave interaction, is required for a
better understanding of this interesting phenomenon.
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