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This is the Grst of a series of papers on the properties of the weak and electromagnetic currents of the
hadrons in the bootstrap theory of strong interactions. In a bootstrap theory, there are many self-consistency
conditions relating these weak and electromagnetic parameters to each other. Ke develop a formalism
designed to take the fullest advantage of such bootstrap-like relations. In fact, we conjecture that the weak
and electromagnetic properties of the hadrons are determined to a large extent, and perhaps completely, by
self-consistency requirements. Some simple calculations of the weak and electromagnetic parameters per-
taining to the octet of baryons and decuplet of resonances are given. The comparison of the results of these
calculations with the experimental numbers indicates that the above conjecture holds, at least in this case.

I. Imx'RODUnxom

HIS is the 6rst of a series of papers in which we
investigate the role played by the weak and

electromagnetic currents of the hadrons in a bootstrap
theory of the strong interactions. The motivation for
this program comes from the following observations.

(i) Although it has yet to be given a precise rnathe-
matical formulation, the bootstrap represents an un-
usually attractive approach to strong-interaction dy-
namics. It is clearly of interest, then, to see how the
weak and electromagnetic interactions of hadrons can be
6t conceptually into a bootstrap framework.

(ll) Even if the future theory of strong interactions
turns out to have nonbootstrap elements, there is ample
evidence that bootstrap-like requirements of self-con-
sistency play an important role in determining the
properties of at least the low-lying hadron states. For
this reason, it seems evident that any practical means of
calculating parameters associated with low-mass hadrons
will necessarily contain many elements of a bootstrap
theory. This will apply, in particular, to the weak and
electromagnetic properties of hadrons.

(iii) Recently, it has beconM apparent that strong-
interaction symmetries are closely related to algebraic
properties of weak and electromagnetic currents. ' One of
the main goals of the present program is to show that
such a situation is likely to arise in a bootstrap theory of
hadrons. It is this aspect of our work that is likely to
enjoy the most immediate interest. The study of current
algebras in a bootstrap framework will, we feel, lead to a
better understanding of the content of algebraic rela-
tions among currents and their connection to dynamics.

In the present paper, we develop a mathematical
framework with which one can discuss the properties of
currents in a bootstrap theory. We also present some

*Work supported in part by the U. S. Atomic Energy Com-
mission. Prepared under Contract AT(11-1)-68 for the San
Francisco Operations Of|joe, U. S. Atomic Energy Commission,

t A preliminary report on some of the work presented here is
contained in the I'roceedjngs of the 1NS Coral Gables Conference on
Symmetry Principles at H~gh Energy (%'. H. Freeman and Com-
pany, San Francisco, 1965).

g Alfred P. Sloan Foundation Fellow.
'M. GeH-Mann, Phys. Rev. 125, 1067 (1962). More recent

references will be given in the following paper of this series.
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arguments designed to make it seem plausible that the
weak and electromagnetic properties of hadrons are
determined, at least to a fairly large extent, by boot-
strap-like self-consistency conditions. The comparison
of the results of some simple calculations, included here,
with the corresponding experimental numbers lends
support to this hypothesis. The algebraic properties of
currents and their connection with symmetry are taken
up in. the following paper. As a by-product of this in-
vestigation, we have found a connection between the
behavior of certain currents in a bootstrap theory and
the stability of the strong-interaction bootstrap equa-
tions themselves. This result and some interesting
applications of it will be discussed in a third paper.

We will use, almost exclusively, 5-matrix theory as a
mathematical vehicle. There is no apparent reason to
believe, however, that our results would be drastically
altered if we were to express the bootstrap notion in
some other mathematical language. 3

Actually, in the present paper, we do not completely
restrict ourselves to a world with no elementary par-
ticles. Technically, that is, we allow for undetermined
subtraction terms in our dispersion relations. Our
reason for doing this is that it enables one to see how,
even in a theory which contains elementary particles,
bootstrap-like requirements of self-consistency will still
play a major role in shaping the weak and electro-
magnetic properties of hadrons.

The organization and content of this paper can be
summarized as follows:

In the next section, we discuss the various kinds of
dispersion relations which are relevant in the study of
weak and electromagnetic properties of hadrons. The
most familiar kind is the dispersion relations for form
factors. Ke reiterate, in the next section, the known fact
that the Omnes equations to which these dispersion
relations lead have, in general, a large number of solu-

'A somewhat related approach linking together the weak and
strong interactions has been espoused by E. McCliment and K.
Nishijims LPhys. Rev. 128, 1970 (1962)j.

We have in mind here the possibilities suggested by various
authors, that the bootstrap could be deGned in terms of something
like the Bethe-Salpeter equation or a Geld theory with vanishing
renormalization constants.
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TABLE I. Eigenvalues of X near one for BB8and BB~8couplings in SU'(3).

Properties of 8:
SU(3)

E representation Details of couplings

(i) 888 couplings =D+-23Il
(ii) gBB8/g BB+8—

gBB1I/gBB@H

BB8coupllngs P+ga

Physical examples

(i) magnetic moments (S=1,L=1, X=1)
(ii) axial currents (X=1 with various S and L)

(iii) induced pseudoscalar term (S=O, L=1, X=1)

(i) electric form factors (S=1,L=1, E=O)
(ii) weak vector form factors (S=1,L=1, E=O)

none

tions. Because of the ambiguity in the solution to form-
factor equations, one is led to investigate other types of
dispersion relations. To see what direction one might
take, let us recall the original Chew-Low theory of
photoproduction, 4 one of the landmarks of dispersion
theory. In substance, their calculation can be considered
as a computation of the yMl* vertex in terms of the
pÃS vertex. They did this calculation not by the
possibly more obvious method of looking at dispersion
relations for X-X*form factors, but by computing the
residue of the 1Ve pole in the amplitude y+E ~~+X,
keeping all particles on the mass shell. The use of this
sort of dispersion technique for calculating weak and
electromagnetic properties of hadrons turns out to be
the key to a bootstrap approach to the currents. The
formalism for this approach is laid down in the re-
mainder of Sec. II.

Section III is devoted to a discussion of the self-
consistency requirements implicit in the many disper-
sion relations connecting the weak and electromagnetic
parameters of hadrons. We show there how, quite
independently of the existence of elementary particles,
the observed weak and electromagnetic properties of
hadrons may be largely determined by self-consistency.
In Sec. IV we discuss some calculations which indicate
that the eGects of self-consistency are, in fact, of domi-
nant importance. What we do here is to look at the
usual static theory of baryons and resonances, both in

SU(2) and SU(3), and ask ourselves what types of
weak and electromagnetic interactions would be self-
consistent. We find that all the observed weak and
electromagnetic interactions of the baryons are included
in the solutions to this problem. Furthermore, we calcu-
late a number of ratios between parameters like mag-
netic moments and find the results to be in good
agreement with experiment (see Table I).

Our 6nal topic, taken up in Sec. V, is a discussion of
currents with abnormal CI' properties. Such currents
may be of interest in connection with possible CI'
violations in the weak or electromagnetic interactions of
hadrons. The appearance of these currents would not be
unnatural in a bootstrap theory, and in our simple
model they are self-consistent.

See, for example, G. Chew, M. Goldberser, F. I.ow, p,pd Y.
5ambu, Phys. Rev. 1.$6, $345 (1957).

The reader who is primarily interested in current
algebras may not 6nd it necessary to study the present
paper in any great detail before proceeding to the
following paper on current algebras and symmetries. We
give there a summary of the principle conclusions
reached here.

II. WEAK AND ELECTROMAGNETIC CURRENTS
IN S-MATRIX THEORY

In this section we analyze the properties of some
dispersion-theoretic approaches to the weak and electro-
magnetic parameters of hadrons. Let us begin with a
look at the usual Omnes equations for form factors. To
be specific, we can consider the electromagnetic prop-
erties of hadrons, working to first order in the electric
charge e, but, so far as we are able, treating the strong
interaction exactly.

The essential properties of the general Omnes equa-
tion will be present in a problem containing many
coupled two-body channels; three and higher body
channels can be thought of as a continuum of two-body
channels. ' To this end, we consider E two-body chan-
nels labeled by the index i, i= 1 S, all of which have
the same J~ and charge conjugation as the photon. A
typical choice for the channels would be x+x in a I'
wave, gÃ in a'S~ state, and EE in a'D~ state. For each
channel, the amplitude for y —+ (particles in channel i)
with a virtual photon of mass g(g') is given by a form
factor P;(q'). The form factors are, of course, analytic
functions of q' with only a right-hand cut, along which
unitarity gives, schematically,

where T;; is the g-channel scattering amplitude. If one
writes T in the form T=XD ' (N and D are matrices),
it is known' that the general solution to (1) is

P'(V')=2 LD '(V')j '& (V'),

where the I' s are arbitrary polynomials. Now if we

happen to know the high-energy behavior of D ' and
have some principle which determines the asymptotic

6 The explicit generalization of the conclusions of this paragraph
to three-body channels is contained in a recent report by S,
Mandelstam (unpublished).' J. 3jorkett, Phys. Rev. Letters 4, 473 (19$0l,
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behavior of the F's, then we might be able to conclude,
for example, that all the I' s are constants; i.e., zero-
order polynomials. In any case, however, there will be at
least /q unknown constants in solution (2) and since
det(D) must be nonzero' at q'= 0, we can always choose
the F;(0), i=1 S, to be whatever we wish. To see
what this means physically, consider the two EÃ
channels mentioned above. Now the F;(0) for the sSt
and 'D~ channels are di6erent linear combinations of the
nucleon's charge and magnetic moment, so that one can
obtain the form factor once the charge and magnetic
moment are given, but this method is not capable, in
principle, of predicting the magnetic moment in terms
of the charge. We would like to stress that this inability
of the form-factor dispersion relations to predict a
magnetic moment is not simply a question of subtracted
or unsubtracted dispersion relations for the F's; it is due
to the fact that the dispersion relation obtained from
(1) leads to an integral equation for the F s which does
not have a unique solution.

While the form-factor equations cannot, by them-
selves, provide an exact calculation of a magnetic mo-
ment, it is easy to see how they could be used with
reasonable further assumptions to obtain significant
approximate results. Suppose that there is a low-lying
stable particle with mass m and the quantum numbers
of the photon. In that case, D ' will have a pole at
q'= m', and using the fact that T;, goes like g,g;/(q' —m')
near g'=m' where g; is the coupling of the particle to
channel i, we 6nd that F; has a pole of the form

where

E=Q g+;(m')S. ;;-'(m') .

Then if (2) is dominated by the pole for small q', we
have P;(0)/F;(0) =g;/g;.

Of course, this still leaves unanswered the question of
how to make an exact and unambiguous calculation of a
magnetic moment. Evidently, if one is to use only the
form-factor equations, he would have to invoke some
new principle to determine the I' s. Instead, we would
like in the remainder of this section to show how, by
moving from the form-factor equations to the full
framework of 5-matrix theory, one can determine theI"s mitholt introducing any new principle.

Basically, the reason why the form-factor equations
leave so many parameters undetermined is that they
use only analyticity and unitarity in one variable and do
not take full advantage of crossing or analyticity in
other variables. In order to use these other tools, we
shall fix the mass of the photon at some convenient value
Q(q') and, taking a process like y+X —+ s.+X, write
dispersion relations in the usual energy variables.

To see how this goes, let us consider a simple but
physically interesting example. We will study the J=-,'+

' If det(D) =0 at q'=0, there would be a hadron with zero mass.

partial wave for the reaction y+E +-s+X with a real
photon (q'=0). The photon can be considered as a
particle with isospin either one or zero; for simplicity,
we choose the latter case. The partial-wave amplitude
h (W) is de6ned by h(W) = g (W)M t '/kq, where W is the
total c.m. energy, the magnetic dipole amplitude
Mt '/kq is delned as in CGLN, ' and g(W) is a factor
which removes any kinematic singularities of relativistic
origin. Denoting the nucleon mass by M, and taking

g(M) = 1, we find that )'s has a direct-channel pole with
residue rs(P—~+1r„)f at W =M, where f is the Pion-
nucleon couPling constant (f'=0.08) and yr and 1r„are
the total nucleon magnetic moments. We now want to
write a dispersion relation which will give us (pr +@„).
To do so, we multiply h(W) by the denominator func-
tion D(W) for rr Nscatt-ering in the J= rs+, I= rsstate,
noting' that lims ~D (W)h(W) = ', D'(M——)(1rr+11,„)f
and that Im(Dh) =0 along the elastic part of the right-
hand cut in h, since h has the same phase as mE scat-
tering in this region. Then, assuming that Dh obeys an
unsubtracted dispersion relation, we obtain

1 1 D(W')h(W')
h(W) = de'

D(W) 2+i z, W' —W

and

inel. thresh.

Im (D (W') h (W') )
dW'

8"'—8' (3)

1 2- 1 D(W')h(W')
~~+u.=—, dW'

D'(M) f 2rrs y. W' —M

1 " Im(D(W')h(W'))
dW', (4)

inel. thresh. 8"—M

where the contour I runs around the left cuts9 in h.
Thus we now have a dispersion relation with which to
evaluate the isoscalar magnetic moment of the nucleon.

To completely evaluate (4), of course, we have to
know all the left cuts in h as well as the inelastic right
cut, so that, in principle, we must solve an infinite
number of coupled equations like (3) and (4). It is the
solution of the whole set of coupled equations which
determines the magnetic moment and related parame-
ters. Naturally, we cannot really prove whether or not a
unique solution exists, and it might turn out that we
have to include some undetermined subtraction con-
stants. Nevertheless, we can discuss some general
properties the set of coupled equations would have.

Here we are using methods developed by R. Dashen and S.
Frautscht LPhys. Rev. 133, B1190 (1964) and ibid 137, B1318.
(1965)j.' Since the photon is massless, baryon exchange in the I channel
also produces a pole at 8"=M. The residue of this exchange pole is—&(p,„+IJI )f so that h actually has a pole with total residue——',(p,„+IJ,„)f at IV=M. For the purpose of separating direct- and
crossed-channel eGects, we have imagined that the crossed pole is
slightly displaced to the left; it must, of course, be included in the
integration over left-hand singularities in Eq. (4).
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FIG. 1. The photoproduction
amplitude JIr, s (0). Here, the
solid lines are nucleons, the
dotted line ls a plonk and
the wiggly line represents the
photon.

0 bcgln vrlth, lt 18 clear that wc could have con
sldcrcd tllc rcactloll 'r+E ~ rr+E wl'tll a vll'tllRl r of
mass g(q'). Then the left-hand side of (4) would be the
isoscalar magnetic foxm factor of the nucleon instead of
its q'=0 value, the magnetic moment. Evidently, for
each fixed q', we can write a set of equations like (4).
Next vre need some new notation. Any scattering ampli-
tude for a process like (photon+hadrons) —+ (hadrons)
is reaHy a matrix element of the electromagnetic current
J"(x). For example, the amplitude for 7+%—+ s.+X is
proportionaP' to (N ~

J"(0) ~sS) and the nucleon mag-
netic moment is contained in. (E~J"(0)~E). Let us,
then, denote the amplitude for an arbitrary process
y+a —& b by J,s"(gs) which will, apart from kinematic
factors, be equal to (b~ J"(0)

~
u). We allow ts and b to

represent any con6guration of strongly interacting
pal"tlclcs Rlld, Rs llsllRl, Q(g )=L(ps—p ) $ Is tile
mass of the (in general, virtual) photon.

Novr let us suppose that we knovr enough about
dispersion relations so that, keeping q'Peed and thinking
of J,s(q') as a scattering amplitude, we are able to
write some kind of generalized Mandelstam repre-
sentation and/or generalized XD ' equations for all the
amplitudes J.&"(qs). The spectral functions or discon-
tinuities in the dispersion relations vrill be determined

by unitarity requirements on J".Since we are working
to 6rst order ln electromagnetism, the unltarlty equa-
tion is always lieear in J.Thus, it is clear that the result
«writing all the (axed qs) dispersion relations for J
will be a set of coupled linear equations which we

symbolize by

vrherc the C's represent the possibility that our dis-

persion 1cia tlons contalD undetcrmlQcd subtrRctloQ

constants. In Eq. (5), one is to think of the left-hand

side as the amplitude for vrhich a dispersion relation is
vrritten, vrhilc the J,q" appearing on the right are

amplitudes vrhich, because of crossing and unitarity,
appear Inside the dlsperslon Integral. In most apph. ca-
tions, J,~ will refer to residues of a direct-channel pole,
like pl, +il in Eq. (4), and Q X,s,,sJ,s will be domi-

nated by the contribution of one-particle exchange
singularities, such as nucleon or p-meson exchange in the
example of Eq. (4).

To tRkc R specl6c example) thc faIMllar dlspcx'sloD-

theoretic calculations of photoproduction are just the

's Translational invariance requires that (s(J(s) ~b) is re-
lated to (e J(0) ~b) by a phase according to s'&~ »&' (o ( J(0) )b)
=(o ( J(s) ( b). lt is conventional to work with (o [J(0) [b).

application of a truncated version of (5).In the present
language, these calculations correspond to taking J,~"

=JN, Iv" which represents the process y+E &w—+E
(Fig. I), and then truncating the sum over cd to include,
sRy, J~~"& Jg,~g "~ Rnd J~,«" whKh show up when one
applies unitarity in the cross channels, as displayed in
I'ig. 2. On the other hand, the residue of the direct-
cllallllel Iluclcoll pole (Flg. 3), wlllcll coll tMIIS 'tllc

nucleon magnetic moment, is not fed into the left side
of the equation but is defermimed by the integration over
the crossed-charincl singularities. The fact that dis-
persion relations for scattering amplitudes can be used
to determine pole parameters is a familiar circumstance
in purely strong-interaction calculations and is, indeed,
the basis of the whole bootstrap hypothesis. In the
present paper vre wish to emphasize that similar
methods can be used to determine the weak and
elec tromagnctic parameters of hadroDs.

Since vre can determine the pole parameters for the
weak and electromagnctK lnteractlons of hadrons) vrc

now have R means for determining all the J's for any
6xed q'. Speci6cally, if we put q'=0, wc have achieved
our goal of wlltlng an equation which will dctcI'IM1M

parameters like the nucleon magnetic moments. %hat
is not determined by the linear Eq. (5) is the over-all
scale of J at each q'. However, the ordinary form-factor
equations 6x the value of J for all g' given the J's at,
say, q'=0; thus we can determine all the amplitudes
J,s(q') up to one constant scale factor.

Noir it may appear that we have not really de-

termined the magnetic moments at all, because of the
"subtraction terms" C,s(q') which we have for the time
being included on the right-hand side of (5). With re-

spect to this problem, we shaH argue in the present
scctloQ thRt thc C's may vRnish lf thc stxoQg lntcI actions

were fully bootstrapped, and vre shall shovr in the next
scctlon that thc C s Rrc Qot important anyway foI' 6xlng
ratios of moments if the X matrix, as seems to be the
cascq hRs RD clgcQVRluc Qcar onc.

In discussing the subtraction terms, the 6rst point to
keep in mind is that vre are keeping the photon mass

fixed and treating the amplitude J s" for y+o-+ b in

much the same vray that one treats a purely strong-
lnteractlon amplitude) essentially, the only difference ls
our case of a linear unitarity condition. A typical
amplitude would be y+E~ rr+E, and the subtrac-

(b) (c)

Flu. 2. Contributions to the right-hand side of Eq. (5) in a
calculation of Jg, ~{0).
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tions will as usual be determined by the high-energy
behavior. '

Now the high-energy behavior of a scattering
amplitude is largely determined by the spin properties
of internal particles (i.e., particles which can be ex-
changed in the reaction). Since we are working to first
order in electric charge, all the internal particles in our
amplitudes are hadrons and it would seem, then, that
the high-energy behavior of J g" should be similar to
that of a strong-Interactaon amplitude.

There is, however, an apparent loophole in this argu-
ment whjch we must consider. Mandelstamu has shown
that an elementary external particle with nonzero spin
can sometimes lead to undetermined subtraction terms.
In particular, an elementary photon might lead to an
undetermined constant term in the amplitude. Ke argue
in Appendix A, however, that the undetermined sub-
traction does not appear if the dispersion relations for
the form factors of the photon couplings converge. Once
again, then, the high-energy behavior of photon emis-
sion is related to the high-energy behavior of the hadron

amplitudes.
Thus one would expect to have undetermined sub-

tractions" C, ~ to more or less the same extent as in the
purely strong-interaction bootstrap. If continuation in
angular momenta or some other device allows us to
remove all the subtractions in the strong interactions,
then it should be possible to remove all, or most of the
O's 111 Kq. (5). In tlils co1111ectlo11wc Bllgllt remark tllat
in the most extensively studied case, namely the photo-
production amplitude J~ ~„subtractions do not seem
to be important, at least at low energies.

%e conclude this section with some comments about
what kinds of terms appear in J, and which of them are
interrelated by X. To begin with, we need not, of
course, restrict ourselves to vector currents like the
electromagnetic case described above; the treatment of
scalar, tensor, and higher rank currents would proceed
in the same way. In some cases, a current will contain
more than one "spin, " i.e., it may contain two or more
pieces which transform separately under Lorentz trans-
formation. For example, the weak axial-vector current
J5" can be broken up into spin-zero and spin-one parts
by projecting out the divergence according to J5"=Jq"
—4"/V') (V"~s")+(V /V')(V"~s") =~s.t"+(V /g')~s o As
long as q'~0 and the above decomposition is meaningful,
it is clear that since crossing and unitarity do Dot mix
J5,~" and J5 0, X will not have any elements connecting
J5,y" and J5,(). In general, then, one can break an arbi-
trary current up into pieces with def'lnite "spin" and

"S. Mandelstam, Nuovo Cimento 30, 1113, 1127 (1963).
"In this connection, it should be understood that as a matrix, I

contains continuous as well as discrete indices and the sum over cd
actually implies integrations over momenta. It can turn out that
some of the integrations appear to diverge, which means the
equation would need a subtraction C, but that actually the diver-
gence can be removed and C determined by a suitable analytic
continuation. In this case, we would not write an explicit term C
on the right-hand side of (5},but include the continuation process
in the definition of X. I Note that in any circumstance (5) always
remains a linear equation for J.j

I'IG. 3. The direct-channel nucleon pole
which appears on the left-hand side of
Eq. (5) in a calculation of Jar, z(D).

/
/

/
/

/
/

/

write a separate X-matrix equation for each piece,
except for q'=0 where special care may be necessary"

Since in our linear formalism we are including no
weak or electromagnetic eGects in X, the X matrix has
all the syInmetries characteristic of the strong inter-
action; e.g., X is a scalar under parity and charge
conjugation as well as isospin rotation, and it conserves
strangeness. Thus, if we can assign to currents quantum
numbers like C, I', total isospin I, I3, and so on, which
are conserved by the strong interaction, X will not
connect currents with di6'erent quantum numbers. To
the extent that SU(3) is a good symmetry of hadrons,
X will also not connect currents which belong to differ-
ent SU(3) representations. Generally speaking, then,
one cRD label currents RccoldlDg to the quantum DUIQ-

bers, "spin, "parity, strangeness, etc., characteristic of a
strongly interacting particle (q' corresponds to the mass
of the particle) and treat currents with different quan-
tum numbers separately. Furthermore, since X is an
isotopic scalar, the X matrices for currents which differ
only by RD Isotopic rotation will be ldeDtlcRl. Slmllarlyq
X will be approximately the same for currents which
differ only by an SU(3) rotation.

III. THE EIGENVALUES OF X AND THEIR
EFFECT ON WEAK AND ELECTRO-

MAGNETIC C'tJRRENTS

In theoretical studies of the properties of currents, as
well as in practical calculations, the eigenvalues of X
are of particular interest. To begin with, it is obvious
that the C's cannot be zero unless X has an eigenvalue
exactly equal to one for all q'. Let us, however, work
with the sltuR'tloD when Cy 0' Rs we ploceed lt wil], be
clear what happens in the limit C=O.

Fol simplicity let us suppose thRt ..we Rle {3,eal.lng
with a scalar current J and suppose that the X matrjx
associated with J has a complete set of eigenvectors
f~s ~(g ) a= 1~ 2~ ' ' ' satisfying

Z &.s,"(P)f". (C') =X-(V')f.s, -(V').

' The special problems which arise in the case @~=0 will be
discussed in a future paper.

Now I 18 Ilo't 111gcllcl al symmetric so tile f s Ileed Ilot.
be orthogonal, but if they form R complete set" vie can
always find a set of vectors g s,s(qs), P=1, 2,
which have the property that P~s g, s,sf, s, 8s and-—

g, s f,q e B„Bss Then,——defining.

~.(~') ='Z g.s, (V'V.s(/)
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~ (q') =Z g.~.-(q')c.~(q'),

Eq. (5) becomes

~-(q') =~.(q') ~-(q')+c-(q')
vrith the solution

~.(q') =L1-X-(q')3 '~-(q'), (&)

~-~(q') =2- f.~.-(q')~-(q') (g)

From the form of (7), it is clear that eigenvalues X
vrhich are near unity are particularly interesting; the
corresponding J 's will be large and J,q will be, ap-
proximately, a linear combination of these enhanced
eigenvcctors, Inore or less independently of how the C's
are introduced. For example, if for some value of g', say
qo', X~ is nearly equal to one and all the other X's are
far from unity, we vrill have

~.~(qo') =f.~.l(qo') I:1—XI(qo')?'CI(qo') (9)

ullless fol soII16 1easoll CI(qg ) llRppclls 'to be vcl'y
small compared to the remaining C's.

From the above discussion, one sees that if there are
one or more eigenvalues X; suKciently close to unity,
then the self-consistency properties of the strong inter-
action, as expressed in the X matrix, come close to
determining the matrix elements of the current J.The
extreme situation appears if the C's are zero. In this
case, there must be at least one X exactly equal to
unity, and self-consistency completely determines the
possible J's.

From a philosophical point of vievr, there is a discon-
tinuous transition between the two possibilities of C&0
and C=0.Hovrever, the methods presently available for
the study of strong interactions are totally incapable of
determining vrhether or not some X's are exactly 1.
From a practical point of vievr, then, there is a con-
tinuous transition from X=1 and C=o to X=1 and
CHO (but small compared to J).In the former case, the
current J is completely determined by self-consistency
while in the latter case, self-consistency determines the
current, loosely speaking, up to terms of order (1—X)
with X=1. (We ignore, as unlikely and ugly, the
possibility that the C's are chosen such that the
enhanced C 's vanish. )

All this discussion is, of course, academic unless vre

know that X does have some cigenvalues near one. In
the next section vre will shovr, in very approximate but
physically reasonable models, that there are X's near

one, so it seems likely that self-consistency plays a
major role in shaping the weak and electromagnetic
interactions of hadrons.

At this point. lt is perhaps vrorth en1phaslzing that
since X(q') varies with qm, so will the eigenvalues

X (q') and eigenvectors f (q'). If we have C=O, then

some X(q') must be one for ul/ q', but even in this case
the corresponding eigenvector vrill vary vrith q'.

In Sec. H it vras pointed out that if a meson state

produces a strong pole in the form factors associated
vrith a current J, then one knovrs that near the pole
J,q(q') follows a pattern determined by the meson
couplings. Ke vrould novr like to shovr how this follows
directly from thc properties of X.To this end, vre sup-
pose that there is a hadron, call it Z, with the same
quantum numbers as the current under consideration.
The amplitudes J q(q') will then have a pole of the form
Xzkcb, z/(q tÃ ) at q =BR wllcle f~y, z ls 'tllc stlollg-
interaction scattering amplitude for a —& b+Z and llz is
a scale factor which measures the strength of the transi-
tion Z-+ (current). Now the X matrix, which repre-
sents the effect of one J on another, remains 6nite as
q& —+ m', and we shall suppose that there are no poles
in the subtractions C; the latter would correspond to the
introduction of a "bare" or "elementary" transition
mass for a process like p' —+ y. Then letting q' approach
m' in (5) and picking out the pole, we fLnd

t.l, ,z——g X.I...g(m')t. g, z, (10)
ctE

so tha" ~ubzls R,n elgenvcctoI' of X(ml) with eigenvalue
exactly equal to one.

For q'Qm', t, q, z is, of course, not an exact eigenvector
of X(q'), but for q'=rpl' there must be, for continuity
reasons, an eigenvalue of X(q') either equal or very
nearly equal to unity (equality is required if C=0) and
the associated eigenvector must be, approximately,
proportional to f,~,z. Thus, when q' is near m', the solu-
tion to (5) will have the form

1.~(q') =i(q') 4~,z, (11)
where j(q') is a proportionality factor which will be
approximately equal to Xz(q' —m') '. We see, then, that
thc pole donllnancc Qlcthods which alc often used to
study the weak and electromagnetic properties of
hadrons are equivalent to 6nding some of the eigcnvalues
of X vrhich are near unity. It is, hovrever, not obvious
that an eigenvalue close to unity must necessarily come
from a pole in J(q') (see, for example, the treatment of
magnetic moments in the next section), so the direct
study of X should be a more general and powerful
method.

IV. SOME EVIDENCE THAT X HAS EIGEN-
VALUES CLOSE TO UNITY

This section is devoted to the results of some very
approximate but highly encouraging calculations based
on the formalism developed in the preceding section. In
our Grst example, vre discuss the magnetic moments of
baryons and the magnetic and quadrupole parts of the
(J=zz+) resonance-baryon-photon vertex. In both SU(2)
RIld SU(3) syIllIIletl'lc calculations 1't turns out tlls, 't 'tile

experimental magnetic and quadrupole moments closely
follovr the pattern suggested by the enhanced eigen-
vector, indicating that self-consistency of the strong
interactions does play a major role in shaping the
electromagnetic interactions of hadrons. Then vre gener-
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Pe pg

IIs = (+) Pe 0
0
0

0 0 0' pg
1.6r/9 0 &. , (i2)

4/9r ~~ 0 p~
0 0 -*, q',

where r is the ratio f*/f of the m'Jq'/q* and md% cou-
plings. For r, we take the static-model result r= (V2) '
w'hich agrees vrell vrith experiment. The absence of
tcI'Ins COQDcctlDg II,, to p» p, , and g, 18 of CGUI'8c, duc to
the fact that p,,has I=0 whBC the latter quantities have
I= j..Thc terms CODDcctlng g to p, RQd p, arc zero only
1D thc px'cscDt approxiIQation of kccplng only thc shol t
CUtS.

It is now trivial to find the eigenvectors f; and eigen-
values x;, i=1 - 4, vrhich are

f1= 0
0.0.

0~
fI= 0

0

$0
f3= 2r

i.0,

t
0

f4= 2r

R112 by CGDsldcx'lng, lnstcRd of just thc electric current,
the couplings of arbitrary currents to the baryons Rnd
resonances. Herc it turns out that all the observed weak
Rnd electromagnetic couplings of these particles corre-
spond. to eigcnvalues of X Dear unity.

In order that the general pattern of the results
presented here @rill not be obscured by a cloud of
CGIQpUtRtloQ31 details» %'e %'ill) 1D this section) slIIlply
state the results with R fear brief discussions of the
techniques and approximations involved in the calcula-
tions. The essential ingredients Gf the computations and
soIQc dlscusslon of the appl oxlIQatlons arc glvcD 1D

Appendix B.
%C Dow proceed to our examples.
Consider the piece of X vrhich connects the amph-

'tlldcs JIr~"(0) RIld JIr~e"(0) w11616 J" Is tile clcctl'0-
Inagnctic CUlx'cDt RQd g RQd E alc thc DuclcoD RDd

(3,3) resonances. We have four unknowns: p, and p., the
isoscalar and isovector total magnetic moments of the
nucleon, and y RQd g, thc IQRgnctlc dlpolc Rnd clcctI'lc
quadrupole parts of the amplitude JN~'"(0). (In the
static approximation which wc will employ, thc charge
coupling contained ln J~~ CGIBplctcly dccouplcs fx'GIQ

these other quantities, and we shall not consider it.}
To calculate the relevant elements of X, w'e consider

E RQd S RS bouQd Rnd lcsonaDt states 1Q thc
system and write an equation like (4) for each of the
quantities p„p„p, RQd g .AssuIQing that thc dlspcr-
slon intcgrals convex'gc rapidly we keep only the Qcm cst
singularities, which are the "short cuts" (i.e., static
p»cs) due to Jq' and F*exchange in the cross channels.
Then, assuming that the D functions are roughly linear
in the region

~

8'—M t &&M, we obtain the equations

Evidently X has, in this approximation, one eigenvalue
Xg exactly cqURl to Unity. IQ a bettcx' trcatIQcnt of the
problem, wc mould expect the eigenvalue spectrum of X
to remain qualitatively the same as that given in (13),
i.e., have a single eigenvalue near one Rnd the remaining
cigenvalucs slnall or negative. %C can. then predict that
J~~"(0) Rnd JIrIre"(0) w111 116 111ostly R1011g fm& which
gives p =V2p~, p,&&p, and q*&&p.. All these predictions
Rre lQ RgrecIQcDt with cxpcx'UQcnt: thc 1'clatioDs
py ='V2p Rnd q ((py Rrc 111 goocl RgrecIIlent with
photoproduction data, and p, /p, „ is experimentally
about 20%.

In deriving the above results, @re completely ignored
the CODtI'lbUtloD to the dlsperslon lntcgx'Rls fox' pg~ py~ p
RDd g Rx'lsnlg fI'OIQ pI'occsscs 8uch Rs 0P"Incson cxchaDgc.
This 18 thc sRIQc, of coul'sc, as lgDGI'lng thc clcIQcDts of
X %'hiCh COUPlC J~~ and J~~~ to a1TlPlitudes like Jss&.
In Appendix 3, it is argued that thc inclusion of terms
like those connecting J~~ to J„vrould Dot greatly
change thc 1csUlts obtalncd above.

Next we CRD try extending oux' CRlculatlon to the
SU(3) pl'oMCII1 of calcllla'tlllg thc D Rnd I 111RgIlctlc
moments p~ and pg of the baryon octet 8 Rnd the
coupllDgs I Rnd g which Rppcar Rt the +$8
(g"=decuplet) vertex. "(Here we are assuming that the
electromagnetic current is part of an octet) We consider
8 RIld 8 Rs bound and x'esonant 8tRtcs ln thc IIB
channels (II=0 octet) and proceed as before. This
time, hoover, the problem is complicated by the fact
that the tvro octet channels in vrhich 8 appears form a
coupled taro-channel problem and the results depend, to
some extent, on how one wishes to treat the coupled
channels. Methods for dealing vrith such multichannel
problems are given in Appendix 3 and in Refs. 9 and j.7;
hcI'c %'c siIQply stRtc the I'CSUlts foUDd ln Appendix B.
For any choice of the F/D ratio at the strong BJ3II
vertex in the usual range of 3 to ~~, and more or less
independently of hoer one chooses to handle the tvro-
chRDncl octet problem, thc X Inatx'lx conncctlDg p,~, p, y,
y~, and q* has one eigenvalue near unity, lying between
about 0.8 and I.2, voile the remaining eigcnvalues are
fax from one. The eigenvector associated with the x= I,
gives: (i} q*=0, (ii) pr/yII between about 2 and x~, in
agreement with the ratio of the neutron and proton
magnetic moment, and (iii) p~/(pn+pI )= —; to 1 which
ls RboUt w'hat 18 needed to kccp 1Qtact oui previous
rclatlon bctvMcn the DUclcoD DloIQent RDd EE tI'ansl-
tion moment.

~' Some asymmetric matrices do not possess a complete set of
eigenvectors. However, if I is in this category, one can convince
himself that conclusions essentially the same as those in the text
would still obtain.

TQ a rcccnt unpu411shcd report~ A. Abarbancl& C. Callan
D. Sharp discuss a calculation of y, and p,, using methods similar
to those advocated here. Whereas we are basing our conclusions on
rough self-consistency arguments, these authors carry out a dc-
tallcd cvaluatlon of thc dispersion relations fox' p& and p&. Thcix'
conclusions arc ln substantial agrccIQcnt with ours."This approach to thc pz/p y xatio and the xesulting conclusions
have been previously discussed in R. Dashen, Phys. Letters 11,89
(1964).
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The results of all these simple calculations are very
encouraging. Clearly, we cannot produce highly accu-
latc predlctloQS to COInpRrc with experiment but there
docs scenl to be RQ lndlcatlon thRt self-conslstencyq Rs

expressed by the eigenvalues of X, plays a major role in
determining the electromagnetic parameters of the low-

lying baryons and resonances. '~

Next let us try something more daring: We will now

investigate, in the same approximation, the X matrix
which connects the 88 and j38~ matrix elements of an
arborary current. Our aim is to sec if all the known weak
and electromagnetic interactions of these particles corre-
spoQd to cQhanccd clgcnvcctors of X.

We are led, then, to consider the 8-8 and 8-8*
matrix elements of an arbitrary current. We will assume

that g(q') is nonzero but is small compared to the mass
of the baryons, and that the current has a definite spin 5
and belongs to a de6nite representation of SU(3) denoted

assume SU(3) symmetry for the strong interactions). In
our dispersion-theoretic approach it is convenient to im-

agine that a particle, call it 8, is coupled weakly to the
current under consideration; we can then think of the
J3-8 and J3-8*matrix elements of the currents as ampli-

tudes for 8-+ 8+8 and 8*-+8+8 where e has mass

g(q') and spin S. In general, there will be several dif-

ferent kinds of couplings at the 888 and 8~88 vertices
corresponding to the various ways of coupling the spins

and orbital angular momentum of the particles; we

denote these by Gsr, rr for 8 ~8+8 and Gsr, a~ for
8*-+8+0, where S is the spin of tt, I is the orbital angu-

lar momentum of 8 in the center-of-mass frame, I and 5
are coupled together to give angular momentum E, and

K is in turn coupled to the spin of the baryon to give a
total angular momentum of —', for G and —,

' for G*

Conservation of angular momentum requires E=0 or

1 for G and E= 1 or 2 for G*.Similarly, we consider only

I.values such that, taking account of the parity of the

current, the process 8(8~)-+8+8 is parity-allowed.

Finally, we add a superscript S corresponding to the

SU(3) representation to which 8 belongs, obtaining's

» A further test of the hypothesis that electromagnetic inter-
actions follow enhanced eigenvectors of X would be provided by
calculations involving the electromagnetic parameters of mesons.
Unfortunately, the presently available dynamical models of
mesons are less reliable than the models employed here for the
baryons. About all one can do under these circumstances is to look

at the sign and order of magnitude of some typical contributions to
X and see if conditions are favorable for generating eigenvalues

near one. We have looked at two examples: (i) the pry coupling y,
obtained from the p pole in y+m ~ m~ vrith the cross-channel cuts
coming from p exchange. Here, Xis just a number, i.e.,y~=X„,p„so
th.e presence of an eigenvalue near one corresponds to X»=1; (ii)
the analog of (i) in SV(3). In both these cases, the signs and order

of magnitude suggest that there are again eigenvalues near unity.
"The relative normali2;ation of the couplings GBL,~~ and

6~1.~& are dined as follows. We set the amplitude for the
process 8*—+ 8+8 equal to

6*&
& & Z C(-,'m&*, -'m&, Z'm )

vrhere
8 X 10

851 X ~. 8@1

rs8
68J.1"
Gal, 1'

GBIil
X=8

(14b)

(14c)

68~o"=Xo"Gsz.o",
E=0 @+8

(14d)

"„=(I,') Gsio"p '

E=o X=S
(14e)

where the matrices X~ have the dimension indicated
by the vectors they act on and we have suppressed any
subtractions C.

In the present approxiination, the matrices X~~ ap-
pearing in Eq. (14) are independent of S and E and, for
g2 small compared to the baryon mass, are independent
of q'. They do, however, depend on S and the F/D ratio
X for the strong BBIIcouplings. We take X in the usual

is an SU (3}Clebsch-Gordan coefBcient as de6ned by de Smart, and
C(-,'my*, -',m~, ICmg) is the angular momentum Clebsch-Gordan
coefBcient for coupling E and —,

' to —,
' with magnetic quantum

numbers mg, mg, and my*. For %48, the amplitude for 8' —+ 8+8
is givenby-

C(-,mg', —,m g,Emy)
8 E 8

and for %=8 the amplitude for 8'~ 8+8 is de6ned as

2 (5/3)'/'G~
0 @'I +2V3G~

XC(-,'mg, —,'ma, Emy) .
With these definitions, one can verify that the magnetic moments
satisfy

pv:wrz~= (RxP+&uP):GuF'/~&.

8J.x*+ 2V=S, 27, ~ ~ ~ and Gsl,z+& X=1& Su, Sr, 27,
~ ~ ', where wc usc the notation 8~ and Sg to specify the
D and F couplings of an octet 8 at the vertex 888.As an
example of this notation, the magnetic and quadrupole
matrix elements of thc electromagnetic current dis-
cussed above are given by p~ ——G111'I', pg ——G111'+,

p =6111 and g G112
Now let us calculate the X matrix in the same ap-

proximation as before. I'or a given S and 5, we consider
the reaction 8+8-+8+11, and projecting out the
partial wave corresponding to a given 1. and E, we
write a dispersion integral just like (4) for each of the
couplings. Again we assume that the dispersion integrals
converge rapidly, and keep only the "short cuts" or
"static poles" corresponding to 8 and 8* exchange in
the I channel. As indicated in Appendix 3, the ap-
proximate X matrix obtained in this manner does not
connect 6's with diferent I.or E, and recalling that E
must be 0, 1, or 2, we obtain
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range -', to -'„and use the methods outlined in Appendix
B for calculating these matrices.

It turns out that the one-by-one matrices X&~ for all
E and X&~ for SQ1 or 8 are never close to unity, and
the two-by-two matrix x1~ for S/8 does not have
eigenvalues close to one. On the other hand, Xo' is about
one and the matrix Xo' has an eigenvalue somewhere
around 0.7 to 0,85 whose associated eigenvect'or corre-
sponds to GSLosn/GSLssr=ra to, s. Finally, the 3X3
matrix X1' is the same as the matrix discussed in the
magnetic moment examp1e and we know that it
has a single eigenvalue near unity corresponding to
GSL1' /GSLtsr=1. 5 to 2.0 and GSL*s/(GSLts +GSLtsr)
=—', to 1. Thus, we conclude that for any S and L, and
more or less independently of how the subtractions C
might be inserted. in our dispersion integrals, the
following pattern of coupling will emerge: (i) For E/8,
all the G's will be small except for GBL,o' which can be
large; (ii) For %=8, we will have GSLs*'=0 and Garo,
GSL1'& Gsr 1*' large and in the ratios GsLo'D/GSLo'~= 4,
GsL1 /GsL1 1 5 to 2 0 and GsL1 /(GsL1 +GsL1 )

4 to 1. These results are summarized i.n Table I.
Now let us see how well these predictions agree with

experiment. In the erst place, the calculation predicts
that aside from the special case of the Ga~o' coupling,
currents with g&8 should, if they exist, have small
matrix elements. This is in agreement with the fact that
the observed weak and electromagnetic currents seem to
belong to octets." Next, with regard to the electric
current, we recall that the predictions for the quadru-
poles and magnetic moments are in good agreement with
experience. Also, for the electric current, where the
couplings G»o'& and G]].o ~ correspond to the electric
form factors Gs(q') of baryons, the result that Gszssn is
small compared to Gagp + agrees with the fact that the
electric form factor of the neutron seems to be very
small. Similar conclusions hold for the vector part of the
weak. current. To see how our conclusions work for the
axial-vector part of the weak current, let us recall that the
general form of the B Bmatrix element o-f a (CP=+1)
axial-vector current is N (ps' "F1(q')+q "ysFs (q') )N, where
F1 and F2 are form factors. In the present notation, F~
corresponds to a term Gp11 and F1 is a combination of
the couplings Gp11, G1o1', and G121'. Since E is the same
for both F's, we predict that the D/F ratio for either of
the couplings F1 and F2 will be about 1.5 to 2.0, in
agreement with recent experimental analyses of the beta
decay of hyperons. We can also predict the matrix
elements of the axial-vector current between B and B*.
Here there are four couplings Go1], G1o1 G].21 and
G12~*, and we have the relations G122~ =0 and Gq~1*

"In some models based on more than one fundamerital triplet,
the electromagnetic current has an SU(3) singlet piece. It has been
pointed out LM. Nauenberg, Phys. Rev. 135, 81047 (1964)j that
this would introduce an SU(3) singlet piece into the baryon
magnetic moments. However, since we have an eigenvalue of
X=1 for the octet but not for the singlet moments, the octet term
will dominate dynamically in any case and the singlet term will be
small.

Fin. 4. Diagranratic representation of Eq. (14) involving Xo .
The solid lines are baryons, the dashed line is a pseudoscalar
meson, and the wiggly line represents any 8 particle.

goi1 ~

gOil (X )
g011

gou. ~

gO11 p

f011

(15)

where we have used the facts that in our approximation
X is independent of 5, J, and q'. In fact, the model is
self-consistent and (15) will hold identically if one takes
full account of the complications introduced by the
circumstance that the J= ~+ octet channels in IIB—+ IIB,
where the baryons appear as bound states, form a true
two-channel problem. "When the coupled-channel as-
pects of the problem are neglected, Eq. (15) is no longer
exactly true, but the enhanced eigenvector of X1 lies
mostly along the vector formed from the II couplings.
It is clear, then, that for all S and L the ratios among the
enhanced couplings Gg~j. ~ GgJ.1'~, and GBJ.1*' will be
the same as the ratios of the respective II couplings. For
the special case of B-B matrix elements of the axial-
vector current, one could have easily obtained this re-
sult from an SU(3) generalization of the Goldberger-

"Using similar methods, G. Chapline (to be published) and Y.
Dothan (to be published) have carried out more detailed studies
of these experimental situations.

= (GsLts +GsLtsr) for S=0, L= 1, and S=1, L=0, 2.
These relations can be tested'o in leptonic decay of the
0- and in reactions like e+p ~Ãe+r1. Experimental
tests of these predictions will provide a good check of
our hypothesis that the weak interaction follows an
enhanced eigenvector of X.

One will note that our predicted F/D ratio for the
B-B magnetic moments and for the B-B matrix ele-
ments of the axial-vector currents is, for practical
purposes, the same as the F/D ratio X for the strong
IIBBvertex which we used to calculate the X matrix.
The reason for this is easily explained. As pointed out in
the last section, the amplitudes t,~,11 for the process
a~ 5+II satisfy t, ,su=+, g Xs,,@(rmn')t, s,n, thus if
our mode1 of B and B~ as bound and resonant states of
OB is self-consistent, the IIBB and IIBB* couplings
must form an eigenvector of X(rwu') whose eigenvalue is
exactly one.

Noting that the processes B~B+II and Be~B+II
occur with the II in an L=1 state, we label the II
COuplingS With the SuggeStiVe nOtatiOn go11 + go11 + and
go11 8, and conclude that if our model is consistent we
inust have
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Fxo. 5. A triangle diagram which has
the same group-theoretic properties as
the right-hand side of Fig. 4.

Treiman relation. " However, it is not clear how a
similar. argument based on "pole dominance" of form
factors could give'@ simple derivation of the fact that the
magnetic moments have the same D/F ratio as the II
couplings.

In the preceding paragraph, we "explained" the unit
eigenvalue of X~8 by relating it to the unit eigenvalue of
X associated with the pseudoscalar meson couphngs.
The near-unity eigenvalue of X08 can also be related to
another phenomena, namely octet enhancement in the
baryon mass splittings. "To see this, it is easiest to
think of Eq. (14e) graphically as shown in Fig. 4, where
the solid hnes are baryons, the dashed lines are mesons,
the blob represents IIB scattering in the 1=2+ octet
states, and the wiggly line is the current which, because
it has E=0, couples to the baryons like a scalar particle.
Since the IIB scattering blob conserves spin and SU(3),
the diagram on the right-hand side of Fig. 4 will (for
fixed q') be a constant times the simple triangle diagram
shown in Fig. 5, where the triangle now represents only
a sum over SU(3) Clebsch-Gordan coeKcients.

In the present model, the proportionality constant
relating the right-hand sides of Fig. 4 and the diagram
in Fig. S is about one and we Gnd that the X-matrix
equation (14e) can be expressed diagramatically as in
Fig. 6(a). This equation clearly has the same appearance
as that shown in Fig. 6(b) which represents the change
in the mass of a baryon due to changes in the masses of
the baryons of which it is composed.

In the terminology of our previous paper on the mass
splittings in thc baryon octet and J= ~~+ decuplet, "the
"bubble diagram" in Fig. 6(b) is, apart from a dynamical
factor, the same as the piece of the A matrix which we
cajled A~~~~. The cigcnvalues of A~g~~ for mass
spiittings which belong to SU(3) representation P are
then proportional to the eigenvalues of X& . In the
model with which we are working, the proportionality
constant is roughly one and it turns out that the
eigcnvalucs and eigcnvectors of A ~~~ largely de-
termine the pattern of mass splittings in the baryon
octets. Thus, the fact that XON has no eigenvalues near
unity unless E= i or 8 is closely related to our previous
result that self-consistent mass splittings in the baryon
octet must have an octet rather than a 27 character
(Ã=1 does not lead to mass splitting). Finally, our
result that the near-unit. eigenvalue of Xo corresponds

~1 The connection between the Goldberger-Treiman- relation and
the present methods was erst pointed out to us by G. Chapline;
Similar conclusions have been reached by V. Hara, Phys. Rev. 137,
31553 (1965), from a somewhat different point of view.

~ This is a special case of a general connection, to be derived in
the third paper of this series, between X0 and A.

23 R. Dashen and S. Frautschi, Phys. Rev. 137, 31331 (1965).

to mostly I' coupling for the current is related to thc
fact that the mass splittings in the baryon octet are
largely Ii, i.e.,

(Ms 3f—z)j(Mg M—~)(&1.

V. CP=+I CURRENTS

In this section, we wish to make a few comments
concerning CI'= —i vector and axial-vector currents,
which may be of interest in connection with the recent
observation of CI' violations in E decays. In Geld-
theory models based on fundamental spin-@ objects such
as quarks, these currents often appear ugly or unnatural
because they require derivative couplings. From the
present point of view, however, a CI"=—i current
would seem a priori to be on the same footing as one
with CP=+1. While we are in no sense predicting the
existence of these abnormal currents, we can make a fcw
statements about the coupbngs to B and B~ which they
would have if they do exist.

It turns out that the approximate calculations de-
scribed above arc independent of thc CI propcrtlcs of
thc current under consideration; all that counts here is
the SU(3) representation N of the current and the
angular momentum E involved in the coupling to B
and B*.For example, the magnetic moment coupling to
baryons has C= —i and I'= —i whereas the coupling
of a pseudoscalar meson to baryons corresponds to
C=+1 and I' = —1,but in our Oar& notation they both
have E= i, i.e., 60~~ for the pseudoscalar and G~~~ for
the magnetic moment. Because X depends only on E
and not 8 or I., both these couphngs are enhanced in the
same way, although clearly the photon and pseudoscalar
meson have diBerent CI' properties. Since our X matrix
does not depend on thc CI' of a current, we Gnd that
abnormal octet currents will be enhanced relative to
ones which belong to 10, 10, or 27 and that the ratios
among the B-B and B*-Bmatrix elements of the octet
currents will be the same as for normal CE=+I
currents.

]8M~ g 2 g q y

F10.6. A diagramatic illustration of the similarity between Xp'
and A,„t~~. The upper line (a) is a schematic representation of
Eq. (14) for Ggl, 0 (the J388 coupling) while the lower line repre-
sents the effect on a baryon mass of a small change in the masses
of the baryons of which it is composed. The diagrams represent
only products of Clebsch-Gordan coefficients. The proportionality
signs indicate that the diagram is to be multiplied by a dynamical
factor; in both cases, the dynamical factor is about one.



In this paper we calculated, in a rough approximation,
the part of the X matrix vrhich connects the B-B and.
B-B*matrix elements of an arbitrary current. Ke found
that for some types of currents, this approximate X
matrix has an eigenvalue near unity. According to our
hypothesis that strong interactions largely (quite possi-
bly, completely) determine the weak and electromag-
netic interactions of hadrons, we expect the observed
couplings of J3 and 8* to the vreak and electromagnetic
current to follovr the pattern set by the enhanced
eigenvectors of X. As vre have seen, this is indeed the
cRse. It would seeHl 1Q fRct thRt our' conclusions about
the SU(3) transformation properties of currents and our
predictions concerning ratios of magnetic moments,
quadrupole moments, electric form factors, and vreak
axial-vector coupHngs are su%ciently numerous and
well-veri6ed by experiment as to rule out the possibility
that the agreement obtained is pure luck.

In this connection, vre ought to make a few comments
about the reliability of the approximation scheme which
vre have used here. Clearly, it is not capable of pro-
ducing highly accurate quantitative predictions; any
agreement to better than, say, 10 to 20% should be
considered as accidental. On the other hand, we feel
that for the purpose of determining the general structure
of the eigenvalues and eigenvectors of X, our methods
are adequate and reliable. Theoretical reasons for
trusting the method have been discussed in the Ap-
perldlx and ln Ref. 23.

Another reason is pragmatic: The method. has been
consistently successful in diverse appHcations con-
cerning the deviations from SU(3) symmetry in the 8
octet and 8*decuplet, the parity-violating nonleptonic
decays of hyperons, and the neutron-proton mass differ-
ence. The results of all these calculations 6t together
vrith the results of the present calculation to give Rn
internally consistent picture of many properties of the
baryons and resonances. In this respect, it is important
to note that the assumption that a dispersion integral
like (4) is dominated by low-mass singularities is dis-
tinct from the question of vrhether the actual binding of
H and 8 to make 8 or 8*can be understood in terms of
nearby singularities, i.e., long-range forces. It may vrell
be that the actual mechanism vrhich binds 8 and. 8* is

Fxo. 7. The scattering process
discussed in the text in connection
arith the effect of external particle
spin on the asymptotic behavior of
the amplitudes. Particles e, b, and
c are spinless vrhile d is assumed to
have nonzero spin.

FIG. 8. A production amplitude.
H particle d of Fig. !is an e-f
bound state, its spin does not cause
subtractions &n the amplitude of
Flg. 7.

sensitive to short-range effects, but it seems that the
pattern of mass shifts, weak decays, magnetic moments,
and so forth is determined mostly by the long-range
forces.

In conclusion, vre would like to point oUt Rgain that
there is a very attractive possibility that the C's are all
zero so that the vreak and electromagnetic properties of
hadrons are completely determined by bootstrap-like
self-consistency conditions. From a technical point of
view, the role of subtractions C in the dispersion rela-
tions for the matrix elements of currents should be, as
was pointed out in Sec. II, more or less the same as the
role of subtractions in purely strong-interaction phe-
nomena. If the strong interactions are free of arbitrary
subtractions, it would seem most natural, then, for X-
matrix equations to also be free of arbitrary constants.
The fact that in our approximate calculations the ob-
served. currents follow the eigenvectors of X whose
e1genvalues are near unity may weH be RQ 1ndlcatlon
that, in an exact calculation, these eigenvalues would be
exactly equal to one and the C's would then be zero.

In the text vre a,rgued that the asymptotic behavior of
the amplitudes for u processes like u~ 6+8 should be
the same as that of a purely strong-interaction ampli-
tude. Since all the "internal" particles in the amplitude
are hadrons, it is evident that any difference in asymp- .

totic behavior can only have its origin in the fact that
the external particle 8 is being treated as an elementary
object vrith 6xed spin. %e shall shops here that 6xed 8
spin vriH cause Qo trouble if RH form factors vanish as
g ~00.

The manner in vrhich the spin of an external particle
can affect the asymptotic behavior of a scattering
amplitude has been studied. in detail by Mandelstam. "
Our aryDIlents vrill be very similar to his.

Let us 6rst revievr Mandelstam's conclusions, vrhich
can be summarized as foHovrs. Consider the reaction
pictured in Fig. 1'. The particles u, b, and c are, for
simplicity, assumed to have spin zero while particle 4 is
taken to have a spin o &0. For the time being, vre sup-
pose that all four particles are hadrons; the spinning
particle d vriH later correspond. to 8. Novr, according to
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Fro. 9. The e fiat-ermediate state
in the form factor for J,y, ,

Ref. 11, «f d is an eIemeeAxry hadron, the amplitude will
for la,rge s contain a non-Regge term which behaves like
s -' independently of t; consequently, if ~~0, a sub-
traction mill be necessary in the dispersion relations. In
Regge-pole language, this subtraction would come about
because the spin of d can bring one of the well-known
Axed slngulRrltlcs at /= —1 up to R physlcR1 value of
J=l+o&0. Mandelstam shows, however, that if d is
not elementary this subtraction will not, in fact, be
present. To see this, one considers the production
amplitude shown in Fig. 8, where, again for simplicity,
we suppose that e and f are spinless, The production
amplitude depends on 6ve variables which can be

chosen to be s and 1 as shown in Fig. 8, q'= (p.+ps)',
cosP=cosine of the angle between y, and y, in the
center of mass of e and f, and &=an azimuthal angle
between p~ and y,. Mandelstam argues that for 6xed t,

-

qt, cosp, and g, the production amplitude goes, apart
from Regge terms, like s ' for large s. This behavior is
independent of whether or not the two-particle system
e-f has a bound state. If we suppose then that d is not
elementary but appears as a bound state in the c f-
systcDl wc conclude by plcklng thc d pole out of thc
production amplitude (Fig. 8), that the s' ' term does
not appear in the amplitude for a+5-+c+d, even
though d may have spin.

We now turn to the behavior of the amplitude for
u+b-+ c+8, in the case that the weakly coupled par-
ticle 8 has spin. Since we are treating 8 as elementary,
we cannot directly use Mandclstam's arguments to
show that the s' ' term (o = spin of 1)) does not occur. A
modi6ed argument does, however, suKce. Let us denote
the amplitude for u+b~ c+t) as J&,», ,(q') where, as
usual, q' is the mass of 8. We assume that J~,q~, , satis6es
an unsubtracted dispersion relation in q; i.e., we write

ImJ(, »,.(q")
J&». (q')=

A typical contribution to ImJt, », , would be the ef-
intermediate state shown in Pig. 9. Keeping, for sim-
plicity, only the e fcontribu-tion to ImJ yields

T.),,„s(s,t,q", cosp,g)f,se (q")P(cosp, p) dq"d cospdp
J&». (q'»1)=.

where T is the strong-interaction amplitude for a+6 -+
c+c+f, f,y is the amplitude for e+f~ e, P (cosp,p) is
the function which projects out the J=0. partial wave
for the c fsystem, a-nd we have explicitly shown how

J, T, f, and P depend on the different variables. Now, as
pointed out above, for 6xed t, qt', cosP, and jh, T goes like
s ' plus Regge terms for large s, and since f and P are
independent of s one 6nds J,&,,~s ' plus Regge terms as
s ~~, independently of the spin of 8.

The same argument can be repeated for any other
intermediate. state. We thus conclude that if all form
factors vanish for iP~~, so that the J's obey unsub-
tracted disperion relations in q', then the spin of 8
cannot change the asymptotic behavior of amplitudes.

In this Appendix, wc list some formulas and treat
gome points which were used in deriving the results
discussed in Sec. IV. References 9 and 17 cover the
general mathematical scheme which we use here, and
some further discussion concerning calculations of this
sort call bc found ln an lntclcstlng paper by'Hara.

The notation used here is explained in Sec. IV.

X
~ ~inel. thresh.

Im(F (W )Asy, )r*+(W ))dW

8"—3f~

where %*is the 8~ mass, S' is the total c.m. energy, the
contour Lruns around the left cuts in 2*,and the second

(1) Dispersion Inta)tra1s for the- Cont)1ings i and 6*

The dispersion integrals which are used to'calculate
thc coupllngs GBI,~* RQd Gagl" Rl-c essentially the
same as those in Eq. (4). Here we sketch the generali;
zations to SU(3) and to currents with arbitrary spin.

First we give the equation for) Gagz*~. Let 381.~*~be
the amPlitude for II+8-+8+1) in the J~=. aa+, 10
channel where E is the SU(3) representation to which 0
belongs and, as in Sec. IV, 5 is the spin of 8, 1. is its
orbital angular momentum in the center-of-mass sys-.

tem, I=S+L, and E is coupled with the spin of 8 to
give total J=~+.

Using the methods of Ref. 9, one Ands that G~ is given
by

1:F*(W')Aszrr* (W )
~BI.E:

2+i L, TV' —M*
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integral is the contribution of inelastic intermediate
8 tRtcs like 8+II+II to thc I'lgllt-llRIld cllt. Thc fllllctlo11
F (W) ls cqllal to

wheI'e D ls tlM deDGD11QRtor fuQctlon foI' HB SCRtteI'lng

in the J= 2+, 10 channel and —(y*)' is the residue of the
(direct-channel) 8* pole in the II8 partial-wave
amplitude.

Thc cquRtlo11 foI' Gag~ ls son1cwhRt Q1olc CGD1pll'-

catcd bccausc of thc fact thRt 8 couples to two DB
channels, namely, Sg) and Sp. This time we let Hag~'™,
i=80, 8p be the amplitude for II+8—+8+8 in the
J~= —.',+, i= 8~ or Sg channel. If 8 belongs to an octet, we
denote, as before, the two octet channels of 8+8 by
X=8~ and E=Sp. Again using the techniques of Ref. 9,
onc CRD show thRt

Gar, zr
~ Ss.sa 2'

F (W'}diaz, zr' (W )BV'
8" —M

1 Im(P;(W )Aazzr' (W ))dW, (18)
g 8"'—M

where M is now the baryon mass. In this case, we have

~'(W) = K Vzl') '2 VAIW '(W),

61 ——hm (W—M) {D-'(W))I„,

where D;;, i=St, 8~, j=8p, 8~, is the D matrix fox II8
scattering in the J=-,'-+ octet states and —y,g; is the
rcsldUc matHx of thc bRI'yon pole. Note that thc P& s Rs

well Rs P of Eq. (17) Rrc Independent of S~ J ~ Z) and X.

(3) The "Nearby" Singularities in 11+&-+ &+&

If we take, for simplicity, Q(q') equal to the II mass,
thc analytic stluctux'c of 3 BIll 2 will bc thc same Rs ln
thc familiar case of IIB clastic scattering. The dominant
nearby singularities, i.e., those lying in the region

(2) Convergence of the Disyersion Integrals

Equations (16) and (18) are, as they stand, exact. In
order to evaluate the integrals in practice, however, wc
assuQ1c that they coDvcl"gc rapidly so that thc dominant
coQtrlbutlolls to (16) Rnd (18) al'c fl'0111 tile Ilcal'by
singularities. A detailed discussion of the expected con-
vergence properties of dispersion integrals simi].ar to
(16) and. (18) is given in Ref. 23. There, it is concluded
that if 8 and 8*are rot elementary particles, so that the
denominator functions D and D* will, for large 8; go
something bke a constant or In@', then dispersion
integrals like (16) and (18) should converge rapidly.

~

W'—M
~

somewhat less than M, come from: (i) "short
cuts" due to 8 and 8* exchange in the N channel (be-
cause an orbital state L crosses only to the same L in
the static limit, '4 the "short cuts" associated with the
cxchRQgc of hlghcI' Q1ass IIB I'csonaQccs with J other
than 2+ 01 $+ Rlc vcly wcRk}, (11) cxcllRllgc of llgll't

ob]ccts such Rs 0 lQ thc 3 chRDQcl. FOI' I'cRsons to bc
discussed below, we shall not concern ourselves with the
t-Channel CutS.

Ke should Rdd a word about the far-away singularities.
It is true that 8 and 8* exchanges also produce "dis-
tant" cuts running along the imaginary S' axis, but we
do not feel that the presently available methods for
including these cuts would be likely to improve our
estimate for the G's. The reasons for this are: First, the
I'Rtl1cI' poox'ly understood Rcggc bchavloI' of the pax'-

tides will be important in this region, and secondly,
there is little reason to believe that 8 and B~ exchange
dominates the cut along the imaginary axis. Ke prefer
to consider the contribution of all the distant cuts as an
effective "C"which gives, schematically, G=XG+"C."

~m, 2 (—~)=~as,2 (&),

A azo(—co) =cf ay, o((iy),

(20)

(21)

(~ar, l( ~) ) (—s 8)—~as, l(~) )
kA az, ,*(—to)t 4 3 —,') az,z*(ce))

(22)

which hold for ( ~ j &(M. We note that the residues of the
cI'oss-chRnncl poles ln thc 1QtcgI'al fol R coupling 68J„~or
GBL,~~ wiH contain only couplings with the same 5, J,
811d E. Tile lcasoll fol' this 18 tllat S, Rs thc spill of an
external particle, crosses only to —S, L crosses only to—L 111 thc sta'tlc hmlt~ alld tllus K= S+L closscs 011ly
to —K. Adding to (20), (21), (22) the SU(3) crossing

~ Yo see this, note that 5= —2gam(1 —costa) =—2g„2($—cosP~).
Now in crossing from the s to @channel, t does not change, and in
the static region q„'=q,', which implies that cose, =cos6 and
therefore PL, (cos8,)=EL,(cos&~).

(4) Use of the StRtlc Crossing Relations

Thc 8 RQd 8 shox't CUts Rx'c %'cll approximated by
poles whose residues are given in terms of those of the
direct-channel poles by the static crossing relations, i.e.,
thc CI'osslng 1clations thRt would hold ln the limit
LV~co. In this stRtlc 11IDlt thc tI'RQsltloD fI'GIQ the s
channel to the N channel is obtained by: (i) replacing II
Rnd 8 by their Rntlpartlcles II Rnd 8; (11) taklllg Sg, La,
Rnd Ez to —Sz, —Jz) RDd —Icz, with thc squRIes of
these angular momenta remaining the same; and (iii)
taking m= 8 —M to —M. Wc will not conccx'Q ouI'sclvcs
here with the isotopic LSU(3)j part of the crossing
relations; SU(3) crossing matrices have been amply
discussed in the literature. ¹glecting, then, the isotopics
Rnd denoting t e J + amp]itudcs by g
RQd thc J=~+ amplitudes by ABJ,O RDd Aax, y& GQc easily
vcllics that
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relations completes the determination of the residues of
the "crossed poles" in terms of the direct-channel pole.

(5} Linear D Functions

Since we only need the I's in Eqs. (16) and (18) in the
region

~
W—M~&(M where the short cuts appear, we

can approximate D*(W) and D;; (W) by linear functions
which have zeros at the masses of 8* and 8 Lactually
det(D;;)=0 for the coupled-channel 8 problemj. In
order to complete the determination of the matrix D;;,
one can either: (I) assume that D;; can be diagonalized
independently of W in the region

~
W 3I~&(M—which

reduces the two-channel problem to an effective one-
channel problem, or else (II) determine a self-consistent
two-channel D matrix as in Ref. 17. The results of the
calculations presented in Sec. IV are not sensitive to
which of these methods is chosen, nor are they signi6-
cantly changed if the D functions are given a reasonable
curvature (see, in this connection, Ref. 23).

(6) Calculation of SU(2) X Matrix

Before calculating the X matrix for full SU(3), it is
instructive to work out the SU(2) X matrix, Eq. (12)
of the text. Here it is entirely appropriate to use one-
channel linear D functions. The spin crossing for the
magnetic moments goes like If= 1 LEq. (22)j, and the
spin crossing for the quadrupole moment goes like E=2

LEq. (20)j.For an isoscalar photon, the isospin crossing
factor is 1, and of course relates only I=-,' amplitudes;
combining this with the spin-crossing factor of Eq. (22)
gives the X-matrix element of —-', connecting p, to p,
For an isovector photon, the isospin crossing factor is
well-known to be the same as the spin crossing for E=1;
combining spin and isospin factors produces the re-
maining elements of the X matrix shown in Fq. (12).

(7}SU(3) Calculation of XP and XoN

In these cases we use the trivial spin-crossing relations
(20) and (21), together with the usual SU(3) crossing
relations, and it is easiest to assume (I) for D,;. It is
then a straightforward matter to show that ~X@~&&1
for all E and that Xo~ has eigenvalues near unity only
for 37= 1 and 37=8, as discussed in the text.

(8} SU(3) Calculation of XP
In this case it is easiest to use the self-consistent D

matrix (II). Since this matrix makes the II couplings
self-consistent, we know that Xj' has an eigenvalue
exactly equal to one. It is then straightforward to verify
that X~N for 1V/8 has no eigenvalues near one.

(9} t-Channel Cuts and The Asymmetry of X

We did not include the nearby part of the t-channel
cuts in evaluating (16) and (18). There are several
reasons why this may be a reasonable approximation.
Suppose, for example, that in calculating GgLo + and
G&Lo'& we had kept, say, the t-channel cut due to
vector-meson V exchange. Denoting by gy the relevant
coupling for V~ II+8, we would write an expanded
X-matrix equation like

GSLo GBLo CE
Gsz.o' = Xo' b Gsr, o" + &a (23)

gy 8 b c gv CV

Now if the V mesons are composed largely of DII, VII,
and possibly VV, then we do not expect the 088
couplings to have a large eBect on gy. In this case, a' and
b' will be small, and neglecting these terms the eigen-
values x of the expanded X matrix of Eq. (23) are given
by the solutions of (c—x)Ldet(Xoo —xI)j=0. One sees,
then, that even if gy has a large effect on the G's, i.e.,
large u and b, the expanded X matrix still has the near-
unit eigenvalue of Xo' and it is easy to verify that the
enhanced eigenvector corresponds to the same ratio of
G'& and G'~ as before. ' Actually, estimates indicate
that a and b are themselves somewhat smaller than the
e6ects of 8 and 8*exchange, which further strengthens
the likelihood that V exchange terms can be neglected in
erst approximation.

Note added in proof After this. paper was written
we learned that B. Diu and R. P. Van Royen had in-
dependently arrived at some of the conclusions listed
in Sec. IV t B. Diu and R. P. Van Royen (to be
published) j.

~' This is a particular example of how the asymmetry of the X
matrix plays an important role in many practical calculations. A
detailed discussion ot the properties of asymmetric matrices within
a similar context can be found in Ref. 23.


