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PHYSICAL REVIEW

Sum Rules Giving Tests of Local Current Commutation Relations in
High-Energy Neutrino Reactions
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CERN, Geneva, Switzerland and Lyman Laboratory, Harvard University, Cambridge, M assachusetis
(Received 6 October 1965)

We show that the local commutation relations of the vector and the axial-vector current octets can be
studied in nonforward lepton-neutrino reactions. We do this by using the commutation relations to derive
sum rules, for fixed ¢% (¢?=invariant lepton momentum transfer squared), involving the elastic and the
inelastic form factors measured in high-energy neutrino reactions.

1966

1. INTRODUCTION

T has recently been proposed by Gell-Mann! that the

fourth components of the vector and axial-vector

current octets satisfy the local equal-time commutation
relations

[Fau(#),Foa(9) ]| 20mio=— farFea(®)d(x—y),  (1a)
[fr’u(x), EF1145(3’):] l To=yo— fabch“f’(x)é(x— y) ) (lb)
[Fas®(2),Fo4%(5) ]| s0=vo=— fabeFea(®)3(x—y).  (Ic)

Here F.\ and F.»\° are, respectively, the octet vector,
and axial-vector currents, and @, b, ¢ are unitary spin
indices running from 1 to 8. According to Eq. (1), the
octet vector and axial-vector charges

Fo()=—1 / d3x Faa(x,1),

()
Fi()= —i/d% FaP(x,0),
satisfy the equal-time commutation relations
[Fa(t);Fb(t)] = ifachc(t) ’
I:Fa(t);Fbs(t)]=ifachcs(t) ) 3

[Fa(0),Fo* () J=ifaF o(0)

The commutation relations of Eq. (1) are considerably
more restrictive than those of Eq. (3), since even if
derivatives of the delta function were present on the
right-hand side of Eq. (1), Eq. (3) would still be valid.
In an earlier paper? [hereafter referred to as (I)] we
showed that the commutation relations of Eq. (3) can
be tested in high-energy inelastic neutrino reactions, in
which the lepton (which is regarded as massless) emerges
moving parallel to the direction of the incident neutrino.
In other words, Eq. (3) may be tested in ¢2=0 neutrino
reactions, where ¢? is the invariant momentum transfer
between the neutrino and the outgoing lepton. In this
paper we generalize the results of (I), by showing that
the local commutation relations of Eq. (1) can be tested
in ¢2>0 (nonforward lepton) neutrino reactions. We do
this by deriving from Eq. (1) a sum rule, valid for each
fixed ¢, involving quantities measurable in high-energy
neutrino reactions.
* Junior Fellow, Society of Fellows.

1 M. Gell- Mann, Physics 1, 63 (1964).
2§, L. Adler, Phys. Rev. 140 B736 (1965).
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In addition to Eq. (1) for the fourth components of
the current octets, let us postulate that the space com-
ponents of the octets satisfy the local equal-time com-
mutation relations

[Fan(%),Fom(¥)] | 20=vo

= 5nmfabceoc4l (x)s(x_ y)+Sabl ’ (43‘)
{[Fan(x),Fom® (D) 1| s0mvo[Fan®(®), Fom(¥) ]| 20muo}
= zsnmfabc@cfi(x) 8(X—" Y) +Sdbz ’ (4b)
[Fan®(®),Fom®(y) ] l 20=10
=0dumfabcVed(#)3(x—y)+Sa®.  (4c)

Here U.4! and V.42 are the fourth components of vector-
current octets, and @4 is similarly the fourth component
of an axial-vector octet. The quantities S,3!+%? are sym-
metric in the unitary spin indices ¢ and b. If the simple
quark-model commutationrelations proposed by Dashen
and Gell-Mann® and by Lee* are valid, we have

’(3041:‘41)042: Fes ) Qes= gc45- (5)

However, Eq. (5) is not valid in theories in which meson
fields are explicitly included in the currents, whereas, in
many of these field theories, Eq. (4) still holds. We will
derive sum rules which provide tests of Eq. (4) in ¢2>0
neutrino reactions.

Each of the sum rules discussed in this paper requires
for its derivation, in addition to a local equal-time com-
mutation relation, the assumption that a certain scatter-
ing amplitude obeys an unsubtracted dispersion relation
in the energy variable, for fixed ¢% No attempt will be
made in this paper to justify the assumption of unsub-
tracted dispersion relations. Thus, the statement made
in this paper is that if the assumption of unsubtracted
dispersion relations is valid, the sum rules derived
provide a direct experimental test of local equal-time
commutation relations.

In Sec. 2 we state in detail the results of the paper.
The next two sections comprise the derivation. In Sec. 3
we analyze the kinematics of high-energy neutrino re-
actions. In Sec. 4 we derive, from local commutation
relations, sum rules which involve the quantities defined
in the kinematic analysis of Sec. 3. In an Appendix we
give lepton-mass corrections to the results stated in
Sec.2.

3 R. F. Dashen and M. Gell-Mann, Phys. Letters 17, 142 (1965).

+B. W. Lee, Phys. Rev. Letters 14, 676 (1965
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2. RESULTS
We consider the high-energy neutrino reaction
v+N — 148, (6)

where » is a neutrino, &V is a nucleon (neutron or proton),
! is an electron or muon, and 8 is a system of strongly
interacting particles. Throughout the text of this paper,
we will neglect the final lepton mass, i.e., we take

m=0. (7)
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We denote by W the invariant mass of the system g,
by My the nucleon mass, and by ¢? the invariant
momentum transfer between the leptons:

¢*=(ky—k1)?*=4E,E, sin%(¢/2),

8b
W= [ZMN(E,-—EI)+MN2_ q2:|1/2 . ( )

We assume that the semileptonic weak interactions
aredescribed by the current-current effective Lagrangian

. density
The results stated below are only slightly modified when

all lepton-mass terms are included. (See the Appendix.)
We define all noninvariant quantities referring to the
reaction of Eq. (6) in the laboratory frame, in which the
nucleon N is at rest:

L(x)=(G/V2) jr(x)J(x)+adjoint
G=1.023X10"%/M y?,
@) =@y (%), ©
Ia(x) = (cosbc)[ Fun(x)+1iFan(x)+ Finb(x)+iFard(x) ]
4 (sinfc) [ Fan(x)F1Fsn(x)+ Fad(x)+iFanb(x) ],
6c=Cabibbo angle.

E,=neutrino energy,
E,;=lepton energy,
¢=lepton-neutrino scattering angle,
Q;=Ilepton solid angle,
k,=neutrino four-momentum,
ki=lepton four-momentum,
g=k,—k;=lepton four-momentum transfer.

(8a)
We define the form factors F1"(¢?), Fa¥(g?), gv(q?),
g4(¢®), and ha(¢g?), which describe elastic neutrino
reactions, as follows:

(N (p2)| Fn(0)+iF2a(0) | N (1)) = (M n/ p20) M v/ p10))* itan (p2) 7+ [ F1¥ (¢ va—F27 (g% onegs Jun(p1)
=((Mn/p2)(Mn/ p10))*itn(p2) T [gv(g®)yatiF 2" (¢%) (prt+pa)aJun(py) ,
qg=pr—p1, gv(g)=F1"(¢")+2MnF:" (g%,
(N (p2)| Fn3(0)+iFn(0) | N (p1))= (M w/ p20) (M n/ pro))" *itan (p2) 7 g a(g®)va— ik a(gD) p Ty sun (1) -

Here 7+ denotes 3 (7141i72%), with 37¢(c=1, 2, 3) the nucleon isotopic spin matrices.
Finally, we define the diagonal one-nucleon matrix elements of the operators V.4!+2 appearing in Eq. (4) as follows .

(N ()| Ve 2(0) | N(p))=1Cr"*G7°), ¢=1,2,3;

(10)

' 11)
(N(p)|Vsa2(0) | N (p))=1Cy1:2. (
If the quark-model commutation relations hold, so that Eq. (5) is valid, then

Cri?=1, Cy'2=1V3. 2

If the quark-model commutation relations are not valid, the values of C;!'2 and Cy!'? are not at present known.
We may now state the results of this paper, as follows.

Strangeness-Conserving Case

The kinematic analysis of Sec. 3 shows that we may write the reaction differential cross section in the form

& ((V)+ (l)+ﬁ(s 0)) / dadr= e B
N — _
’ v ? l o (27)? E,

X[g*a®(¢*,W)+2E,E; cos’(56)8 (¢ W) F (EAE) gy (¢ W)].  (13)

By measuring d%/d0dE; for various values of the neutrino energy E,, the lepton energy E; and the lepton-
neutrino angle ¢, we can determine the form factors «@®, &), and y& for all ¢>>0 and for all W above threshold.
In Sec. 4 we prove that:
(i) the local commutation relations of Eq. (1a) and Eq. (1c) imply

°° W
2=g4(g®)*+F1"(¢*)*+¢*F2"(¢*)*+ —dW[B (%, W)—BH (¢, W)];

J MN+My N

(14)
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(ii) the local commutation relations of Eq. (4a) and Eq. (4c) imply

0

w
Cr'+Cr=(1+¢*/4M n*)ga (") *+(¢*/4M v*)gv (¢?)*+ —dW[aD (2 W)—a (g2, W) ]; (15)

MN+Mx
(iii) the local commutation relation of Eq. (4b) implies

2 2 o0 w
srldlede), / — WLy O~y D (g )], (16)
MN MN+My N

Strangeness-Changing Case
We write

( ( )-}-(P,n) - (>+/3(5_ B )) / ddE Gz(z;n:c 2’

X[Pa(p,m ® (g% W)+ 2E,E; cos*(36)Bp,m E (g% W) F (Evt-E)) g™y o,y @ (@3 W)]. (17)

Then,
(i) the local commutation relations of Eq. (1a) and Eq. (1c) imply

(4,2)= f KdW[B@.n)“’(qz,W)—ﬁcp,n,‘+)(q2,W)]; (18)
My
(i) the local commutation relations of Eq. (4a) and Eq. (4c) imply
[vg(cyl+cy2)+%(C11+C12),\/§(CYI+CY2)—%(CII+C,2)]=/ME/I;dW[a(,,',,)<—>(q2,W)—a(,,'n)“)(g“’,W)]; (19)
(iii) the local commutation relation of Eq. (4b) implies
(0,0)= / ]—Z;dW[y(p,n)(‘>(q2,W)—'y(p,n)(+’(q2,W)]. (20)

The integrals of Egs. (18)—(20) have discrete contributions at W =M and/or Mz and a continuum extending from
W=Mar+M, or from W=Mz+M, to W= . We have not explicitly separated off the discrete contributions to
the integrals, as was done in Eqs. (14)—(16) for the strangeness-conserving case. It would, of course, be straight-
forward to do this. .

i, The sum rules of Eqgs. (14)~(16) and (18)-(20) hold for each fixed ¢2, provided, as was stated in Sec. 1, that the
assumption of an unsubtracted dispersion relation needed to derive each sum rule is valid. When ¢2=0, Egs. (41)
and (43) of the next section show that

B(O’W)=(4MN2/(W2“MN2)2)¢,§T 2 3(kgotEa— E,— MN){ | (Bl WY | N) 24 [ (Bl nIa4 [ N) (2}, (21)

where J»7 and J4 are the vector and axial-vector weak currents appropriate to the AS=0 or |AS|=1 cases
(e.g., Jr¥=FntiFa or Fa+iFs). Thus, at ¢>=0 Egs. (14) and (18) are just the forward lepton sum rules derived
in (I). '

The sum rule on B has an interesting consequence for the behavior of neutrino cross sections in the limit of very
large neutrino energy E,. With the aid of Eq. (8), let us write Eqgs. (13) and (14) in the form

v l G? cos¢
dza((ﬁ)-kp — <z>+/3(5= O)) /d(g2)dq0= ——4 = [P+ (2E,2—2E,q0— 3¢)BETF (2E,— qo)g™y ], (22)

Ly
2= f dgo(BI—B) 23)
(9*/2MN)—

The differential cross section do/d(¢?) is given by
do /,Ey(x—qz/w#) 2o
(

dq?

dgq . (24)
a*/2MN)— d(g*)dqo
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The upper limit of integration is fixed by the requirement that sin?(¢/2) lie between 0 and 1. Using Eqs. (22)~(24),
it is straightforward to prove the following theorem:
Theorem. Suppose that the integrals

eodqo wdqo 0

[ Zao—am, [ Zgoty), [ apo-s) (25)
qo qo

are convergent. Then

lim {doG+p — IH-B(S=0))/d(¢*) —do(v+p — 1+8(S=0))/d(¢)}
G2 cos®¢ [~ G? cos®¢
=—~————/ dqo[ﬁ(_)——ﬁ(‘f‘)]:—-———-— . (26)
2m (a*/2MN)— T
Similar results hold in the strangeness-changing case. Adding the cross sections for the AS=0 and the |AS|=1
cases to obtain the total cross section, we find

Eﬁm [dor(+p)/d(g*) —dor(v+p)/d(g*) 1= (G*/)(cos*6c+2 sin®fc) )
g 27
lim [dor(3+n)/d(¢?)—dor(v+n)/d(¢?) ]=(G?*/7)(—cos?0¢+sin2fc) .

Ey-»>0

Equation (27) is the somewhat surprising statement that, in the limit of large neutrino energy, dor(7+N)/d(¢?)
—dor(v+N)/d(g?) becomes independent of g% This result is unchanged by the lepton-mass corrections.

3. KINEMATIC ANALYSIS OF HIGH-ENERGY NEUTRINO REACTIONS

In this Section we derive Eq. (13) ,which gives the general form for the neutrino reaction leptonic differential
cross section, d’s/d%dE;.® In particular, we find explicit expressions for the form factors a(¢% W), 8(¢% W), and
v(¢%,W), in terms of matrix elements of the vector and the axial-vector currents.

According to the effective Lagrangian of Eq. (9), the matrix element 91 for the process »+ — I+8 is given by

M=gm, m=w(k)yr(1+v5)u(kr)272(B*(keg) | I\V+T\4| N (kw)). (28)

Here g=(G cosfe, G sinfc) in (AS=0, | AS|=1) reactions, J»¥ and J»4 are the appropriate vector and axial-vector
currents, and kg and &y are, respectively, the four-momenta of 8 and of V. In the frame in which the initial nucleon
N is at rest, the reaction cross section is given by

&k d’kg mym,

o=(2m)* / > X kst ri—k—kn)— —) 2| m|2).

2r) ) (2n) simr S ! & e ml) (29)
In Eq. (29), 2 s~ is a sum over the internal variables of the system 8, 3, is an average over the initial nucleon
spin, and (| |2) is the sum of |72 over the lepton spin states. From Eq. (29) we get

dza'/dﬂsz1= [gz/(ZW)Z:I(Ez/Ey)K 5 | (30)

with
K= p,xzr:w Z. (ksotEr— Ey— M y)mmy(|m|2) | xpmq - (31)

Let us now study the quantity x. We introduce the abbreviated notation
=272 (k) n(14-ys5)ms (k)
Vaf=(Buq, i(qo+Mn)]| N7 |N(0iMy)),
A= (B q, i(qo+Mn)]| Jn4| N(0,iM y)),
2= 2 2 8(kpotEi—E,~My).

B,INT s

(32)

Let us further denote by V»? and by 4 p? the matrix elements of the divergences of the vector and the axial-vector
currents,

Vpf=—igaVaf= (8" q,5(qo+Mn)]| IV |N(0,iM y)),
ApP=—ipA\P=(8"""q,(gy+Mn)]| 9rJ24| N(0,iM x)).

§ Locality theorems of this type are, of course, well known. See, for example, T. D. Lee and C. N. Yang, Phys. Rev. 126, 22
(1962); A. Pais, Phys. Rev. Letters 9, 117 (1962). ’ & Phys. Rev. 126, 2239

(33)
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Since the final lepton mass is neglected, we have

Using Egs. (33) and (34), we may write

STEPHEN L. ADLER

where the repeated indices # and % are summed from 1 to 3. Defining ¢, by
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per=0. (34)

m=ex(VaP+A43F) = en(8n— gagu/ 90?) (ViP+ A1P)+i(q- ¢/ 00%) (VpP+A0F) 35)
bam= (enem*>mvml = (kv)n(kl)m‘l' (kl)n(kv)m— kv * klanm-,"‘ enmér‘(kv)t(kl)q ) (36)

we find that

k=Yg mm,{|m|2) | xg=q

= lum(8mi—gmgi/ §0%) (On— g/ QN 26 (ViF)*ViP+ 2 s(A #) ¥ A i+ X [ (A #)*V 18+ (V )* 4,57}
+tnm(gngm/ 902 8] VP | 24 25] AP | >+ 2 s[ (Ap®)*V pb+ (Vp)* A pF ]}
+tum(Snr—gngi/ 90*) (igm/ q*) 226l (ViB)* Vo — (Vo) * Vi 1+ 20 [ (A 18)*A pP— (A pP)* 4,15
+26 L(Vif)*ApP— (ApP)*Vif 1+ [ (418 *Vpf— (VoP)*4:]} . (37)
The next step is to use the transformation properties of the currents under time reversal and parity to determine
the form of the various >_g terms in Eq. (37). Denoting by 7 and by P the time-reversal and parity operators,

respectively, we have

TTYO)T'=—7i7(0), TIA0)I'=—7*0), PIY(0)P1=—Ji7(0), PTAQ)P'=74(0), (38)

and similarly for the divergences of the currents. Under the assumption that the “in” and “out” states of definite
total energy eack form a complete basis for states of that energy, we have

B,INT

and

Z‘D | N(w)XN (k)| =2 | PTN (kx)XPTN (kw)| -

Using Egs. (38) and (39) we find that

Y O(kgotEr— E,— M) | B°(kp) }(B*(kp) | = ﬂ%}w 8(kgo+Er— Ey— M) | PTB™(ke) XPTB (k) | , (392)

(39b)

28 Vkﬂ(Vfﬁ)*=ﬂ§T 2 8(kgot+E1— E,— M y){Bout| J1V | N )(Bout| J;V | N )*

= % X 8(ksotEi— Ey—My){PTB>| ],V | PTNY(PTg*| J,7| PTN)

B,INT s

=2 s VA(ViE)*=[2p Vif(VE*J*.

Thus, the tensor >_g Vi#(V;#)* is real, and hence sym-
metric. Using P alone shows that this tensor is an even
function of q. A similar analysis can be carried through
for each of the 3_p terms in Eq. (37), with the following
results:

(1) Tp Vif(VF)* and g A:P(45)* are real sym-
metric tensors (even under g — —q);

(i) X s[Vif(4#*+A4:#(V#)*]is an imaginary, anti-
symmetric pseudotensor (odd under g — —@);

(iii) p|Vpf|2 and Xg| 4P| are real scalars;

(iv) Xp [VoP(Apf)*+ApP(VpF)*] is an imaginary
pseudoscalar;

(v) Zs[ViB(Vo)*—(Vi#)*Vpfland 36 [4:5(40F)*
— (A4 #)*4p?] are imaginary vectors;

(vi) Tp[Vif(4pP)*— (Vif)*4ApPland 35 [4:8(VDP)*
— (A:8)*V pP] are imaginary pseudovectors.

All of these quantities must be formed from the one
vector available, q. Thus the only possible tensors are
ox; and gxg; and the only pseudotensor iS €xjngn. NO

(40)

pseudovectors or pseudoscalars can be formed. Con-
sequently, the most general from of the quantities
appearing in Eq. (37) is
28(VA*Vib=6;V1(¢A W)+ ;0 V(@ W),
26(AF)* A1 = 8;ud1(q* W)+ ;02 A2(% W),
s LA+ (VA f]=ienql (®W),
25| Vof|*=Dv(g?, W),
261 40°|2=Da(g®, W),
2 L(Vi®)*VoP— (Vo) *Vifl=iqulv(g®, W),
25 [(AxP)*ApP— (ApP)*4iF]=1iql 4(g®, W),
25 [(408)*VpP+(Vpf)*4pf]=0,
25 L(Vi#)*4pP—(40°)*V#]=0,
- 2 [(AB)*VoP—(Vpf)*4:£]=0,

(41)

with all the structure functions [ V3, ¥, etc.]in Eq. (41)
real.
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All that remains now is to evaluate the tensor con-
tractions contained in Eq. (37). Using the equations
gn(Onk—gnqi/ 90%) = —(¢%/90*)q,
QnGmbnm= ZEVEZ(Ew—El)z C052(¢‘/2) ’
Onmbnm=q*+2E,E; cos*(¢/2),
6nmlqltnm= iqz(EP_l"El) ]
we get, by some straightforward algebra, the result
d*c/dNdE,= g%/ (2m)*](Ei/E)x,
k= q%(q*,W)+2E,E; cos*(3$)8(¢q% W)
—(E+E)y(g® W),
a(_qz,W) = Vl(q27 W)+A 1(92,W) ’

B(@* W) ={g[V1(¢*W)+4:(¢*W)]
+(g))LVa(g* W)+ A% W) ]
+@[Iv(g*W)+14(¢*, W)+ Dv(g% W)
+Da(g WM N/ (W—Mn*+¢%)?,

v(@*W)=I(a%W).

(42)

(43)

The formula for antineutrino-induced reactions is the
same, except that the final term in « is changed to
+¢*E,A+E)y(¢%,W) [and, of course, in Eq. (32) de-
fining V' and A4y, the currents J,V and J4 are replaced
by their adjoints].

The simplest illustration of our result is the elastic
reaction »+ N — I+ N. Explicit calculation shows that
d%(3+p — l+n)/dUdE, has the form of Eq. (13),
with
a (@A W)=86(W—Mn)[(14¢*/4M x*)ga(g?)?

+(¢%/4M v*)gv(g*)*],
B W) =W —Mx)[ga(g?)?
+F1Y(¢)*+¢°F2¥ (¢%)%],
YOG W) =6(W—My)[—galg®ev(¢?)/Mn].
We have also computed, for this reaction, the individual
structure functions appearing in Eq. (41). They are

Vi@, W)= 6(W —Mn)(g*/4M n¥)gv(¢?)?,
V2O (g W)= 6(W—Mx){[14¢*/4M x*] fr(g?)?
—gv(P)fv(g)/Mn},
A1O(@ W) =6(W—Mn)(14-¢%/4M ) ga(g?)?,
AW ) =8(W—My)[(¢*/4M xR a(g?)?
—ha(g?)ga(gy)/My],
IO(g W) =8(W—My)[—ga(g®)gv(ed/My],
IAO(@EW)=6(W—My)(—1/2M x?)
X[2M nga(g®)—q*ha(g®) 2,
D4 (g W) =86(W—Mn)(g*/4M x*)
X[2Mnga(g®)—q*ha(g) ],
Iy (g3, W)=Dy (¢, W)=0.

(44)

(45)
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4. DERIVATION OF THE SUM RULES

In this Section we derive the sum rules of Sec. 2. In
the first subsection we state and discuss the fundamental
identity used in the derivations. In subsequent sub-
sections we derive Egs. (14), (15), and (16). The deriva-
tions for the strangeness-changing case are identical to
those for the strangeness-conserving case, and are
omitted.

(A) Fundamental Identity

The starting point of the derivations is the identity®

1 > .
- / dt (N | [A(),B0)]| V)
goJo

=—iN|[4(0),B(0)]| V)
+(290) 4N |[A(0),BO)]+[B(0),4(0)]| V)

o f dt N |[A(),BO)]|N), (46)
0

where

. daA@l) | dB(1)

AW)=——, B(t)=——m- 47

a dt ()
are the time derivatives of 4(¢) and B(¢). Equation (46)
is easily derived by repeated integration by parts, and
holds for all go in the upper half of the complex plane.
In this paper, the operators 4(f) and B(¢) will always
be of the form

A(@)= —i/d“‘x €3G, (x,0)

B(t)=—1 / dy es I Fp(y,t); 4

Fa=Fa or Faab, Fp=TFs, or Fro®.
In (I) we studied Eq. (46) with s=0; this led, in the
limit go— 0, to sum rules at ¢?=0. In this paper we will
study the case when $540, and will find, in the limit as
go— 0, sum rules for fixed ¢ (with ¢2=|s|2).

There are a number of features which all of the
derivations given below have in common. First of all,
we will always use Eq. (46) with the nucleon ¥ at rest,
and with the nucleon spin averaged over. Secondly,
each term of Eq. (46) can be divided into a part which
is symmetric and a part which is antisymmetric in the
unitary spin indices ¢ and &. We will only study the
identity for the antisymmetric parts. In each case below,
we will find that the term

U= (290N |[A(0),B(0)]+[B(0),4(0)]|N) (49)

® Equation (46) is a more symmetrical version of Eq. (37 f
Ref. 2. Equation (46) remains’valid if (¥| and |N) ar:al re(pla)c:d
by any two states of equal four-momentum
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is purely symmetric in the unitary spin indices, and
thus makes no contribution. Thirdly, since we have

%0 [ di XN |[A@),BO)]| V)

) (N|54|8)B| 55| N)
=—'qu Z M 2 M 2\1/2
(AfélzNJlEm qot+My—(|s|?+Mg?)

(N|55|8)B| 54| V)
- 21)%5(0), (50
q0+(|s|2+M‘32)”2_MN}( )%6(0), (50)

the limit as go— 0 of Eq. (50) is zero for all |s|2>0.
As a result, the third term on the right-hand side of
Eq. (46) makes no contribution to the sum rules.”

Finally, we will always find that the unitary spin-
antisymmetric part of

[ @ (V| LADBOIN) (1)

is an odd function of g, O(go,q?). Thus, in the limit as
go— 0 the identity of Eq. (46) will become the equation

=C’

20=0

(52)

F
—0(q0,9*)
aqo

where C is the unitary spin-antisymmetric part of the
commutator —(NV|[4(0),B(0)]|N). Equation (52)
states that the commutator of A4 and B is related to the
energy derivative of a forward scattering amplitude,
evaluated at zero energy. Up to this point the derivation
is rigorous. Now, in order to relate the left-hand side
of Eq. (52) to physically measurable quantities, we will
assume that the energy derivative (9/9¢0)0(g0,9%)
satisfies an unsubtracied dispersion relation in the energy
variable gy, for fixed ¢% The discontinuity of (3/99o)
X 0(qo,q%) across its cuts will, in each case considered,
be related to the structure functions defined in Eq. (41).

(B) Sum Rule for 3@

The sum rule on B of Eq. (14) is obtained by adding
together two separately derived sum rules on the axial-
vector and the vector parts of 8@, 8,4, and By@:

i w
1=g4(g")*+ —dW
MN+My N
X [BA e (qsz) —Ba ) (qz;W)] ’ (533.)
—1 dF 1a5(x,1)
Ulab=—{Z<Nl [/d"‘x e‘is"—-—‘,
2q° 8 ot

+Z.3(N I[ f d*y sy
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b w
—aW
My+ms M N

X[BrO(gAW)—BvH (g, W)]. (53b)
In terms of the structure functions defined in Eq. (41),

BaB(¢?,W)=[g*4:® (g% W)+ (¢%)*42 (¢, W)
+P LB (@ W)+ Da® (g% W)]
XAM ¥/ (W= My*+¢)2,
By B W) =g[V1® (¢ W) +¢*V 2P (%, W) ]
X4MN2/(W2—MN2-|-92 2,
[The structure functions Iy (g%, W) and Dy (g%, W)
vanish identically in the strangeness-conserving case,
because of conservation of the vector current.] Since the
derivations of Eqgs. (53a) and (53b) are identical, we
will treat explicitly only the axial-vector case, Eq. (53a).
We start from the fundamental identity of Eq. (46),
taking

1=F7(g)+¢Fa" (¢)*+

(54)

A()=—i / 0 55 ,5(x,0),
(55)

B(t)= —i/d3y e YT (1) .

Defining Dy(x)=01Faa®(x) we find, by spatial integra-
tion by parts, that

A@)= / & e X[ Do(X,0) — 15, Fan®(x,8) ],
(56)

B(t): /dsy eis'Y[Db(y,t)+isn9bn5()’,l)],

where the repeated index # is summed over. With 4 and
B as shown in Eq. (55), the first term on the right-hand
side of Eq. (46) becomes, using the local commutation
relation of Eq. (1c),

—i 2(V|[4(0),B0) ]| N)= eare(37°)(2m)?5(0) .  (57)

Thus this term is purely antisymmetric in the isospin
indices @ and b. [Note that the validity of Eq. (57)
depends on the correctness of the local commutation
relation. If Eq. (1c) were modified by the addition of a
term proportional to V2§(x—y), a term proportional to
|s|2 would be added to Eq. (57).] The second term on
the right-hand side of Eq. (46) becomes

iy efs-vsm(y,t)] )

9F0s’(y,t)

PP / d3x e—i-.xga45(x,t)]|N)} (58a)

7Only when [s|?=0 does the one-nucleon intermediate state (M g=My) make a contribution to the limit. This is the case con-

sidered in Ref. 2.
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=%{¥<N[I:fd3x e*i“a—?%t(&tz, /dsy eis'y5b45(y,t)]lN>

+Zg:(N|[/d3x e‘is"aibg(fi)—, /d3y eiS‘YEFa45(y,t):|{N)} , (58b)

where we have obtained Eq. (58b) by setting —y <« x in the second term of Eq. (58a) and by using the parity
transformation properties of the axial-vector current. Clearly U,%? is explicitly symmetric in ¢ and 4. Thus, if we
agree to keep only the part of Eq. (46) which is antisymmetric in ¢ and b, the second term on the right-hand
side of Eq. (46), which involves the unknown commutator of dF,4%/d¢ with F35, drops out. As discussed above,
the limit as go— 0 of the third term on the right-hand side of Eq. (46) vanishes.

Now let us turn to the left-hand side of Eq. (46). Using translational invariance, the integral over y can be done
explicitly, giving an over-all factor of (27)35(0). We cancel this against the identical factor in Eq. (57). Taking N
to be a proton at rest, and multiplying Eq. (46) by an over-all factor e;p3 gives

1= iz—lf /d4x exp(—ig- x)ﬂ(xo)Z@ l [Da(x)—is50Fan’(), Dy(0)+i5mFsm*(0)] I p>+o(q°) ’ (592)
Qo s

d=(8,iq0) , (59b)

where 0(go) indicates terms which vanish as ¢o— 0. Let us define the amplitudes d(qo,9%), @1(q0,92), @2(qo,q%), and
14(g0,g%) by the equations

@(q0,9") = €avs / @t e~ 0(x0) (| [Da(x),D6(0) ][ ),
@1(90,4%) 8nm+2(q0,4*)gngm= €ats / dhx e~ 0(x0) (| [Fan®(x), Fom*(0)]] ), (60)

ignia(g0,g®)= €ats f 4 e259(20) T (p| [ Fan(2),D4(0) ]— [ D), F4,5(0) ]| ) -

We will prove below that these are all odd functions of go. Thus Eq. (59), in the limit as go— 0, becomes
the statement

)

20=0 (61)
Ng0,4%) = d(g0,9*)+q%a1(g0,4»)+ (¢2)a2(g0,¢%) + 9% 4(g0,¢%) ,

a
1=—N\(g0,9%)
aqo

with ¢2 fixed at |s|2

Let us now study the properties of the functions d, a1, @z, and 24. From their definitions as retarded commutators,
it follows by the standard methods of forward dispersion relations® that they are analytic functions of ¢ in the
upper half g, plane, for fixed ¢%. Thus if we assume that the amplitude (8/9¢0)A(go,q%) approaches zero as gy —>
in the upper half plane, we can write the unsubtracted dispersion relation

a 1 s qu'
—MNgo,g")=- / ———Ad(¢0,¢")+ 7' (¢0',67) +(¢%)%a2' (90,97 + %4 (90,07}, (62)
990 T — (90— ¢0)*

where the absorptive parts d’, a//, a2/, 74" are defined by

id’(901q2)=%6“b3/d4x eiee Z<Pl [Da(x);Db(O)]|P> )
1[a1'(0,g%)0nm+ a2 (90,9%) GnGm = €as / d4x ¢7102 37(p | [Fan’(x),F5n(0) ]| 2), (63)

iLignia’(90,0°) J=%€ats / 'z €712 3(p| [Fan®(%),D00(0) - [Da(#),52:.°(0) ] p).

#J. D. Jackson, Dispersion Relations, edited by G. R. Screaton (Interscience Publishers, Inc., New York, 1961), pp- 1-32.
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The next step is to evaluate the absorptive parts. Let us consider explicitly the case of d’. Let £,=(0,iM ) be
the proton four-momentum. Inserting a complete set of intermediate states, we find that

. kg
i@ (@og)=bem(2r) T X f

B,INT s (211')3
X[{p|Da(0)|B(ks)){B(k6) | Ds(0) | p)5(ks— q— k) — (p| D1(0) | B(k6) Y{B(ks) | Da(0) | p)d(ks+q—F) ]
=Teabs HIZI\:IT ; {[{p| Da(0)|B(3)){B(%s) | D5(0) | £) ]| xg=a0(kg0— go— M x')

—[(p| Ds(0)|B(ks))(Bks) | Da(0) | )| kpm—ad(kpotgo— M)} . (64)

Parity invariance tells us that
”ZN . Z [(p| Do(0) | B(%8)){B(ks) | Da(0) | p) ]| xg=—ab(kp0+g0— M n)
= ﬁ% . Z [t Du(0) |B(k3))(B(ks) | Da(0) | ) ]| x4=ab(kgot+go—Mn) . (65)

Thus Eq. (64) can be written, using the antisymmetry of eqp3, as

id’(g0,g%) =Teabs 3§\IT 2 [(p| Da(0) | B(ks))(B(ks) | D5(0) | )] xs=a[8(ks0— go— M )+ 0(kpo+g0—Mn)]. (66)

We see that d’ is an even function of ¢o; hence d is an odd function of ¢o. Since
€q baDa*Db= Dl*Dz— Dz*D1= %’L[(Dl*-l-’tpz*) (Dl— ’LDg) - (D1*— 1/02*) (D1+’LD2)] 5 (67)

we obtain finally the result that
d'(g0,¢*)=37[DO—DD], ¢>0, (68)

D)= ﬁ%:q . > 1{BLa,i(qo+M x) ]| D1(0)—iDx(0)| p)| *8(kgo— go— M) ,

with

(69)
DH = BIZNT > 1(BLa,i(go+M n)]| D1(0)+iD2(0) | p)| 26(kgo— go— M v) .

Clearly Eq. (69) is identical with Egs. (41), (32), and (33), defining the structure function D, with ¢, given by
qo=E,—E;=(W?—Mny*+¢*)/2Mx. (70)

In a similar manner we find that a,’, a2/, and 7,4’ are even functions of g (which implies that a;, a2, and i4 are
odd functions of ¢o). Also, we find that for ¢o>0,

a1 (q0,g?) =3[ 419 =4, P],  ad(g0,¢?)=37[4:D—4:P], 14" (qo,g?)=37[1a =14 P], (71)
where the structure functions 4;®, 4,®, and 1, are those defined in Eq. (41). Combining Eqs. (43), (61),
(62), and (68)-(71), we see that we have derived the sum rule
w
1= [dulpa=pa)= [ WA=, (72
N

Using Eq. (44), the pole contribution to Eq. (72) can be explicitly evaluated, giving Eq. (53a).

(C) Sum Rule for o
The sum rule on a® of Eq. (15) is obtained by adding together the two identities

¢ -
Cp= (1+ )gA(q2)2+ — AW aa (W) —aa D (g W)], (73a)
4M §* My, My
¢ - W |
Crl= ( ) av(gd)+ ——dW ey O (W) —ay P (¢ W)]. (73b)
4M n? My+um. M N

Here a4 and ay@® are, respectively, the axial-vector and the vector parts of a®),

as =4 B(@W), ay®=V,B(@W). (74)
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We will sketch the derivation of Eq. (73a); the derivation of Eq. (73b) is identical.
In order to derive Eq. (73a), we use the fundamental identity, with

A()=—i f P w3, 5(x,0), B(l)=—i f Py € YF 4, 5(y,0). (75)

Using Eqgs. (4a) and (11), the first term on the right-hand side of Eq. (46) becomes
—i 22(p|[4(0),B(0)]] p)=— €avednmCr*(F7°)(2m)*3(0)+ (symmetric in ab). (76)

The second term is
1 8F and(x,1) 3T om’(¥,0)
Ugrmiob=—— Z(Pl d’x e‘is"/dsy Gis'y‘ll:‘——‘ ) t{fbmﬁ(Y;t):l'l’l:__bm_—‘* ) S:tms(x;t):” |17> ) (77)
2g0 s EY ot

which, by using the parity transformation properties of 5 is equal to

-1 0F an(x,t) 9Fom®(x,t)
— By e % | J3y gis V]| —m—— m5 g —_—, anﬁ g .
” %:(p! dixe / y e {[ ” » Fo (yt)]+[ ” g (yt)]}lz» (78)

The expression in Eq. (78) is explicitly symmetric under the simultaneous interchanges # <> m, a <> b. Since
parity invariance requires that U, be of the form

U2"m~“b=y1“65nm+ﬂ2ab$nsm y (79)

U, is symmetric under the interchange a <> b. Thus, if we keep only terms which are antisymmetric in ¢ and 3,
the unwanted [955/d¢,55] terms drop out.
As a result, we are left with the identity

d
OnmCrl= ———n(qo,qz) ’
990 20=0 (80)
_ _ ] 0Fan®(x) 9F5,5(0)
7(90,g%) = 31(90,4%) dnm+G2(90,9%) gngm= €ats ] dw e =0 (20) 2 (p | [ P ] |$)
8 xo

[Here dFus°(0)/9¢ denotes dFs°(y,t)/ 0t evaluated at y=0, /=0.] Let us now postulate that
931(90,9%)/ 990 (81)

satisfies an unsubtracted dispersion relation. It is easy to see that the absorptive part of @1(go,q?) is just go? times
the absorptive part of the amplitude a;(go,9%) defined in Eq. (60). Thus, the 8., term in Eq. (80) becomes

Cr*= / dgo(417— A4, ®) = / A%V—NdW[Al(”)(q%W)-A1(+’(92,W)] ) (82)
which is the result to be proved.
(D) Sum Rule for v
The sum rule on ¥ of Eq. (16) is derived by adding the fundamental identity, with

As(t)=—i / d*x e xF,,5(x,0), Bi(l)=—1 / a*y e IFpn(y,1), (83)
to the same identity, with

Aqo(t)= —ifdsx e 3F,,(x,0), Bo()= —i/dsy e Y Fp,5(y,0) . (84)
Using Eq. (4b), the first term on the right-hand side of Eq. (46) is

—1i l:.(l’l [41(0),B1(0)]+[42(0),B2(0)]| p)= (symmetric in ad) (85)
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since

29| @es(0)| p)=0 (86)

for nucleon states at rest. The second term, using the parity transformation properties of the currents, becomes

. -1 : ) (0% aab(x,0) 9F om(X,1)
Ugrmod=—73"(p| | d*x e7isx [ d®y e's"'{ T Fom(y,t) |— e ! Fan® (1)

20 s
+[?_5;6§’fi) s,r,,ms(y,z)]—[aﬁ"ig’—tz, sfnm(y,t)]] [2)

=u3®enmisi. (87)

Clearly, us®® is symmetric in @ and b. If we keep only the antisymmetric part of the identity, the [95%/9¢,5 ] and
the [0F/0t,55] terms drop out.
Thus, we get the identity

a
0= —i(q0,92) l ’
690 20=0

] 3F (%) 0Fbm(0) afﬂm(x) 3F55(0)
T | I e 22 (38)
8 axo at axg ot
The postulate that
31(40,4%)/ 3q0 (89)

satisfies an unsubtracted dispersion relation in go leads immediately to Eq. (16).
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APPENDIX

In this Appendix we give the generalization of the results stated in Sec. 2 to the case when all lepton-mass
terms are included. In order to calculate lepton-mass corrections, it is easier to work covariantly, rather than to
eliminate the fourth components of currents in terms of spatial components and divergences. Thus we write

Th= X X 8(kgo—kno—qo){N (kn)| (T"+TA)*|Bkn+))Bkn+g) | NV +I2A| N (kn))

B,INT s

My _ _ ~ _ _
=—-T A6+ BkmkrotCeroysqvknstDorge+E(grknstqokm) ], (A1)
No

with 4, - - -, E functions of ¢% and W. Time reversal and parity invariance rule out the presence of a term propor-
tional to gakws—gokw in Eq. (A1). Comparing Eq. (A1) with Eq. (41), in the laboratory frame, shows that

A- =a(q2:W) ) MN23=ﬂ(92;W) 3 MNG:'Y(QZ:W) ) D= 6(q2’W) = Vz(q2,W)+A 2(92’W) ’ (AZ)
MyE=e(@W)=qr Y Vi(g% W)+ Ax(¢® W)+ [ Va(g? W)+ A2 W) IH3[Lv(g%W)+1 (g% W) ]} -

It is straightforward to calculate the contraction of T, with the leptonic trace. We find that Eq. (13) and Eq. (22)
for the strangeness-conserving case are replaced by

. ] G2 COS200 [(E,— qo)z_ mzz]l/z
- - (&
dza( (i)+p—> (Z)+/3(S 0)) / o= A , (A3)

dza((:)+P—> (;)+6(S=0)) / d(qﬂ)dqo=Gli—;ﬁ<*% (A4)

Ly
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with

kD= (g mit)a (g )+ (26~ 2Engo— (g +mi?) B (¢ W)
FLQRE~qo)g?—mi2qo Iy B (W) +3mi2(g*4-mi?) 6 (¢2 W) — 2mi*Ere P (¢ W) . (AS)

Inspection of Eq. (AS) and its analog for a neutron target shows that &), y& & and a®+3m26 are
independently measurable. Since the derivation of the sum rule on a‘® given in Sec. 4 shows that

0=/dqo(6(">—6(+)), (A6)
we may modify Eq. (15) to read
Cr'+-Crr=(14-¢*/4M v*)ga(¢*)*+(¢*/4M n*)gv(g*)?
+im[(1+¢%/4M*) fr(g*)*—gv(g®) fv(gD)/ M+ (@*/AM w*)ha(g®)*~ ha(g))ga(g?)/ M ]

0

w
+ —dW[aO (@ W) +5m*6 O (¢ W) —aP (g% W) —3mi?6H (g% W) ].  (AT)

uy+ms My

Thus, in the strangeness-conserving case, when lepton-mass terms are included there are still three sum rules which
may be directly compared with experiment.

In thestrangeness-changing case, equations similar to Egs. (A3)-(AS) hold, and Bp,»y &, mi2e(p,1) L g% (p,n) ),
and a(p,n) 457128 (p,2) F 2= QoY (p,n) ) are independently measurable. We see that in this case, when lepton-mass
terms are included, only the sum rules on B(,,,)® can be directly compared with experiment.

It is easy to verify that the results of Eq. (26) and Eq. (27), referring to the high neutrino-energy behavior of
neutrino cross sections, are unchanged by adding the lepton-mass terms. Equation (24) becomes

do  [BO-LIBD g L, AR Ae
——2—/2 dgr——, L=g4mit—r. (A8)
dg®> J (@r2myr- d(g*)dqo ¢+m
If, in addition to Eq. (25), we postulate that
® qu bl dg
/ — (50— 5), / 21— (A9)
o Qo

are convergent (and similarly in the strangeness-changing case), then we immediately obtain Eqgs. (26) and (27).



