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We show that the local commutation relations of the vector and the axial-vector current octets can be
studied in nonforward lepton-neutrino reactions. We do this by using the commutation relations to derive
sum rules, for 6xed q' (q'=invariant lepton momentum transfer squared), involving the elastic and the
inelastic form factors measured in high-energy neutrino reactions.

1. IN'TRODUCTION
' 'T has recently been proposed by Gell-Mann' that the
- - fourth components of the vector and axial-vector
current octets satisfy the local equal-time commutation
relations

L&.4(x),»4(y)]1.o=.o= —f.e &.4(x)6(x—y), (»)
L&. (*),& '(y)]1.=.,=-f. .& '(*)6( -y) (1b)

L~. '(*),~ '(3)]I.,=.,= —f. .~. (*)5(*—y) (1 )
Here 5 ), and 5 q' are, respectively, the octet vector,
and axial-vector currents, and a, b, c are unitary spin
indices running from 1 to 8. According to Eq. (1), the
octet vector and axial-vector charges

F.(t) = i d—'x S.4(x,t),

F,'(t) = i d'x 8:.4'—(x,t),

satisfy the equal-time commutation relations

LF.(t),Fs(t)]=if.e.F,(t),
LF.(t) F '(t)]=if. .F'(t) (3)

LF.'(t) Fs'(t)]='f.s.F.(t).
The commutation relations of Eq. (1) are considerably
more restrictive than those of Eq. (3), since even if
derivatives of the delta function were present on the
right-hand side of Eq. (1), Eq. (3) would still be valid.
In an earlier paper' I

hereafter referred to as (I)] we

showed that the commutation relations of Eq. (3) can
be tested in high-energy inelastic neutrino reactions, in
which the lepton (which is regarded as massless) emerges

moving parallel to the direction of the incident neutrino.
In other words, Eq. (3) may be tested in q'=0 neutrino
reactions, where q' is the invariant momentum transfer
between the neutrino and the outgoing lepton. In this

paper we generalize the results of (I), by showing that
the local commutation relations of Eq. (1) can be tested
in q') 0 (nonforward lepton) neutrino reactions. We do
this by deriving from Eq. (1) a sum rule, valid for each
fixed q', involving quantities measurable in high-energy
neutrino reactions.

*Junior Fellow, Society of Fellows.
' M. Gell-Mann, Physics 1, 63 (1964).
~ $, L. Adler, Phys. Rev. 140, 3736 (1965).

In addition to Eq. (1) for the fourth components of
the current octets, let us postulate that the space com-
ponents of the octets satisfy the local equal-time com-
mutation relations

I ~-(x),~ (y)]l*.=..
= b f,e,'0,4'(x) 8(x y)+S—,e', (4a)

(L~-(*),~ -'(y)] I.-.o+P-'(*),~ -(y)] I*o-,}
=—28„ f,s.ls!,4(x)b(x—y)+S,s', (4b)

C~.-'(*),~ -'(y)]1..-..
=b„„f,s.'U.4'(x) 8(x y)+—S,e' (4c).

Here 'U, 4' and 'U.4' are the fourth components of vector-
current octets, and 0'„4 is similarly the fourth component
of an axial-vector octet. The quantities S,&"'are sym-
metric in the unitary spin indices e and b. If the simple
quark-model commutationrelations proposed by Dashen
and Gell-Mann' and by Lee4 are valid, we have

U c4 U c4 +c4 y ~c4—+c4 ~
1 2— — 5

However, Eq. (3) is not valid in theories in which meson
fields are explicitly included in the currents, whereas, in
many of these Geld theories, Eq. (4) still holds. We will
derive sum rules which provide tests of Eq. (4) in qs) 0
neutrino reactions.

Each of the sum rules discussed in this paper requires
for its derivation, in addition to a local equal-time com-
mutation relation, the assumption that a certain scatter-
ing amplitude obeys an unsubtracted dispersion relation
in the energy variable, for Gxed q'. Eo attempt will be

made in this paper to justify the assumption of unsub
tracted dispersion relations Thus, th.e statement made
in this paper is that if the assumption of unsubtracted
dispersion relations is valid, the sum rules derived
provide a direct experimental test of local equal-time
commutation relations.

In Sec. 2 we state in detail the results of the paper.
The next two sections comprise the derivation. In Sec. 3
we analyze the kinematics of high-energy neutrino re-
actions. In Sec. 4 we derive, from local commutation
relations, sum rules which involve the quantities defined
in the kinematic analysis of Sec. 3. In an Appendix we

give lepton-mass corrections to the results stated in
Sec. 2.

' R. F. Dashen and M. Gell-Mann Phys. Letters 17, 142 (1965).
4 B. W. Lee, Phys. Rev. Letters 4, 676 (1965).
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E„=neutrino energy,
E~= lepton energy,
Q= lepton-neutrino scattering angle,

Qua=lepton solid angle,
k„=neutrino four-momentum,

k~ = lepton four-momentum,
q= k,—k~= lepton four-momentum transfer.

(Sa)

2. RESULTS

We consider the high-energy neutrino reaction

v+X ~ l+P, (6)

where v is a neutrino, S is a nucleon (neutron or proton),
l is an electron or muon, and P is a system of strongly
interacting particles. Throughout the text of this paper,
we will neglect the 6nal lepton mass, i.e., we take

mal=0. (&)

The results stated below are only slightly modiied when
all lepton-mass terms are included. (See the Appendix. )
We deine all noninvariant quantities referring to the
reaction of Eq. (6) in the laboratory frame, in which the
nucleon S is at rest:

We denote by W the invariant mass of the system P,
by 3E& the nucleon mass, and by q2 the invariant
momentum transfer between the leptons:

q'= (k.—k1)2= 4E„E&sin2(p/2),

W = [2MN(E, —E1)+MN2 q' j—"'. (»)

We assume that the semileptonic weak interactions
are described by the current-current effective Lagrangian
density

Al(x) = (G/V2) J1(x)J1(x)+adjoint,

G=1.023&(10 '/MN2

J~(x)=A(x)V1(1+V0)4"(x),

J1(x)= (cos8P) [F1&,(x)+i P2&,(x)+5:11'(x)+i5'21'(x) $
+(»ngc)[841(x)+i&0&,(x)+5'410(x)+i%0&,'(x)j,

8q= Cabibbo angle.

We define the form factors F1v(q'), F2v(q') gv(q2)
gA(q'), and hA(q'), which describe elastic neutrino
reactions, as follows:

P'(p2) I S»(0)+if» (0) I &(p1))= ((~N/p20)(iaaf'N/p10))'t'i24N(p2) ~+[F'1"(q')V1 F2 (q')~—1„q„jNN(p1)
= ((MN/p20) (MN/p10)) 224N(p2) T [gv(q )&tx+$F2 (q )(p1+p2) xlNN(p1) q

(10)
q= p2—p1, gv(q') =F1 (q')+23' NF2" (q'),

p (p2) I
8'11 (0)+28'2X (0) I+(pl)) ((AN/p20)(AN/p10)) 224N(p2)& [gA(q )'YX 2hA(q )qkj'f5NN(p1) ~

Here r+ denotes —'2(r'+ir2), with 2 r'(c= 1, 2, 3) the nucleon isotopic spin matrices.
Finally, we define the diagonal one-nucleon matrix elements of the operators 'U,4"appearing in Eq. (4) as follows

(1V(p) I'0,4"(0) I E(p))= iC "(- '), c= 1, 2, 3'

P(p) I~ "(0)I&(p))= C"'.
If the quark-model commutation relations hold, so that Eq. (5) is valid, then

Cr& 2=1, Cr12=-'V3.2 (12)

If the quark-model commutation relations are not valid, the values of Cz ' and C&" are not at present known.
We may now state the results of this paper, as follows.

Strangeness-Conservhzg Case

The kinematic analysis of Sec. 3 shows that we may write the reaction diGerential cross section in the form

G cos OgEi
I+p~I I+p(s=o) I

did, dE, =
E Evf &i) 3 (22r)2 F„

X [q2~"'(q' ~)+2E.E1 cp"(2&)t3"'(q' ll )~(E,+E,)q'~1+&(q2 W)j. (13)

By measuring d2o/d&&dE& for various values of the neutrino energy E„, the lepton energy E&, and the leptpn
neutrino angle @, we can determine the form factors n&+&, p1+&, and y'+& for all q2) 0 and fpr all g abpve threshpld.

In Sec. 4 we prove that:
(i) the local commutation relations of Eq. (1a) and Eq. (1c) imply

W'

2= gA(q')'+F 1'(q')'+q'F2'(q')'+ — d~[&' '(q'P) P"'(q', &')j;—
iMK+Mr +N

(14)
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(ii) the local commutation relations of Eq. (4a) and Eq. (4c) imply

C '+C '=(1+q'/4M+')g (q')'+(q'/4M))(')g (q')'+

(iii) the local commutation relation of Eq. (4b) implies

&I gl
dWLu( '(q', W) —a(+)(q', W)7;

Mg+3f +N

gv(q')g~(q') 8"
dWLy( '(q', W) —y(+)(q' W)j.

Myg+M& ~N

Strangeness-Changing Case

(16}

%e write

t'/" (l1 / S=1 ) ~ 6' sin'0~ Ag

+(P,&) ~ I I+pl I I
dfl, d

E kv kli 4=—1)) (2n)' E.
&&«'n(~, „)(+)(q',W)+2E.E) cosP(2'g)P(~, „)(+)(q',W)W(E„+E))q'7&„,„&(+)(q',W)7. (17)

Then,
(i) the local commutation relations of Eq. (1a) and Eq. (1c) imply

(4,2) = dWIp(. ,-)' '(q' W) —p(. -)'+'(q' W)jj
MN

(18)

(ii) the local commutation relations of Eq. (4a) and Eq. (4c) imply

S'
[~3(C 'yCr')+-'(Cz'+C ') ~3(Cr'+Cr') —p(Cz'+Cr')]= dWL&p( )' '(O' W) —o'( )'+'(q'~W)3~ (19)

BEN

(jjj) the local commutation relation of Eq. (4b) implies

(0,0)= dWLv($, )' '(q' W) —&(), )'+'(O' W)j.
JtIN

(20)

The jntegrals of Fqs. (1.8)—(20) have discrete contributions at W =M& and/or Mz and a continuum extending from
or from W=~z+M' to W'= ~. We have not explicitly separated off the discrete contributions to

the integrals, as was done in Eqs. (14)—(16) for the strangeness-conserving case. It would, of course, be stra&ght-
forward to do this.
', The sum rules of Eqs. (14)—(16) and (18)—(20) hold for each fixed q', provided, as was stated in Sec. 1, that the
assumption of an unsubtracted dispersion relation needed to derive each sum rule is valid. grhen q

=0 Fqs (41)
and (43) of the next section show that

P(0 w) =(4~~'/(w' —~~')') ~ & '(I'~p+~& —~ —~~)(I &PI ~~J~"I&&l'+ I&PI ~~~"I&)I'), (21)
P, INT e

where J), and J) ~ are the vector and axial-vector weak currents appropriate to the gg=0 or Iggl =1 cases
(e.g. , J),v = +q)+ i+p), or F4),+i%),).Thus, at q' =0 Eqs. (14) and (18) are just the forward lepton sum rules derived
in (I).

The sum rule on p has an interesting consequence for the behavior of neutrino cross sections in the limit of very
large neutrino energy E„.With the aid of Eq. (8), let us write Eqs. (13) and (14) in the form

f /px (j) 6 cos eg
d'~I

I
'I+p~

I
I+p(~=0) I

d(q')dq = «'~"'+(»'-»qo-lq')p"'~(»-qo)qp~'"q, (22)
qg„-) Qp & 4 Z„

( /23'~)—
dqp(P(

—)—P(+)) (23)

The differential cross section do/d(qp) is given by

d'0 &~(&—em/4&v )

(a'/2~sr )-
dgo

d(q')dqp
(24)
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The upper limit of integration is f(xed by the requirement that sin (P/2} lie between 0 and 1.Using Eqs. (22)-(24),
it is straightfonvard to prove the foQowing theorem:

Theorem'. Suppose that the integrals

dgo
((r(

—) (r(+)) (p(—)+7(+))
go

dqe(p(-) —p(+)) (25)

are convergent. Then

»m &d (+p ~+p(~=0))/d(q') d(—+p 1+p(~=0))/d(q'))

G' cos'Og G cos 8g
dqeLP( ' —P"'j= (26)

(g2/2M@)— x'

Similar results hold in the strangeness-changing case. Adding the cross sections for the 5/=0 and the (gg (
=1

cases to obtain the total cross section, @re 6nd

lim ( dog(f+P)/d(qs) —dor () +P)/d(q')g= (Gs/s)(cosr&o+2 sin'go),
(27)

1lm fdd'r(P+s)//d(q )—dip(P+'B)/d(q )$= (G /rr)( —coss8o+sln go) .

Equation (27) is the somewhat surprising statement that, in the limit of large neutrino energy, dor(F+&)/d(qs}—do+{)+1)7)/d(q') becomes swdeper)der)3 of qs. This result is unchanged by the lepton-mass corrections.

3. KINEMATIC ANALYSIS OP HIGH-ENERGY NEUTMNO REACTIONS

(30)

In this Section we derive Eq. (13),which gives the general form for the neutrino reaction leptonic differential
cross section, d'o/dQ)dE). ' In particular, we 6nd explicit expressions for the form factors n(q', W), p(q', W), and
y(q', W), in terms of matrix elements of the vector and the axial-vector currents.

According to the effective Lagrangian of Eq. (9), the matrix element OR for the process v+E -+ 1+p is given by
OR= gm, m=ug(k))y), {1+ps)N.(k,)2 "(p'"'(kp)

( J),"+J)~(1V (kyar)&. (28)
IIere g= (G cos8o, G sin()o) in (85=0& (6&( = 1) reactions, J) and J)"are the appropriate vector and axial-vector
currents, and ko and k)r are, respectively, the four-momenta of p and of 1V. In the frame in which the initial nucleon
V ls at lest thc rcactlon cross scctlon ls glvcQ by

d3~t dip /tS) 15'
=(2 )' — — E Z h(ks+kE —k,—4)( ——"

g'((m( ). (29)(2e.)' (2s)' o,r» ~ Ez, z„
In Eq. (29), g p, rNT is a sum over the internal variables of the system p, p, is an average over the initial nucleon
spin, and ((rN(') is the sum of (t)s(' over the lepton spin states. From Eq. (29) we get

d'~/«~«~= IS'/(2~)'3(~~/&. )s,

((= Z Q ()(kpo+E —&.—~sr)rN)m, ((n('&(ss, .
P,INT

I et us noir study the quantity a %c introduce the abbreviated notatloQ

e),=2-"'%(4)y) (1+7s)N,{k,),
&~'=(p'"'Lq, s(qo+lif~) j(J~"(fq(o,er )),
&.o=(p-'Le, '(go+~ )j(J"(X(O,eke )&,
Zs= Z Z~{ks.+a-a-~ ).

P,XNT e

(31)

(32)

I ct us further denote by V~t' and by A~& the matrix eleIQents o& the &»&g&N«~ OI the vector and thc axial vcct r
currents,

I'~'= —sq.1'"=(p'"'Le, '(qo+~~)1(~&J.&(l1) (O,m )&,
~~'= —'q.~"=(p-'Lq, '(q,+~~)j(a&J,&(x(o,sos~)&. (33)

' Locality tlmorems of this type are, of course, mell known. See, for example, Y. D. Lee and C. N. Vang, Phys. Rey. Q6, 22&9
(B62); A. Pais, Phys. Rev. Letters 9, 11/ (1962).
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Since the 6nal lepton mass is neglected, vm have

Using Eels. (33) and (34), we may write

~=p~(V~P+~~P) =p.(4t. q—.qa/qo'){VaP+&gP)+i(g e/q0'){Vg)P+AnP),

where the repeated indices n and k are summed from 1 to 3. De6ning t„by
4~= {p~pm~&m, tlg= (k,) (kz) +(kg)„(k„)„—k, k(8„„+e„„(,(k„)t(kg)„

(34)

(35)

pre Gnd that

s=Pp m)m, ([m (') ( g~,
=4 (4J q—qs/qo')(6 ~ q-q~/qo'){Zp(~8 p)*V'Ip+Zp(~sp)*~jp+rpC{~Jp) Vip+(Vgp)*~1 pj}

+&-(q.q-/«') {Zp I Vo p I'+Z pl ~~ pI '+Z pC(~~ p)*Vip+(Vn p)'~~ pj}
+4 (&"—q.q~/qo')(~q /qo'){ZpC(V~p)*V~p —(VDp)*V~pj+ZpC{~~p)'~op (~—op)'~"j

+Zp C(VaP)*~oP—(~oP)'VaPj+ZpC(&~P)'Vz' —{VnP)*&aPj}. (3&)

The next step js to use the transformation properties of the currents under time reversal and parity to determine
the form of the various pp terms in Eq. (3'7). Denoting by T and by P the time-reversal and parity operators,
respectively, vre have

'P~ "(0)q '= —~"(0) ~J "(0)q '= —~."(0) PA'(0)P-'=- J."(0) P1. (0)P- =J, (0) (3g)

and similarly for the divergences of the currents. Under the assumption that the "in' and «out» states of definite
total energy Sech form a colnplete basis for states of that energy

2 &(kpo+E~ —~ —~~) IP'"'(kp)&(P'"'(kp)
I
= 2 b(kpo+m —a—M&) (Pep "&(kp)&&Prp-~(kp) ), (39a)

P,XNT P,INT

~l&(k»&&(k )I=ZI»~(k )&&»Wk )I.

Using Eqs. (38) and (39) we fmd that

Zp V"(V')'= Z Z b(kpo+Ei —E,—jf&)&P- [Z,~[X&&p-~~J,.v~~&*

= 2 2 &(kpo+Pi —E.—~~)&Pq'p'"'[S~" [PrcV&*&Prp- [g.~IPSE~&
P INT s

=Zp v (v")*=CEp v.P(v,P)*j*.

pseudovectors or pseudoscalars can be formed. Con-
sequently, the most general from of the quantities
appearing in Eq. (3'l) is

Z~{V;p)*V.p= ~;.V,(q~ W)+q, q, V,{q VV)

Zp(~;p)*~.p= ~;,~,(qn, m )+q,q,g, (q2,1V)

Zp C(~,p) v,p+(v, p)*~,pj=;„.„,1(q lv)

Z p I
VoP I'= D~{q'P'),

Zn I
~nP

I
'= D~(q', lV),

Zp C{v.p)*v~p —(v~p)'v, pj=gq, z, (q~,g) (41)

Z~ C(&.P)*~.P-(~.P)*~,Pj=;„I„(;,lv),
Z~ C{~Dp)*Vip+(V p)*~ pj=o,
g, C{V.)*~.—(g. )*V, j=0
Zp C(~")*V~p {Vnp)*~,pj=—o,

with all the structure functions CV~ V2 etc j in Fq (41)
reel.

the tensor Qp Vyp(V~p) 18 rpal~ and hence sptÃ-

U'sing p alone sho~s that this tensor ls an @Ms

function of q. A similar analysis can be carried through

for each of the gp terms lI1 Eq. (3l), with the following

results:

(i) gp VgP(V;P)~ and

+ping(A;P)~

are real sym-

metric tensors (even under q ~ —g);
(ii) gp CVp(g;p)*+Aqp(V;p)*1 is an imaginary, anti-

symmetric pseudotensor (odd under g ~ —q);
{iii) Qp VoP)' and gp(AoP(' are real scalars;

(iv) Pp CV~P(AoP)*+A~P(VoP)~$ is an imaginary

pseudoscalar q

(v) Zp CV~P(VoP)' (Vp)P* Vo—Pajnd Zp C~ "(~oP)*
—(A ~p)*Anpj are imaginary vectors;

( ') Z Cv"(~ ')*—(v ')'~ 'S dip C~"(v ')*
—(AqP)*VIPj are imaginary Pseudovectors.

All of these quantities must be formed from the one

vector available, q. Thus the only possible tensors are

bI,; and gl,q; and the only pseudotensor is ~&;„q.. No



All that remains now is to evaluate the tensor con-
tractions contained in Eq. (37). Using the equations

q-(b-s —q-qs/qo') = —(q'/qo')q. ,

q„q t„=2E,Eg(E„Eg)'—coss(Q/2),
(42)

b „t „=qs+2E„Egcos'(@/2),

e (q&t„„=iq'(E„+E(),

we get, by some straightforward algebra, the result

d ./da, dE, = Cgs/{2 )sj(E,/E.).,
s =q'n(q', W)+2E„E~ coss{rit )P(q' W)

—q'(E,+E,)&(qs,W),

n(q', W) = Vr(q', W)+A t(q', W),

P(q', W) = f q'CVt(qs, W)+At(qs, W)1 (43)
+(q')'CVs(q' W)+~s(q' W)j
+q'CI v(qs, W)+I~(qs, W) (+Dr(qs, W)
+Dg(qs W) }4' Ns/(Ws —M~s+qs)',

y{qs,W) =I(os,W).

The formula for antineutrino-induced reactions is the
same, except that the 6nal term in a is changed to
+q'(E,+Eg)y(qs, W) Cand, of course, in Eq. (32) de-
Gning VI, and A~, the currents JI,"and JI,"are replaced
by their ad)olnts).

The simplest illustration of our result is the elastic
reaction v+E ~1+1'.Explicit calculation shows that
d'o(r+p +l+n)/dQ)d-E) has the form of E.q. (13),
with

4. DERIVATION OF THE SUM RULES

In this Section we derive the sum rules of Sec. 2. In
the 6rst subsection we state and discuss the fundamental
identity used in the derivations. In subsequent sub-
sections we derive Eqs. (14), (15), and (16).The deriva-
tions for the strangeness-changing case are identical to
those for the strangeness-conserving case, and are
omitted.

(A) Fundamental Identity

The starting point of the derivations is the identity'

00

dt e'«'{1V(CA(t),B(0)j(»
g0 0

=—i{I'd( Cx(0),B(0)1(»
+(2q.)-'9 IC~(0),B(0)j+CB(0),&(0)j(»

+q, dt.'" yt IC~(t),B(0)j(», (46)

dA (t) . dB(t)A(t)=, B(t)=
df Ch

are the time derivatives of A (t) and B(t).Equation (46)
is easily derived by repeated integration by parts, and
ho].ds for all qo in the upper half of the complex plane.
In this paper, the operators A(t) and B(t) will always
be of the form

nt &(q', W) = b—(W jII&)C(1+—q'/4%sr')gz(q')'

+( 'q4/3d~')gv(q')'j
p&

—
&(q', W) =b(W —3IIN)Cgg(qs)'

+Et "(q')'+q'I's"(q')'j,
v' '(q' W) = b(W 3I~)I: g~—(q')gv(q'—)/1'~ j

(44)

A(t) = —i d'x e "*Kg(x,t),

8(&)=—ifd'ya"&8' (yt)

Pg = 5', ), or &,g5, Pg = Fy, or 5'y, 5'.

(48)

We have also computed, for this reaction, the individual
structure functions appearing in Eq. (41). They are

V, &-&(qs,W) = b(W —3f~)(q'/4M'sj s)gv(q')'

Vst-&(q, W) = b(W —3I~){C1+q'/4m~ jf,(q')'
—gr(q')fr{q')/~~}

A, t-&(qs, W) = h(W —Ms )(1+qs/4Mws) gg(qs)'

A, &
—

&(q', W)=b(W —3II )C(q'/43' ')h (q')'

(45)
—h~(q')g~(q')/~~j

It-&(q', W) =b(W-~ )C-g.(q')g. (q')/3d. j
I„&-&(qs,W) = b(W —MN)( —1/23II~s)

)(;C2Msrg~(qs) —qshg(q') j',
Dz' l(qs, W) = 8(W Mpr)(qs/4Msrs)—

&& C21(f'~g~(q') —q'h~(q') j'
Iv' &(q', W) =Dr&—l(q', W) =0.

In (I) we studied Eq. (46) with s=0; this led, in the
limit qo ~ 0, to sum rules at g'=0. In this paper we will
study the case when SWO, and mill 6nd, in the limit as
q, -+ 0, sum rules for 6xed q' (with q'= (s(').

There are a number of features which all of the
derivations given below have in common. First of all,
we will always use Eq. (46) with the nucleon Iq at rest,
and with the nucleon spin averaged over. Secondly,
each term of Eq. (46) can be divided into a part which
is symmetric and a part which is antisymmetric in the
unitary spin indices u and b. We will only study the
identity for the untisymmetric parts. In each case below,
we will Gnd that the term

&=(2qs)-'(&I C~(0) B(0)j+CB(0),~(0)j(» (49)
s Equation (46) is a more symmetrical version of Eq. (3't) ofRef. 2. Equation (46) remains valid if (Ã( and (N) are replaced

by any toro states of equal four-momentum.
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The next step is to evaluate the absorptive parts. Let us consider explicitly the case of d'. Let k„=(O,iMz) be
the proton four-momentum. Inserting a complete set of intermediate states, we find that

d'kp
~d'(qo, q')=l"k (2~)' Z Z

s,rNT ~ (2m)'

x C&p ID.(o) I p(4) &&p(4) ID,(o) I p&a(4 —
q
—x,)—&p ID,(o) I p(4) &&p(4) ID.(o) I p&a(4+ q

—p„)]

2 (L(plD (0) l&(4)&&)~&(&)))IDk(0) I p&] 1k))=g~(~so qo ~N)
P, INT e

—
L&p ID,(o) I p(4)&&p(4) ID.(o) I p&] I „=,~(4,+ q, —w„)) . (64)

Parity invariance tells us that

2 p L&plDk(0) Ip(4)&&p(4) ID,(o) Ip&]l s(4oyq —m )
P, INT e

= 2 2 L&pIDk(0) IP(4)&&@(&s)ID.(0) I p&]1k,=~&(4O+qo —~~). (6s)
P, INT s

Thus Eq. (64) can be written, using the antisymmetry of e,k3, as

~d'(qo, q') =«.ka 2 Z L&plD. (0) IP(&t))&&P(4) l»(0) lp&]lk, =,L&)(&so—qo ~N)+~(~po+qo ~N)]. (66)
P, INT e

We see that d' is an even function of qo, hence d is an odd function of qo. Since

e.MD.*Dk=Dg*D2—D2*Dg ——2sL(D).*+eD2*)(Di—F2)—(D).*—iD2*)(Di+zD2)],

we obtain Gnally the result that
d'(q&) q') =-,'s LD&-&—D&+&], qo) 0,

D' '= 2 2 I &PLq, ~(qo+~~)]ID'(0) —~D2(0) I p&l'~(4o —
qo

—~~),
P,INT e

D'+'= 2 2 I &&L&1,~(qo+m~)]ID, (o)+ ~D, (0) I p&l'a(4 —
q

—Mv).
P, INT e

(67)

(68)

(69)

Clearly Eq. (69) is identical with Eqs. (41), (32), and (33), defining the structure function D, with qo given by

qo =K E)= (W' M~'+—q')/2M~. — (70)

In a similar manner we 6nd that a~', a2', and i~' are even functions of qo (which implies that aq, a2, and i~ are
odd functions of qo). Also, we 6nd that for qo) 0,

u, '(q„q')=-,'la, &-&—a, & ], a,'(q„q')=-', la, &-&—a,&+&], ~,'(q„q')=-,' ll, &-&—l~+], (71)

where the structure functions A&&+), A2&+), and Iz&+& are those defined in Kq. (41). Combining Eqs. (43), (61),
(62), and (68)—(71), we see that we have derived the sum rule

dqoLP~& ' —A.&+&]= dwLPg& )(q' W) —Pg&+)(q' W)]
Mg

Using Eq. (44), the pole contribution to Eq. (72) can be explicitly evaluated, giving Kq. (S3a).

(C) Sum Rule for e&+&

The sum rule on n&+) of Eq. (1S) is obtained by adding together the two identities

(Cz'=
I
1+ Igz(q')'+ dWLnp& &(q' W) —o&&+&(q',W)],

43'~'I 3fg+Mrr ~N
t' q' 8"

C '=
I g (q')'+ — =dwl —

(q', W) — +'(q', W)].
«4M)v' N'~+err ~N

Here 0.&&+' and 0, &+& are, respectively, the axial-vector and the vector parts of 0,&+&,

&r~&k) =+~&6)(q& W) ~v&k) —P &k)(q2 W)

(73a)

(73b)

(74)
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fE . (46) isrst term on the right-hand side of q.Using Eq.
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since
K&PI &.4(0) IP)=o

for nucleon states at rest. The second term, using the parity transformation properties of the currents, becomes

—j.
Vg" "= Z(Pi d'xe "*fd'ys"&

2/0

-au..'(x,t)
, ~o-(y, t)

-8Vo„(x,t)
, ~-'(y, t)

83

-BS.„(x,t)
, ».'(y, t)—

Clearly, po
o is symmetric in u and b. If we keep only the antisymmetric part of the identity, the I BP/Bt, &) and

the LB%/Bt, &) terms drop out.
Thus, we get the identity

8
0= i(qo, q')

Bgo @0' 0

-a V..'(x) aro„(0)- -as.„(x) 8so„'(0)-
i(qo, q') = o.oo d'~ s "*0(»)Z&PI

—, + IP).
xo 8~ - - 8~0 8

The postulate that
Bi(qo&qo)/Bqo

satisfies an unsubtracted dispersion relation in qo leads immediately to Eq. (16).
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APPENDIX

In this Appendix we give the generalization of the results stated in Sec. 2 to the case when all lepton-mass
terms are included. In order to calculate lepton-mass corrections, it is easier to work covariantly, rather than to
eliminate the fourth components of currents in terms of spatial components and divergences. Thus we write

T~.= 2 2 &(&so—&~o—qo) &&(&~) I (~.'+~.')*Itt(&~+q) &&tt(&~+q) I
~~'+I"I &(&~)&

P,1NT e

M~
$&o),.+II4r)Pw. +&+.goq, 4ro+Dq~q. +&(q)PN.+q.4r).)),

k+0

with 2 ~ ~ 8 functions of q2 and 8'. Time reversal and parity invariance rule out the presence of a term propor
tional to qzt'ooj, —q,k&z in Eq. (A1). Comparing Eq. (A1) with Eq. (41), in the laboratory frame, shows that

g a(qo gr) ~&og P(qo g ) ~N y(qoP ) D= ~(—q 1I )—~o(qo ~)++2(q2 g )
M E=.(q', W) = qo '(V (q', 8')+~ (q-',+')+q'P' (q' Ii')+~ (q'P'))+l P (O'P')+I (q'P'))) .

It is straightforward to calculate the contraction of Tq, with the leptonic trace. We find that Eq. (13) and Eq. (22)
for the strangeness-conserving case are replaced by

I+P~l I+&(~=0) I

( f~)

E ku& Vi i

d'~I
I I+P~ I

I+P(~=0) I
d(q')dqo=

(t)

E I vi El) i

G' cos'Ho
I
(E„—q,)'—ygP Ji'

(2m-)'

G' cos'Og
g(+)
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with

«(~) = (q'+m&2)u(+&(q' W)+ [2E '—2E, qo
—-'(q'+m&')]P(+&(q' W)

+L(2E,—qo)q' —m&'qojy(+&(q', W)+-,'mP(q'+m&2) &)(+ &(q', W) 2—m)2E„e'+'(q', W) . (A5)

Inspection of Eq. (A5) and its analog for a neutron target shows that P(+), y(+&, e(+&, and n(+&+-', mP|)'+) are
independently measurable. Since the derivation of the sum rule on n(+) given in Sec. 4 shows that

we may modify Eq. (15) to read

0= dq, S(-)—&(+), (A6)

Cr'+C&'=(1+q'/4~~')g~(q')'+(q'/ ~~')gv(q')'

+km)'L(1+q'/4~N')f& (q')' g~(q')—fv(q')/~N+(q /47lf& )h&(q ) h&(q )g~(q )/~&3

dW(n( '(q' W)+-', m&'8( &(q' W) —o.(+&(q' W) ——',m&'lI(+&(q' W)7. (A7)
MN+M~ ~X

Thus, in the strangeness-conserving case, when lepton-mass terms are included there are still three sum rules which
may be directly compared with experiment.

In the strangeness-changing case, equations similar to Eqs. (A3)—(A5) hold, and P („,„&'+&, m&2&(„,„&
(+)+q'p (),, &

'+',
and a(„,„&(+&+-',m)2&&(~ „&(+&~qadi(~, „&

(+& are independently measurable. We see that in this case, when lepton-mass
terms are included, only the sum rules on P(„„&(+)can be directly compared with experiment.

It is easy to verify that the results of Eq. (26) and Eq. (27), referring to the high neutrino-energy behavior of
neutrino cross sections, are unchanged by adding the leptori-mass terms. Equation (24) becomes

&v(&-I /4&v~)

(Q /2MN)—

If, in addition to Eq. (25), we postulate that

d 0dqo, L=q'+m&2+-
d(q')dqo q'+m&2

(A8)

dqp
(&&(

—) g(+))
qo'

dqp
(q(-) q(+))

qo

(A9)

are convergent (and similarly in the strangeness-changing case), then we immediately obtain Eqs. (26) and (27).


