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Wave Functions and Production Amplitudes for Any Spin
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Closed formulas are given for the relativistic helicity eigenstates of a wave function for any spin. Helicity
amplitudes for the production of higher spin particles are then computed and brought to a simple form for
pion and vector-meson exchange.

I. INTRODUCTION

OST theoretical calculations involving production
& ~ of higher spin resonances require expressions for
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the higher spin wave functions; e.g., both in polarization
and in partial-wave analysis one considers dehnite
helicity states. '

In a previous paper' a general method was outlined
to compute the relativistic wave functions for any spin
5, and examples were given of helicity amplitudes for
the production of 2+ and 2+ isobars in PP scattering. In
this paper we obtain explicit formulas for the wave
functions of all helicity states for any spin S. Ke then
use these to compute the helicity amplitudes for the
production of higher spin particles, where simple
formulas are obtained for pion and vector-meson
exchange. Through these examples a method is outlined
for treating similar cases.

II. WAVE FUNCTIONS FOR ANY SPIN

In a spherical basis,

U+= (U, i U—„)/V2, U = —(U,+i U„)/K2; (2.3)

and in the case where p is along the s axis, the summa-
tion in (2.1) gives (see Appendix A),
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n+, n, /22, and /20 are the numbers of the (+), (—), 2,
and t components among pl pq, respectively.

For half-integer spin case, S=k+-'„we describe the
wave functions in the Rarita-Schwinger representation. '
These four-spinors f». ..»(P), symmetric in pq /t/2,

satisfy

(iP ~)P.,-;.(P)=o 7V...-,(P)=o (25)

A particle of integer spin S and momentum energy The helicity eigenstates can be calculated from

P, P'= —~rP&0, can be described by a tensor wave func-
tion U». ..„8(P), symmetric in p& ps and satisfying'

P"'Uw-'8 (P) =o

U...- .. (P)=o.

X(kM—X, -'2Xlk2SM). (2.6)
(2.1)

For the case where p is along the s axis,
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I.et U„,...»& '(p) be a helicity eigenstate with eigen-
p (2r)(p) ( ) 3+ 02( ~ 0)/2

value M.' This state can be constructed as an outer
product of spin-one helicity eigenstates,

where

Xl II U„,'""'(P)], (2.2)

j
M;= Q rN, .

r=l

In p/, (p), X= ~'2 denotes the helicity eigenvalue.
Since our helicity eigenstates, for integer spin S, are

constructed by coupling S spin-one states, the coupling
is unique. In particular,

Un -ns' '(P)

=Q (refg rNcV,
l
rS rsj—r/I)' — —

' S. Mandelstam, J. E. Paton, R. F. Peierls, and A. Q. Sarker,
Ann. Phys. (N. Y.) 18, 198 (1962).' Y. Frishman and E. Gotsman, Phys. Rev. 140, 81151 (1965).' H. Umezawa, Quantum Ii~eld Theory (North-Holland Publish-
ing Company, Amsterdam, 1956), Chap. 4; E. M. Corson,
Introduction to Tensors, Spinors and Relativistic Wave Equations
(Hafner Publishing Company, New York, 1953), pp. 118—121.
Further references concerning relativistic wave equations can be
found in these two books.
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Pi' (a) Pion Exchange

In this case, the two vertices of Fig. j. can be treated
separately. For the lower vertex we take

FIG. 1. Feynman diagram for isobar
production. Ir g)p««(P2 )V@('««(p«)4 (p2 —p2 ),

where (we use y' diagonal and yq o6-diagonal)

(3 2)

and similarly,

Pl" Pk

E2+m)
A.(p«) =&(P2) le'(«/2)'«io x«

2X,P i

(Eg'+m)
~., (P') =A (p.')I

I 2x,'p'i (3.3)

2S ) '/ ( 2r+1 )'/ 2(k—r)

S+Mi /«(. («+2+M,i k r+M— M„i—
E(p) =1/I 2m(E+m) j'/'.

(F12 I
x«') =gs(p«)N'(P2') I (E2+m) 2l12'p'

—(E2'+m) 2X«p)d««('") (8) (3.4)
III. HELICITY AMPLITUDES FOR PRODUCTION

OF HIGHER SPIN PARTICLES For the upper vertex we take an interaction of the form

8 is the angle between p& and p~', and x~ are the usual

&()p„,...„,(«r') (p) U„„,...»&~ «r") (p) . (2.9) Pauli spinors, referring to the s axis. The lower vertex
contrj. butes

These relations will be used to simplify helicity ampli-
tudes for higher spin particle production.

As an example we consider EX—&ÃlV* scattering,
thereby outlining the general method for other cases.
Let the E* have spin S=k+-', and parity q The.
exchanged particle is taken to be (a) a pion or (b) a
vector meson (Fig. 1).

In the c.m. system we choose the positive s direction
in the direction of motion of the S*, and conhne our-
selves to the s-x plane (Fig. 2). In this system we use

pl= (pE1), ps= (—p, E2),
Pl'=(KE1'), P«'=( —p', E2').

(3.1.)

Pi Xl

Pp, ) p

P&, )„

FIG. 2. Four-momenta and helicities in the c.m. system.

X~, X~, X2' are the helicities of the nucleons; p is the
helicity of the E*.The masses are m for the nucleon
and M for the g*.

G

,k. - .«")(Pl')Q4 (P)
et~'

&&Pl"' "Pl»&(pl Pl) (3.3—)

where O=y« for ))(—)"=1 and 0=1 for 1)(—)"=—1,
and m is the pion mass.

Using (2.6), we get for the upper vertex

G )2S
g z(kp —xl p, 'p, )

m «(S+p
&&(A(p ')W4(p )) (3 6)

where

(P«(P1') 0$&,(Pl) = E (P,)X(P,')d))„('/') (g)

I 2~1pl(E1 +M) 2~pl (El+m) j 0 7$
X (3.7)

L(E1'+M)(E1+m)—4M«pip«'1, 0=1
and

~(kp —7 IP1', Pl)

2k

k+p —4
This can be evaluated (Appendix 8) to give

F(k, p —l). l pl', pl) =
«—[p-«f kt

«.I-:(k-r)+-, (p-l )3.L-:(k-r)—:(-7)~.
L(k —r) +(p —X)j even
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I (p s)nt))«(3 9)
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Separating a factor (sin8)~~"~, we are left with a poly- And when dealing with I,
nom in cos8 of degree k —

I p—X
I
. Another expression for

F is (see Appendix 8), (2S ) '~2 f 3

S+pi - —;+mi( 2k )"' 2k
F(» p —l Ip~'P~)=I

~k+ p
—Xi k XF(k—1, p —mI p&'p~)M(-,'mXJIX2 X2), (3.1&)

tP, s;n8~& where (2.9) has been used. We thus see that the case
X(—) 'I

I do, , q& &(8), (3.10) of vector-meson exchange is reduced to the cases of
spin--', and spin--', isobars only.

where 8 is the angle corresponding to 0 in the rest frame
of the S*,namely

cot8= (P~E~' cos8—Ps'Ea)/MPx sin8. (3.11)

The helicity amplitude for the process is constructed
by forming the product of the proper terms from the
two vertices, introducing the pion propagator, and
antisymmetrizing with respect to p&, p2.

(b) Vector-Meson Exchange

For the lower vertex we take

gif(P2')vA (P2) I'"(P~'—P2)

2 g.4 (P:).„~(p.) (P:-P.) I""(P.'-P,), (3.»)
g~f(pm')4(P2)(P2' —Pm). l'"(P2 Pm) ~

And for the upper,

(P ')W(p )P "' P " 'I'""(P'-P)
G~4'~-'a(p~')Oyer'(P~)p~"' "P~"'~"(P~'—P~) ~

Gakw "ya(p&')W'(P&)p&" ' ' '

Xp&(p&' —p&)„V~(p&'—P~), (3.13)

where O=y~ when g(—)~= —1, and 0=1 when g(—)~
= 1.The case 3 in (3.12) is absent when P2'2= P22= —m'
and the current coupled to the vector meson is con-
served. %hen constructing the helicity amplitudes for
the process, we remember that the vector-meson
propagator is of the form

D„„(k)=A (k')g„„+B(k')(k„k„/m, '), (3.14)

m, being the mass of the vector meson.
In the Born approximation

Since
APPENDIK A

(j~,1m,+iIj1j +1M;+g)

t
2j+2

- Ej+~, (1+m;+& Ej+1+All;+&i

we have, with 3E;=P m„,

S-l

2S )—'~2 s
III I

. (A2)
S+Mi ~-i &1+m;i

For the case where p is along the s axis, the U„&"'(P)
are given by'

m=i: U+=i, U =US=U0=0,

pm=0: U+= U =0, Ug= ——, Uo= ——, (A3)
m m

m= —1: U, =O, U = i, U3 ——Uo —O.
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A (k') =8(k') = 1/(k'+m, ') . (3.15)
Hence, from (2.2)

) 2S=
(s+m)

) 2S
M(sp, x, Ix,'z, ) =I

ES+p

XQ F(k) p ~1 I p~'Pi)~(P~'&~
I
&~'4) (3 16)

as stated in (2.4).

Let M(Sp, X~IXg'X2) be the matrix element for this
U (M)(

process. Then, when dealing with interactions II-III
for the upper vertex, the matrix element can be simpli-
fied to

n3+np2 (n3+np) /2
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APPE5'DIX B it can be calculated in the rest frame of the X*, i.e.,
Using (2.4), we get for (3.8) P(k, p —) Ip, ', p,)

2k
U -'"-"*(o)p"'"p'"

kkyp —)tJ

&(k, p —)tI pi'pi)
(B2)

( )nr+no2 (ns+n2) /2

~+!~ !~,!~,!S++0-+Sg+So =k where pi is the If/ energy-momentum in this rest frame.
If f) is the angle of pi to the s axis, we have

/Ei' "' pi')» pi sine) "+ pi sing) n-

(3II 3f) V2 I V2 )
U„„(n—&)e (o)piri. . .pire

= Us- 2' '*(o)
I 1il'd~, ~i"'*(f/) (B3)

This follows by rotating the coordinate system so that
yt coincides with the s axis. Using (2.4), we find that
only M'=0 contributes to (B3), so that we finally get

X (Pi cose)n2( —E,)»

k!
( )n—2r 2/2

!yl
n++n +r =k

which is exactly (3.9).
The sum of r can be worked out, but the calculation

can be avoided. For, since F of (3.8) is a scalar product, which is (3.10).

2k '/' 2k'-'/2
~(k, p-)tl .. .)=X(P»)ne) "I !, (») ' '
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The components of currents involved in weak and electromagnetic interactions are assumed to generate
the algebra of chiral U(6)U(6). For the hadrons, the spurion scheme of broken U(6,6) symmetry is con-
sidered, which implies nonchiral U (6)U(6) symmetry for hadrons at rest, and invariance with respect to col-
linear U(6), for particles moving in a given direction. The chiral U(6) SU(6) commutation relations are
evaluated in a single-particle approximation with U(6)„supermultiplets. It is found that one can obtain
U(6) results, even though currents are involved which are not elements of the algebra of U(6)r or even
of nonchiral U(6) U(6). There appear, however, factors 2/e or 1—2/e, which either cancel or can be elimi-
nated by taking the appropriate limits. The eRect of mass splitting in the single-particle approximation of the
commutation relations is evaluated. The relation of these results to the sum rules of Adler and %eisberger is
discussed, as well as the relevance of these sum rules for the problem of the damping of semileptonic d,5=1
transitions.

I. INTRODUCTION

~ nHE spurion scheme of broken U(6,6) symmetry' '
leads naturally to the nonchiral U(6)U(6)

group for hadrons at rest and to a collinear U(6)e
group for particles moving in a given direction. On the
other hand, the components of the currents involved in

*This work supported in part by the U. S. Atomic Energy
Commission.' R. Oehme, Phys. Rev. Letters 14, 664 (1965); 14, 866 (1965).' R. Oehme in Proceedings of the Seminur on High-Energy Physics
arid Eleeserttary Particles, Trieste, Italy (International Atomic
Energy Agency, Vienna, 1965); R. Oehme in Preludes in Theo-
reticul Physics, edited by L. Van Hove (North-Holland Pub-
lishing Company, Amsterdam, 1966).These papers contain further
references.

weak and electromagnetic interactions can generate the
algebra of chiral U(6) U(6) 2 ' In this article, we con-
sider single-particle matrix elements of the current
commutation relations. Restricting the intermediate
states to a U(6) supermultiplet, we find that in most
cases the chiral U(6) Q U(6) commutation relations give
the familiar U(6) results. This is the case even though
the commutation relation may involve currents which
are not elements of U(6)e. There appear factors %
or 1—%. Either these factors cancel on both sides of
the equation, or they must be eliminated by taking the

~ R. P. Feynman, M. Gell-Mann, and G. Zweig, Phys. Rev.
Letters 13, 678 (1964).' R. Oehme, Ann. Phys. (N. Y.) 33, 108 (1965).


