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Closed formulas are given for the relativistic helicity eigenstates of a wave function for any spin. Helicity
amplitudes for the production of higher spin particles are then computed and brought to a simple form for

pion and vector-meson exchange.

I. INTRODUCTION

OST theoretical calculations involving production

of higher spin resonances require expressions for

the higher spin wave functions; e.g., both in polarization

and in partial-wave analysis one considers definite
helicity states.!

In a previous paper? a general method was outlined
to compute the relativistic wave functions for any spin
S, and examples were given of helicity amplitudes for
the production of $t and §+ isobars in pp scattering. In
this paper we obtain explicit formulas for the wave
functions of all helicity states for any spin S. We then
use these to compute the helicity amplitudes for the
production of higher spin particles, where simple
formulas are obtained for pion and vector-meson
exchange. Through these examples a method is outlined
for treating similar cases.

II. WAVE FUNCTIONS FOR ANY SPIN

A particle of integer spin S and momentum energy
p, pP=—m?5#0, can be described by a tensor wave func-
tion U yy..ons(p), symmetric in uy- - -ug and satisfying?

292U pyeeens (p)=0,
Umta"-us”(?) =0.
Let Uypeons®™ (p) be a helicity eigenstate with eigen-

value M.2 This state can be constructed as an outer
product of spin-one helicity eigenstates,

(2.1)

S—-1
Upieons® (p)= 2 [II (GMimpa| j154+1M540)]

Imi=M j=1

XL II Un™ ()], (22)

r=1

where

i
Mj= Z My

r=1

1S. Mandelstam, J. E. Paton, R. F. Peierls, and A. Q. Sarker,
Ann. Phys. (N.Y.) 18, 198 (1962).

2Y. Frishman and E. Gotsman, Phys. Rev. 140, B1151 (1965).

3 H. Umezawa, Quantum Field Theory (North-Holland Publish-
ing Company, Amsterdam, 1956), Chap. 4; E. M. Corson,
Introduction to Tensors, Spinors and Relativistic Wave Equations
(Hafner Publishing Company, New York, 1953), pp. 118-121.
Further references concerning relativistic wave equations can be
found in these two books.
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In a spherical basis,
Up=UamiU)NZ, U_=—(UAHiU)NZ; (2.3)

and in the case where p is along the z axis, the summa-
tion in (2.1) gives (see Appendix A),

U yrerns @™ (p) = (— ) notn02 (nstnod /2

2 S —1/2 E ng p no
X ( ) <—) <——) 6n+_”—,M )
S+M m m

7y, n_, n3, and no are the numbers of the (4), (—), 3,
and ¢ components among u;- - - ug, respectively.

For half-integer spin case, S=k-3%, we describe the
wave functions in the Rarita-Schwinger representation.?
These four-spinors ¥,,.....($), symmetric in uy- - - ug,
satisfy

(2.4)

(D= WD) =05 Yoo (9)=0.  (2.5)
The helicity eigenstates can be calculated from
Va0 (p) = ; W) Upseoea ™ (p)
XM —X, $\|EASM). (2.6)
For the case where p is along the z axis,
Va0 ()= (=)ot st
o 28 \“V2/ E\"/ p\"0
(S—i—M) (Z) (;n—) e

In ¢ (p), N==3 denotes the helicity eigenvalue.

Since our helicity eigenstates, for integer spin S, are
constructed by coupling .S spin-one states, the coupling
is unique. In particular,

Um'--ns(M) (?)
=> (M S—rM—M,|rS—rSM)
My

XU ey M0 (D) Uy 10 MM ()
AL 2r \V2 2(S—7) 1/2
—(S+M) §r<2+M,) (s—r+M—M,)

XUy sie ¥ (p) U, “'+1“_”S(M—M,-) ®; (2.8)
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P, P,

Fic. 1. Feynman diagram for isobar
production.

and similarly,

Yt (P)
( 28 )-mz( 241 )1/2( 2(k—7) )1/2
\s+m/)  ENrtiim,) \b—r+M—M,

X pgeesyy M (P) Uur+1---uk(M~M') ». 9

These relations will be used to simplify helicity ampli-
tudes for higher spin particle production.

III. HELICITY AMPLITUDES FOR PRODUCTION
OF HIGHER SPIN PARTICLES

As an example we consider NN — NN* scattering,
thereby outlining the general method for other cases.
Let the N* have spin S=£k-+3 and parity #. The
exchanged particle is taken to be (a) a pion or (b) a
vector meson (Fig. 1).

In the c.m. system we choose the positive z direction
in the direction of motion of the N*, and confine our-
selves to the z-x plane (Fig. 2). In this system we use

p=(E1), po=(—n, Ep),
P1'= (p’;ElI) ) P2,= (—p,; E2I) .

A1, Ag, Ao’ are the helicities of the nucleons; p is the
helicity of the N*. The masses are m for the nucleon

and M for the N*,
CRY X
CRYY A/ (Pt ) ~l—~z
(Pz,*z>/

F16. 2. Four-momenta and helicities in the c.m. system.

(3.1)
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(a) Pion Exchange

In this case, the two vertices of Fig. 1 can be treated
separately. For the lower vertex we take

Lr=ghry (B )vstns (p2)o (p2— 7)) (3.2)
where (we use v° diagonal and v; off-diagonal)
E2+m
Y (1’2) =N (P2)( )eiw/z)ﬂ"iayxkz ’
2)\2?
E2’+'m
=N iome, 63)
2%2’ ?I

N(@p)=1/[2m(E+m)]"2.

0 is the angle between p; and py/, and x, are the usual
Pauli spinors, referring to the z axis. The lower vertex
contributes

(Ma|N"y=gN (p2)N (p2") [ (Eat-m)2Ne"p"
- (E2’+m)2)‘2pjd)\z')\2(l/2) (0) )

For the upper vertex we take an interaction of the form

3.4)

G
L; =—,;§Zm--~#k(p) (PII)O'/’M(P)
My
X p1#1- -« prig (p' — p1),  (3.5)

where O=+v; for 7(—)*=1 and O=1 for (—)k=—1,
and m, is the pion mass.
Using (2.6), we get for the upper vertex

G 725\
(p|A)= ( ) 2 F(kp—X|pd' 1)
m\S+p A _
X W@ (60 (£1)), (3.6)

where
DA (p1) 0P, (1) =N (p0)N (p1")dan, V2 (6)

l[2)\11’1(E1'+M)"2>\P1'(E1+m):| , O=vs G37)

[(EL+M)(Ertm)—D\pip’], O=1

and
F(kp-kl?ll, Pl)

2k 12
=<k+p—>\) U proee @ V¥ (py) pr1- -« prie. (3.8)

This can be evaluated (Appendix B) to give

k!

F(k, p—\|p1,p1)= >

r =0
[(&=7)+(e—N)] even

X (=) === /22r~kl2(

i (;k—n)+3(e—N11G &—7)—2(—N)]!

b1’ E1— p1E1 cosf

— )'(1;1 sing)t—.  (3.9)
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Separating a factor (sinf)!*— we are left with a poly-
nom in cosf of degree — |p—\|. Another expression for
F is (see Appendix B),

ok \V 2k
raopee=( ) ()
(&, p—X\|p1,p1) Ftp—2 ;

(3.10)

SN

where § is the angle corresponding to 6 in the rest frame
of the N* namely

cotf= (p1E1’ cosb—pi'E1)/Mp, sinf.  (3.11)

The helicity amplitude for the process is constructed
by forming the product of the proper terms from the
two vertices, introducing the pion propagator, and
antisymmetrizing with respect to 1, pe.

(b) Vector-Meson Exchange

For the lower vertex we take

1 g (P )y (pa) VE(pe'— o),
2. g (p)owi (pa) (B’ — po) V7 (P’ — p3)
3. gl (P W (D) (B — o) VH(p' — p2).

And for the upper,

L Gy (010 (p1) p1#- - - pr1# 1V e (py/ — 1),
II. Ggl;m...,,,,(pll)O')’plp (Pl)?l“’ ¢ ’PI”EV"(PII'— ?l> )

OL Gy (p1)0Y (p1) pr#- - -
X p1#(py' — p1) VE(p) — p1)

where O=+; when n(—)*=—1, and O=1 when 5(—)*
=1. The case 3 in (3.12) is absent when p,2= p>= —m?
and the current coupled to the vector meson is con-
served. When constructing the helicity amplitudes for
the process, we remember that the vector-meson
propagator is of the form

(3.12)

(3.13)

Dy (k) =A (B) g+ B(#*) (kuks/ms?),  (3.14)
m, being the mass of the vector meson.
In the Born approximation
A(K)=B () =1/ (k*+m?). (3.15)

Let M (Sp, M|X2'A2) be the matrix element for this
process. Then, when dealing with interactions IT-III

for the upper vertex, the matrix element can be simpli-
fied to

25 \"12
M(Sp,>\1|)\2’>\2)=( )
S+p

XX F(ky, p—X| p1/p1) M GA'M|NN) . (3.16)
AV
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And when dealing with I,
ZS —-1/2 3 1/2
M (Sp, M| A2\ =( ) ( )
Gonb=( ) 4t
XF(k—1, p—m|py/p1) M GmAi|\N),  (3.17)

where (2.9) has been used. We thus see that the case
of vector-meson exchange is reduced to the cases of
spin-3 and spin-§ isobars only.
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APPENDIX A
Since

(GMAmip| j1j+1M 1)
242

=[(jj;l,~)<1+ij+l> / <j+1+M,-+1>]1/2’ (A1)

i
we have, with M;=3" m,,

r=]1

S—-1
II (GMAmspa| j154+-1Mj10)

~ 28 \-12 g 2 \U2
= . (A2
(2 B(ian)

For the case where p is along the z axis, the U,(™ (p)
are given by?

m=1: U;=1, U_=U;3;=U,=0,
E ?
m=0: U,=U_=0, Us=——, Up=——, (A3)
m m
m=—1: Uy=0, U_=1, U;=U,=0.

Hence, from (2.2)
Ubyooss 0 ()

28 \"V2 ] 1 \l2
= Uui(mi)
(S-!-—M) }JmE:M[ JI=Il (1+m,—) (?)]

28 \"1/2 E\ms p\™
=( ) (_)n3+n02(ns+no)/2<_) (_) , (A4)
S+M m m

as stated in (2.4).
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APPENDIX B
Using (2.4), we get for (3.8)
F(k, p—X|p1'p1)

Nyp—N_=p—N\
N4 +n-+ns+no=~k

9 (El’)"a ( pl’)m’(pl sin0>n+( P sinﬂ)n—
M M V2 V2

X (p1 cosf)™s(— E;)mo

k!
____._(_)ns-%noz(nﬁ-no)ﬂ
nyn_lngln!

k!

ne—n-=p—\ 1y In_lr!
netn-+r ==k

(_ ) n—2r—lcl2

X (p1 sinf)e—r , (B1)

(pllEl—?lEll COSO)'
which is exactly (3.9).

The sum of 7 can be worked out, but the calculation
can be avoided. For, since F of (3.8) is a scalar product,
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it can be calculated in the rest frame of the N* i..,

F(k> P_)‘lp1,7 Pl)

2%\
=(k+p_>\) Uﬂn_,k(p—)\)*(o)ﬁln. . .ﬁlrk’ (BZ)

where p; is the & energy-momentum in this rest frame.
If 6 is the angle of ; to the z axis, we have
[]rr"rb(p—k)*(o)ﬁln. - Py

= U3...3(M,)*(0) I fhlder.p_.)‘(k)*(G) . (B3)
This follows by rotating the coordinate system so that

P1 coincides with the z axis. Using (2.4), we find that
only M’=0 contributes to (B3), so that we finally get

2k \U2 2\
res () ()
(k, p—X| 21, p1) PN "

1 Sinf\
X(_)kk,2<? Sln)do.p~x<k><é>, (B4)

which is (3.10).
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The components of currents involved in weak and electromagnetic interactions are assumed to generate
the algebra of chiral U (6)®@U (6). For the hadrons, the spurion scheme of broken U (6,6) symmetry is con-
sidered, which implies nonchiral U (6) @U (6) symmetry for hadrons at rest, and invariance with respect to col-
linear U (6), for particles moving in a given direction. The chiral U (6)®U (6) commutation relations are
evaluated in a single-particle approximation with U (6), supermultiplets. It is found that one can obtain
U (6) results, even though currents are involved which are not elements of the algebra of U(6), or even
of nonchiral U (6)®U (6). There appear, however, factors v/¢ or 1—v/c, which either cancel or can be elimi-
nated by taking the appropriate limits. The effect of mass splitting in the single-particle approximation of the
commutation relations is evaluated. The relation of these results to the sum rules of Adler and Weisberger is
discussed, as well as the relevance of these sum rules for the problem of the damping of semileptonic AS=1

transitions.

I. INTRODUCTION

HE spurion scheme of broken U (6,6) symmetry’:?
leads naturally to the nonchiral U(6)® U (6)
group for hadrons at rest and to a collinear U(6),
group for particles moving in a given direction. On the
other hand, the components of the currents involved in

* This work supported in part by the U. S. Atomic Energy
Commission.

1R. Ochme, Phys. Rev. Letters 14, 664 (1965); 14, 866 (1965).

2 R. Oehme in Proceedings of the Seminar on High-Energy Physics
and Elementary Particles, Trieste, Italy (International Atomic
Energy Agency, Vienna, 1965); R. Ochme in Preludes in Theo-
retical Physics, edited by L. Van Hove (North-Holland Pub-
lishing Company, Amsterdam, 1966). These papers contain further
references.

weak and electromagnetic interactions can generate the
algebra of chiral U(6)® U (6).34 In this article, we con-
sider single-particle matrix elements of the current
commutation relations. Restricting the intermediate
states to a U(6) supermultiplet, we find that in most
cases the chiral U(6)® U (6) commutation relations give
the familiar U (6) results. This is the case even though
the commutation relation may involve currents which
are not elements of U(6),. There appear factors v/c¢
or 1—v/c. Either these factors cancel on both sides of
the equation, or they must be eliminated by taking the

3R. P. Feynman, M. Gell-Mann, and G. Zweig, Phys. Rev.

Letters 13, 678 (1964).
4R. Ochme, Ann. Phys. (N. Y.) 33, 108 (1965).



