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Born Approximation and Large-Momentum-Transfer Processes in Potential Scattering

Tm TSUN WU*

Gordon McE'ay Laboratory, Harvard University, Cambrid'ge, 3/massachusetts

(Received 1 June 1965)

Several problems of nonrelativistic scattering by analytic potentials are studied, where both the energy
and the momentum transfer are large. Specifically, we find asymptotically the reflection coefficients from
the one-dimensional potentials Ve'(1+e~) s, Vs*'s(1+a) ~, and V exp( —gs), and the scattering amplitudes
for their three-dimensional generalizations Vd'(1+e")~, Ve""(1+e") ', and V exp(—r'). The results are
compared with these obtained from Born approximation, and it is found that the erst Born approximation
gives the correct answer asymptotically in the cases Ve~" (1+e~) 'and Ve""(1+e') ', but not in the other
cases. Conjectures about more general cases are also given.

1. INTRODUCTION examples suggest that the Born approximation is indeed
valid when V(r) is not analytic in r, with the possible
pathological exceptions of highly oscillatory potentials.
On the other hand, when V(r) is an analytic function
or r, the Born approximation often gives the wrong
result.

We proceed to formulate the problem. The Schrod-
inger equation is

N this paper, we consider problems of the following
type. Suppose a plane wave is scattered nonrela-

tivistically by a spherical potential V(r), then the
scattering amplitude is a function of the energy and the
momentum transfer. With U(r) Axed, what is the
asymptotic behavior of the scattering amplitude when
the energy and the momentum transfer are both large?

We shall restrict ourselves entirely to the physical
region for the scattering amplitude so that the energy
is necessarily large in order to get large momentum
transfers. We shall also consider only those V(r) which
are real and integrable over the entire Euclidean space.
By integrable, we mean that the integral of the absolute
value of the function exists.

Since the energy is large, it is tempting to apply the
Born approximation. ' The Born approximation has
been studied carefully by Hunziker, ' who has also given
rigorous bounds for the error. The bounds are of the
form of a negative power of the energy. Accordingly, if
the scattering amplitude and its Born approximation
both approach zero rapidly in the limit of interest, they
can obey Hunziker's result and yet they are not good
approximations of each other. For example,

L~'+' —V(r) j4(r) =o.

In general, the incident wave i" '(r) satishes the equa-
tion without U(r). Let G(r—r') be the usual retarded
Green's function, then (1.1) with suitable boundary
conditions is equivalent to

1'(r) =p'"'(r) — dr'G(r —r') U(r')f(r'). (1.2)

In the 6rst Born approximation, the wave function is
instead

A(r) =it"-(r)— «'G(r —r') V(r')0'"'("), (1 3)

and various quantities, such as the differential cross
sections, are computed from fr(r). In other words, for
the various quantities, only terms linear in V(r) are

kept. Higher order Born approximations may be
dined in a similar manner, and it is interesting to note
that this Born series is always convergent for sufFiciently

large energy.
The motivation for this investigation comes from

problems of strong interactions, and, in the following

paper, ' the methods and results developed in this paper
are used to speculate about the scattering and produc-
tion of strongly interacting particles. The methods can
also be used directly to obtain the asymptotic be-
havior of the scattering amplitude in the complex
angular-momentum plane, ' A related but basically
different problem has been treated by Hougardy. '

(exp( —x)—exp( —x')
~

(x ' '

for suKciently large x, and yet asymptotically exp( —x)
and exp( —x') are very different. The validity of the
Born approximation in the sense of giving correctly
the leading term of the asymptotic form is of central
interest here. For forward or near-forward scattering
where the momentum transfer is not large, the erst
Born approximation may be expected to be correct for
large energies, unless there is fortuitous cancellation.
We are asking, instead, whether the 6rst Born approxi-
mation is accurate for large energies and also large
momentum transfers.

No attempt is made in this paper to study this

problem systematically. Instead, we merely consider a
few examples to 6nd out some of the possibilities. T
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2. ONE-DIMENSIONAL CASE

Three-dimensional problems being too complicated,
we turn our attention to the very much simpler one-
dimentional problems. After changing r to x, (1.1)—(1.3)
remain valid. Let P'"'(x) = e'"*, and we want to compare
the reQection coefficient

R= lim, „e'"(P(x)—P'"'(x)]

The Born approximation gives

R~———
vari V csch2mk. (2.15)

On the other hand, for large k, by Stirling's formula,
(2.13) gives asymptotically

R —2l' cosxve ' (2.16)

This example is discussed in some detail in the next
section.

=(2zk) ' dxe'"~ V(x)P(x) (2.1) Example 4. If

with its first Born approximation

V(x) = Ve*~s(] +e*)

then, for large k, R is asymptotically

(2.17)

Ri ——(2ik) ' dx esz"~V(x) .

We have worked out the following examples. Rj.=—~xik 'U sech2mk.

R zrik 'Ve ' " (2.18)
(2.2)

On the other hand, substitution of (2.17) into (2.2) gives

(2.19)

Example 1. If

then
V(x) = V8(x),

R=(2ik —V) 'V,

(2.3)

(2.4)

This example is discussed in Sec. 4.

Examp/e 5. If V(x) is the Gaussian potential

V(x) = V exp( —x') (2.20)
and hence

Ri ——(2ik) 'V (2.3)

Indeed, more generally, the zzth iteration of (1.2) gives

R„=Rg", (2.6)
and

with V&0, then, for large k, R is roughly

i exp( —2k Dn—(k'jV)]"')
while the first Born approximation gives

Ri-— 22zr'z'iv—k -' exp( —k').

(2.2i)

(2.22)

R=QR,
n=l

provided that
~

V~ (2k.
Example Z. If

(2.7) This curious example is studied in Sec. 5.
From these five examples, together with the method

of calculation used in the next three sections, we may
draw the following conclusions concerning the validity
of the first Born approximation for one-dimensional
problems:

then

V, for ixi(1
0, otherwise,

(2.g)

k'=(k —V)'I'. (2.10)

R=2iVe ""sin2k'/I (k k')'e"2—' (k+k'—)'e ""'j, (2.9)

where

(a) If V(x) is integrable, is not analytic on the real
axis, but is analytic on each of a number of closed real
intervals I, such that the union of I; is the real axis, then
the erst Born approximation for R is valid for large k.

(b) If V(x) is analytic for ~Imx~ ~&xp and is in-
tegrable along any line parallel to the real axis in this
strip, then, as k~~,

It follows from (2.9) that
R exp(2kxp) v 0 (2.23)

(2.11) andRi ———-,'ik —'V sin2k.

Example 3. If V(x) is a special case of the Eckart
potential'

(2.12)V(x) = Ve~(1+e~) '
then

coszrv I'(—2ik+-', +v) I'(—2ik+-',—v)
(2.i3)

I'(—2ik+ 1)I'(—2ik)
R= —i

sinh2mk

where

Ri exp(2kxp) —+ 0. (2.24)

(c) If V(x) is analytic for ~imx~ (xp, has a finite
number of singularities at

~
Imx~ =x,, and is integrable

along any line parallel to the real axis in this strip,
then, as k ~~, both R and Rj have the exponential
dependence exp(2kxp). This is the basis of the considera-
tions of the following paper. '

(d) If V(x) is an entire function of x, Ri is in general
very diferent from R for large k.

(1 V') 1/2

p C. Eckart, Phys. Rev. 35, 1303 (1930).

(2.14) The condition in (b) and (c) of integrability along a
line parallel to the real axis is needed to exclude poten-
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tials such as Finally, the substitution of (3.8) into (3.10) gives
(x'+1) ' s&nx'

3. ECKART POTENTIAL

(2.2s)
Ro= —2icos~ue 2 ~,

which is the desired answer.

(3.11)

In this section, we study the Eckart potential' in
some detail. Speci6cially, we want to be able to obtain
(2.16) without using hypergeometric functions, so that
a similar procedure may be applied to the potential
(2.17). In the complex x plane, the Eckart potential
(2.12) has double poles at x= +(2n+1)4ri Le.t

4. HYPERBOLIC SECANT POTENTIAL

In this section, we apply the procedure of the pre-
ceding section to the potential (2.17), which has simple
poles at x= +(2n+1)ni. With the variable $ of (3.1),
the comparing potential is now

x=xi+ .$, (3.1)
Vp(x)= —iv) ',

then, in the vicinity of )=0, the Schrodinger equation
is approximately

which is closely related to the Coulomb potential.
Therefore

d'P/()/P+ (k'+ VP')f=0. (3 2)
g p(x) = consteiP&$%'(1+-,'k 'V„2; —2ik)), (4.2)

It follows from (3.2) that, near $= 0, p is approximately
equal to

Pp= $"'Z,(k)),

where + is the confluented hypergeometric function of
Tricomi, ~ which is defined by

I'(a+r)
+Z [e(+ )-a(1+ )-e(2+ )]* .

r-p I'(a)r!(r+1) !(3.4)p (x) (1~k])i/pe psei4/ieiv-4/2H (&)(k$)

where Z„ is some linear combination of Bessel functions @(a 2. x)—[I(a 1)j—& C,(a 2. x) ln„+[1(a)j—ix—i

of order v, defined in (2.14). Since the incident field
P'~' is eiP', we must choose, from (3.3),

Rp ——(2ik) ' dx e"*Vp(x)gp(x), (3.s)

with
v, (x)= —vy'. (3.6)

It follows from (3.5) that

Note that fp(x) is an analytic function of x except for a
branch cut from ~i to in6nity.

The reflection coefficient R is given by (2.1).Thus the

major contribution to R comes from the vicinity of

x=iri, where P(x) is approximately fp(x). Thus R is

approximately Ro, where

—2ike—~. (4 4)

The function @ is asymptotically, as
~
x

~

~pp,

(4.3)

» (4.3), g is the logrithmic derivatve of the gamma
function F, and C is the ordinary conAuented hyper-
geometric function, which is regular at the origin. The
constant that appears on the right-hand side of (4.2)
is not dined, since it contains the well-known loga-
rithmic phase factor of the Coulomb potential. However,
if we set (k)) v/p equal to 1, which is a good approxi-
mation for large k but fixed P, then the constant is
given by

R(&
——lim. „e'"[4/t p(x) —e'"j. (3.7) @(a,2; x) x-, (4.5)

In deriving (3.4), we have used the asymptotic

formula

(3 g)H (&)(k ~) (1~k [) 1/pe iw/4e-ivy/2eakf— —

Thus, by (3.7) and (3.9), Rp is given by

R lim ei/&4:(LXk])&/Pe-l4eip /4eivv/2

X2 cos&rvH„(')( —k$) (3 10)

which hold for k$-+pp and —4r(arg(k$)(24r. Thus

there is a Stokes' line when the argument is —x. By

By (3.7), we need the asymptotic expansion on this

Stokes' line. For this purpose, we make use of the

identity

H„(')(se-4~) = 2 cos4rvH (' (s)+e ""H ('&(s) (3 9)

provided that
~
argx

~
(—,Pir. Thus the negative real P axis

again coincides with the direction of a Stokes's line.
By (4.3), if we always set (k&)v/P equal to 1, then the
reAection coe%cient Ro is given by

Rp ——e—""li &„m„e' &( ip2ikg[1 (—ik &V)] i— —

X ( 27ri) 4 (1—+pk 'V,2; 2ik P)—
—2ik)4(1+-,'k- V', 2; —2zkt)

By these prescriptions, (4.6) reduces to

-'"[I'(lk-'v)3-'[I (1+-,'k- v)j- . (4.7)

~ See, for example, Bateman Manuscript Project, Higher Truns-
c@gdegru/ Fegcgons, edited by H. Erdelyi (McGraw-Hill Book
Company, Inc., ¹vrYork, 1953), Vol. I.
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As k~~, this further simplifies to

Eo= —haik f Ve ' ~. (4.8)
Z-

Zl
(5.9)

Equation (2.18) follows from (4.8) by the argument of
Sec. 3.

5. GAUSSIAN POTENTIAL

S2

Z s3

~s'g y

(5.10)

In this section, we study the Gaussian potential
(2.20). We treat this problem in two different ways,
first by summing the Born series, and then by the
%KB method.

f&"&(x)=(2ik) ' dx'e"~ *'~V(x')P&" '&(x') (5.1)

a. Born Series

Iteration of (1.2) gives a sequence of functions de-
fined by

Z~ is the transpose of Z, and M„ is the n&(n matrix

n n —1
n —1 n —1

M„= n—2 n —2

1 1

n—2
n —2
n —2

1

1'
1

(s.ii)

In view of the form of F as given by (5.8),we integrate
over sf to get

R = V"(2ik) "s'/'n '/'

for n)~1 in the one-dimensional case. Here $~0/(x)
=f' '(x). Analogous to (2.1), the corresponding se-
quence of reflection coeKcients are

Xexp( —k'/n) ds2. ds

R„=lim. „e"*if&"&(x) (5.2)

for n)~ 1. In the series of the Gaussian potential (2.20),
R& is given by (2.22), while R& is easily found to be

Xexpik[ —2n ' P (n+1—j)s;+P (s;+ ls;l)]
j=2 j=2

R 1(2~)1/2V2k —2s—I&/2 dx e" exp( —-'x') . (5.3)

Xexp{—Z' MrxZ'+n-'[g (n+1—j)s ]') . (5.12)
j 2

For large k, this is asymptotically

R2~ ,'(2 )x' —i/V—2'k 'e "'/'
& (5.4)

whose absolute value is much larger than
l
Rq l

.
More generally, we attempt to compute R„ for k

large. Explicitly,

Because of the appearance of
l s;l, the major contribu-

tion to E comes from the vicinity of s;=0 for all j,
when k is large. Note that (5.4) is obtained from (5.3)
by omitting the factor exp( —~~x') in (5.3); more gener-
ally, we omit the last exponential factor on the right-
hand side of (5.12).After this deletion, the integrations
are trivial, and the result is

R =V"(2ik) "
dxf ' ' 't&

R ~ 1~s I/2n —1/2Vk —1(1V'k —2) a—1

Xexp( —k'/n)n»(n!)-2 (5.13)

Equation (5.13) holds if
Xexp[—(xg'+x2'+ +x ')] exp[ik(x)+ l

xg —x2l

+ l
x2 xs I+ ' '+ l*~—1 *~I+*&)]' (5'5) It remains to sum over n.

(5.14)

If we let

and

for 2&i&n, then

sf —sf

Ss= Ss Sj f (5.6)

00 00

R ~ 1/s 1/2Vk —1 dn n-I/2(1 Vk 2)n 1'——
n=l 0

(—k')
Xexpl ln»[i'(n+1)]-'. (5.15)

R„=U"(2ik)—"

where

ds . ds e"~

&=2si+2 (s;+ Is*I),
f,~2

(s.8)

Xexp( Zr3f Z), (5.—7) R~ i exp{—2—k[ln(4k'/ V)—2]"') .

The point of steepest descent is at

n =k[ln(4k'/V) 2]-'/'—

(5.16)

(s.17)

The right-hand side of (5.15) can be easily evaluated by
using Stirling's formula and the method of steep descent:
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which satisaes (5.14). Equation (2.21) results from
(5.16) by neglecting 1 compared with ln(k'/V).

x=iyo+$ (5.20)

Near x=iyo, the Gaussian potential is approximately

Vo(x) =k'(1—2iyo)) . (5.21)

It is a novel feature that Vo depends on k. With Vo,
the Schrodinger equation is

d $2/doP+2ik yog'o=0& (5 22)

whose solution is

P~ ——const//'Zg/3(-'O'I'4:4 14kyo'12$'") . (5.23)

Note that, when i$ is positive, the argument of the
variable is ——,'m. For Z, we again choose the Hanekl
function of the erst kind. Thus the Stokes' line appears
vrhen the argument of the variable is —x, which cor-
responds to

arg)= —gK. (5.24)

Thus we need to cross a Stokes' line here. The constant
on the right-hand side of (5.23) is determined by apply-
ing the %KB method to the Schrodinger equation for
the Gaussian potential. The %KB solution is

1—Vk 'exp( x')) '14—e

&& exp i dx'(k [k' Vexp( ——xlm))—'~'), (5.25)

and hence, for large k,

t4 (-',ok&)'~' exp(i5m/12)H&~&&'&(-', 2"'e' "kyo"'P")

b. WEB Procedure

Ke next try to adapt the %KB procedure to this
Gaussian potential. Let x=iy, then the Schrodinger
equation is

d'iP/d y' —(k'—V expy')/=0. (5.18)

In the language of the %KB method, there is a turning
point at y =yo, where yo is dined to be

yo=[l (k'/V))'I'. (5.19)
Accordingly, let

In order to get (5.16) from (5.27), we expand the
integral in powers of yo '. The exponents in (5.16) and
(5.27) agree up to the second term.

One may raise the question whether there is any con-
tribution from other zeros of k2—V exp( —x'), for ex-
ample, the one at i[la(—k'/V)+34ri)"'. These con-
tributions are very small compared with that from
iyo', and are thus negligible.

More generally, consider the reBection from a poten-
tial V(x), which is an entire function of x. If V(x) is
intergrable along every line parallel to the real axis,
then, for large k,

R iP; ex—p 2i dr[k' V(7))'—~', (5.30)

where x; satisfies V(x;) =k'. Usually, only one or two
j's contribute.

The above considerations can be immediately ex-
tended to treat some spherically symmetrical poten-
tials. If the incident plane wave is e', then the scatter-
ing amplitude in this case is given by

f(n) = —(4s) ' dr V(r)P(r) exp( —ikn r) (6.1)

where n is a unit vector, and the Gnal momentum is

(6.2)

c. Attractive Case

Although the method of Sec. 5a cannot be used in
the case V&0, that of Sec. Sb goes through with very
little modi6cation. In this case, let

yp'= [ln(—k'/U)+s i)'~2 (5.28)

then we need to consider two turning points, one at
iyo' and the other at iyo'*. The reflection coeScient is
approximately the sum of the contributions from each
of the two turning points. Therefore, in this case,

jyof

E-—2iRe exp 2i dr[k' Vexp—(—r'))'~' .(5.29)

Xexp i

Finally, we again use (3.9) to get

f4(n) = —(4n-)
—' dr V(r)exp( —iK.r). (6.3)

V exp( ~2)@12 (5 26) while the initial momentum ir; is along the x axis. Let
K=kf—k; be the momentum transfer, then the Born
approximation gives

—i exp 2i

=—~ exp —2

d7 [O' Vexp( —4'))'/'—

d4 [k'—V exp(4'))'12 . (5.27)

a. Hyyerbolic Secant Potential

Consider 6rst the spherical generalization of the
potential (2.1/):

This is a much more accurate answer than (5.16). V(r) = Ve"I'(1+e") '. (6.4)
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V(r)= Ve"{1+e") '.
Here the Born approximation gives

fI(n) —IrsV exp{—s.E).

(6.7)

(as)
A comparison with (2.15) and (2.16) shows that the
correct answer is

f(n) —sr cossrn exp —(IrK) . (6.9)

for large E. Here, again, n is defIned by (2.14).

c. Gaussian Potential

As a 6nal example, consider the three-dimensional
Gaussian potential

V(r) = V exp( —r'), (aio)
with V&0. Before ere can study this case, a better
understanding is needed of the results. (6.6) and (6.9).
Equation (6.3) may be written as

The substltutlon lllto (6.3) gives, asymptotically fol'

large K=
~
K~,

fI(n) ~ n'—VK ' exp( —7rK) (6 5)

In this case, Born approximation is valid, and hence

f{n)——m' VK—' exp( —IrK) . (6.6)

b. Eckart Potential

Qext consider the spherical Eckart potential

V'. DISCUSSIONS

(a) Geometrical optics, as a theory of the asymptotic
behavior of the solutions of Helmohltz equation or
Maxwell's equations, is well developed for real coordi-
nate variables. ' The present work is basically an exten-
sion of geometrical optics into the complex planes of the
coordinate variables. This is meaningful only when the
potential, and hence the resulting wave function, are
analytic functions of the complex coordinate variables.

(b) The present analysis can also be applied to the
asymptotic case' where the angle of scattering is 6xed,
k and V are both large, while V(r)/k is held ftxed.

(c) Both in the limit of (b) and within the framework
of Born approximation, the question may be raised
which one is more favorable, one large transfer of
momentum or several smaller ones. The answer is that
this depends very much on the nature of the potential.
For potentials not analytic in the coordinate variables,
in general the former is favored. For analytic potentials,
the answer depends on the nature of the singularities of
the potential. In the case of Sec. 6(a), the former is more
important; in Sec. 6(c), the latter becomes more im-
portant; while in Sec. 6(b), both give comparable
contributions.

(d) Finally, we study the ftrst two examples of the
previous section in more detail from the point of view
of complex variables. In Sec. 6(a) and Sec. 6(b), the
potential has the singularity manifold

(7.1)

fI(n) =-I,sIt ' rdr V(r)e'x", (6.11)
other singularity manifolds of the potential beirig
irrelevant. Let us pose the problem of ending the value
of

provided that V(r) is deaned to be an even function of
r. Equation (6.11) differs from (2.1) of the one-dimen-
sional case mainly in the appearance of an additional r
in the intcgrand. As E~~, this r is evaluated at the
position of the pole in the two examples of Secs. 6a
and 6b; in other words, r is placed byte+. This accounts
for the difference between (6.6) and (6.9) on the one
hand and (2.18) and (2.16) on the other.

Applying this reasoning to the present case of the
potential (6.10), we get, in view of (5.27),

f(n)- —-'X«xp—

where $0 ls dcfiQcd as

dr[K' —4V exp(r'))II'-

(6.12)

(6.13)

similar to (5.19).
Pote added sN proof. Dr. N. Dombey kindly informed

the author that there is a discussion of this Gaussian
po'te11'tlal III L. D. Landau Rnd E. M. Llfshltz, QNass1NIN

MeckarIscs, IVors relatst&isc Tkeory (P-ergamon Press,
Ltd. , Oxford, England, 1965), 2nd. ed. , pp. 491-2.

maxsK. r {7.2)

on the manifold {7.1). The answer is clearly sr'. This
is indeed the exponent in (6.6) and (6.9).

More generally, in the nonspherical cases where the
singularity manifold is real in the variables r, the follow-
ing procedure is suggested under the simplifying as-
sumptions stated below.

(i) Let V(r) be an analytic function of r in the region

{7.3)

and all values of Rex. 3 is required to contain the origin,
and, without loss of generality, we take 3 to be the
largest possible connected region. %C assume that 5 is
bounded, and, given Imr in g, V(r) is integrable
over RC1'.

(ii) Over 8, let M be the least upper bound of Imr. K.
Since Imr K is a linear form of r, M is attained at some
point pro on the boundary of S. VVC assume that there is

' See, for example, R. VV. P. King and T. T. Wu, Scattering awfg
Dsffradzors of Wanes, (Harvard University Press, Cambridge,
Massachusetts, j.959).

'L. I. Schi6, Phys. Rev. 103, 443 (j.956};T. T. %u, ibid. 108,
466 I', 1957};and D. S. Saxon and L. I. SchiG, Nuovo Cimento 6,
614 (1957).
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only one such point. Since S is necessarily convex, ' the
Gaussian curvature g of the boundary of S at this point
cannot be negative, and is assumed 6nite and nonzero.

(iii) Let s be the unit vector in the direction ro.
Solve the one-dimensional problem of scattering the
incident wave exp(i2iEx) by the potential V(x~). Let
E be the reaction coeScient, then

f(n) = ',—iR-g '" (I 4)

Procedures of this variety are useful in the following
paper. '
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scattering from the sphere. In this connection, a
particularly illuminating example has been worked out
by Kodis. "

We follow precisely this procedure, after noticing
that the justifications for geometrical optics holds
equally well for real or for complex variables. Consider
first the hyperbolic secant potential (6.4). The complex
singularity manifold of the potential plays the role of the
surface of the polished sphere. V(e thus study the
complex surface

x'+y'+ s'= —(2m+1)'s'. (Ai)

Since only the nearest singularities are of importance,
we take v=0 without loss of generality. Since this
surface is a sphere, the normal n(r) is parallel to r.
We therefore look for the points on the surface (Ai)
such that r is parallel to K. There are two such points,
namely,

APPENDIX
r=+Arx/K (A2)

In this Appendix, we describe in some more detail
the steps taken in Sec. 6. We follow the standard pro-
cedure of geometrical optics, as given for example by
Born and Wolf"

As is well known, for small wavelengths, the scatter-
ing from three-dimensional objects can be calculated
wi. th a knowledge of the solutions of one-dimensional
problems together -with the amplitude factors ob-
tainable by geometrical considerations. "Consider, for
example, the optical scattering from a polished sphere.
For every point r on the sphere, we have a -tangent

plane with the normal n(r). For given k, and kf, it is
sufficient to consider the tangent plane with n(r)
parallel to the vector K. (More precisely, there are two
such planes, but only one is relevant. ) We then replace
the sphere by this tangent plane. After solving this one-
dimensional problem, we multiply it by the geometrical
amplitude factor to obtain the desired answer for the
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Equation (6.6) then follows immediately.
Precisely the same procedure is followed in Secs.
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for e=0. Let x' be the unit vector in the direction of K,
then, on the x' axis, the value of the potential (6.4)
is simply

Ve~'~'(1+ e*')-' (A3)

In the case of the polished sphere, we replace the sphere
by its tangent plane; similarly, here we replace the
hyperbolic secant potential by (A3). But this is pre-
cisely the one-dimensional problem studied in Sec. 4.
It therefore remains only to find the geometrical ampli-
tude factor.

This factor can be found, in various ways. A par-
ticularly simple procedure is to note that the same
factor appears in the Born approximation. Thus a
comparison of (6.5) with (4.8) shows that the required
factor is


