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Note added iN proof. In December 1965 I received
from Professor G. Szekeres a reprint of his paper. '~

The inaccessibility of this important reference is doubt-
less the reason that it has remained unknown to workers
in the field. In it, Szekeres independently derives
Kruskal's line element. The possibility of identifying
opposite events (N, o) and (—I,—e) is briefiy mentioned,
but rejected on the grounds that it "introduces an
arti6cial singularity at e=O, e=O, essentially of the

"G. Szekeres, Publ. Math. Debrecen 7, 285 (1960).

same kind as the singularity at the vertex of a cone
obtained by identifying the points (x,y) and (—x,—y)
of the Euclidean plane. "It will be interesting to weigh
this objection.

Compare also the recent notes by Belinfante, '0

Anderson and Gautreau, 2' and Rindler. '2

's F. J. Beiinfante, Phys. Letters (to be published).
a J. L. Anderson and R. Gautreau, Phys. Letters (to be

published).
~%'. Rindler, Phys. Rev. Letters 15, 1001 (1965).
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The connection between the Lie algebra of the conformal group and the algebra of quantum mechanics
is analyzed, applying a method similar to one considered by Segal. The contraction of the 4-parameter special
conformal group yields the position operators, and the contraction of the dilatations yields a phase trans-
formation of the states considered. Quantum mechanics appears in this way as a broken symmetry. Thus
one gets a relationship between geometrical gauge transformations and phase transformations, which sheds
new light on Acyl's conjecture that geometrical gauge transformations and charge conservation are related
to each other. Arguments are given as to why the usual interpretation of the special conformal group as a
system of transformations connecting frames of constant relative accelerations hardly can be the right one.
The main point is that the physically essential group velocity of the wave packets formed by the eigen-
functions of the special conformal group has the same form as in the case of the plane waves, whereas the
physically irrelevant phase velocity has the hyperbolic structure usually discussed.

I. INTRODUCTION
" 'N a previous paper, ' I conjectured that there is a close
.. relationship between the algebra of quantum me-
chanics and the structure of the conformal group. At
that time I was not aware of an earlier interesting paper
by Segal, ' who had already analyzed this question from
a more mathematical point of view.

In this paper I wish to discuss the more physical
aspects of this problem and shall make some remarks
about the relation of the position operators obtained
here to those given by signer and Newton. '

Snyder4 seems to be the 6rst one who associated the
position operators of quantum mechanics with elements
of the Lie algebra of a transformation group. As an
example of a Lorentz-invariant discrete space-time he
considered the position operators given by elements of
the Lie algebra of the Be Sitter group, which leaves the
quadratic form qo' —g~' —g2 —g3'—g4' invariant.

In order to allow for continuous translations in the

*Work supported in part by the U. S. Air Force.
f On leave of absence from the University of Munich.
' H. A. Kastrup, Ann. Physik 9, 388 (1962).
2 I. E. Segal, Duke Math. J. 18, 221 {1951).
~ T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400

(1949).' H. S. Snyder, Phys. Rev. 71, 38 (1947).

framework of this group, Yang' discussed a di8erent
set of generators and mentioned as a similar example the
Lie algebra of the group which leaves the quadratic form
~02 $12 f22 ~32 ~42 ~~2 invariant

Segal 6nally discussed the group with the invariant
form res' —gt' —rts' —r)s' —rt4'+rts'. This group is isomor-
phic to the conformal group in space-time, He showed
by an example how the algebra of quantum mechanics
can be obtained as a limit from the Lie algebra of the
conformal group.

The following mathematical considerations diGer in
several aspects from Segal's. %e start from a difterent
set of operators and consider only one limiting process
instead of two. Furthermore, we give a physical inter-
pretation for this limiting process which seems to be
quite natural and which provides a new link between
macroscopic physics and atomic quantum mechanics.
Its main idea is the following: One of the essential
features of low-energy quantum mechanics is its dis-
continuous energy spectrum, for instance, the spectrum
of the hydrogen atom. The conformal group on the other
hand implies continuous energies and is, therefore, not
compatible with low-energy atomic physics. ' ~ The

5 C. N. Yang, Phys. Rev. 72, 874 (1947).
~ H. A. Kastrup, Nucl. Phys. 58, 561 (1964).' H. A. Kastrup, Phys. Rev. 142, 1060 (1966).
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transition from conformal physics to quantum me-
chanics coiresponds to a "degeneration" of the algebra
of the conformal group into the algebra of quantum
mechanics in such a way that the four generators of the
specia1 conformal group go over into the position
operators and the dilatations go over into a phase
transformation of the states considered.

Since such a phase transformation is usually associ-
ated with charge conservation, we see how the dilatations
can be connected with the conservation of charge. That
such a connection might exist was already pointed out
in Ref. 6.

This result sheds a new light on Weyl's interesting
conjecture that charge conservation is a consequence of
geometrical gauge transformations. Despite its fasci-
nating mathematical structure, his hypothesis did not
prove very successful physically, and Acyl later even
revoked it.'

Slncc thc scale tI'ansfoI'Dlatlon ls thc slInplcst possible
geometric gauge transformation, our results show that
there indeed seems to be a close connection between
such transformations and the conservation of charge.

Furthermore, we give some arguments as to why the
usual interpretation of the special conforInal group as a
set of transformations which connects systems of cori-
stant relative accelerations" "is very unlikely to be the
right one. The reason is that the group velocity of the
grave packets formed by the eigenfunctions of this

group has the same form as that of the plane waves,
whereas the phase velocity shows the hyperbolic struc-
ture usually related to accelerated motions. Since
we know from quantum mechanics that the group
velocity, not the phase velocity, describes the motion of
particles, we assume this to be true for the conformal

group as well. There are several other physical and
mathematical reasons why we abandon the interpreta-
tion of an accelerated motion and adopt that of a
generalized dilatation, ' until an even better understand-

ing may be found in the future.

%C discuss the mathematical problems involved in
Sec. II and the physical interpretation in Sec. III.
Appendix B contains some critical remarks concerning

an example discussed by Fulton ef al."

group), the dilatations"

&" =p&", p&0, p=0, 1, 2, 3

and thC special conformal transformationS

x4 =RT (c)Zx" ) p, =0, 1) 2, 3,
where

Jb:"=—g"/g 2 (~)g"=g"+is.

(2)

If we denote by M„„,P'„, D, and E„the generators of
the orthochronous Lorentz group, the translations, the
dilatations (1), and the special conformal group (2),
respectively, they form the Lic algebra'

[M,)„M„„]=z(gg„M,„g„„Mg—„+g„„M),„g),/if „—„), (Ba)

[Pg,M„„]=i (gz„P„g),„P„)—, (3b)

[Ez M"]=z(g~.E. g~.E.—) (Bc)

[K„,P„]=2i(g„& M„„)—, (3d)

[P„,P„]=0, (3e)

[E'„,E„]=0, (3f)

[D,P„]=iP„, (Bg)

[D,E„]= iE„, — (3h)

[D,M„„5=0. (Bi)

In this paper we wish to discuss a special representa-
tion of this algebra, namely, the case where the spin 5 is
zero but the squared mass P' is not zero. In this section
we shall deal mainly with the mathematical problems
involved and defer the physical interpretation to the
next section.

It was already pointed out in Ref. 7 that all eigen-
values ns2&0 occur in such a representation. This is a
consequence of the commutation relation"

gi aDP2g —iaD —g
—2aP2

It means that an irreducible representation of the
conformal group with P2&0 is a superposition of irre-
ducible representations of the Poincare group. ~ In thc
case of spin zero such a representation is given by the
scalar product

~~ THE LIE AI,GEPRA OP THE COHPORMAL
GROUP AND THE ALGEBRA OF

QUANTUM MECHANICS

The 15-parameter conformal group in space-time
consists of the Poincare group (inhomogeneous Lorentz

V+

where V+ denotes the cone p'&0, ps&0 and zz is a real
numb cl ~

The Hermitian operators of the Lie algebra (3a)-(3i)
with respect to the above metric are given by

s H. Weyl, RoNrrz, ZszZ, 3fagsrzs Qulius Springer-Verlsg,
Berlin, 1932), Chap. II.

9 H. Weyl, Natunviss. 19, 49 (1931).
» ~ extensive Hst of Hterature is given in Ref. 1; see also T.

Fulton, R. Rohrlich, and L. VAtten, Rev. Mod. Phys. 34, 442
(1962).

» Y. I ulton, R. Rohrlich, and L. Vhtten, Nuovo Cirnento 26,
652 (1962).

P„=
M„„=i (p„8„p„'ri„), —

s
——2NBs 2pvr'i ri +p g

D= z(zz+ ps'„),
't k=1="J E. Wess, Nuovo Cimento Is, tog6 (1960)

(Sa)

(Sb)

(Sc)

(Sd)
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with

In Ref. 7 we discussed the example n= 1. In the follow-
ing we shall choose I=2.There is no difhculty in extend-
ing the results of this special example to the case of
arbitrary e&0.

Except for a numerical factor the 6rst part B„of the
operators E„represents what one would expect as the
form of a position operator in momentum space.
Furthermore, the commutation relations (3d) bear a
close resemblance to the relations

qsP» P»qs =—sos» (6a)

(7b)

K„&')= 48„+—e(p„a 2p&)—„8„), (7c)

D& ) =i(2+epoch„), (Td)

where e is a real number with the properties 0~& &~& 1.
These operators have the commutation relations

Ã»&') lid"]=s(g».II.&') g"&—.&')) (Sa)

LE„&'),P„]= 2s(g„„D&')—eM „„), (Sb)

LD&'),P„]= seP„,

P)(~) g (~)]= se~ (~)

PD&'),M„,]=0,
Lg„(~) g„(~)]=0,

(Sc)

(Sd)

(Sf)

The rest of the commutators are the same as before. For
&=1 we have the Lie algebra of the conformal group
and for &=0 we get the algebra of quantum mechanics
q„p„P„q„=—sg„„, if—we define q„= (1/s) 8„.The opera-
tors E„&'& and D&'& are no longer Hermitian with respect
to the scalar product (4) if e(1.For a= 0 they are skew
Hermitian. This means that their eigenvalues turn from
real to imaginary if ~ goes from one to zero.

We wish to discuss this property in more detail in the
case of the operators E„&'&. We call their eigenvalues
1„&').The eigenfunctions e&'(P) are the solutions of the
equations

40.+e(P.& 2P"0—.~.)]e"(P)=I—o&')e&') (p),
p=o, j., 2, 3.

The ansatz
e&') (P) =e(/. P)

'4 F.. Inonu and K. P. signer, Proc, NatI, Acad. Sci. U. S. 39,
510 (1955); 40, 119 (1954).

qp» q»p =—M» . j k=1 2 3 (6b)

in quantum mechanics, we merely have to replace E„
by —q„and D by rs to get the relation (6a). In order to
describe this situation mathematically we employ the
notion of group contractions, 6rst analyzed by Sega12
and Inonu and Wigner. ' To this purpose we define the
operators

—we neglect the index e in the following —leads to the
ordinary diGerential equation

eye"+4e'+ e=0,

y= 1 p and e'= de/dy.

One can write the solution which is regular for y=o as
a series

e(y) =1—ay+ y' — -y'+ ",
2l4(4+») 3i4(4+e)(4+2e)

or as"

eb) =y ""~I:2(y/e)"'] ~= (4/e) —1,
where J, is the Bessel function of order v. For &=1 we
have

e '
(y) =y stsfs-g2

and for ~=0

e(o) (y) e s/4 1 (o—)— 4s

The new feature in the result of our contractions of
the conformal group is that we get a position operator
for time, too, in contrast to those position operators
considered in quantum mechanics and in connection
with the representations of the Lorentz group, ' where
one has only space position operators.

The mathematical reason for the possibility of such a
position operator for time is the independent integration
over po in Eq. (3).This can be seen in the following way:
As a consequence of the commutation relations (6a)
the operators p» and q» have a continuous spectrum. "
Because of the relation Lqo,po] = s, the same appli—es to
the operators po and qo, at least in the realization dis-
cussed above. If these operators are, therefore, con-
sidered independent from P», q», k = 1, 2, 3, then we need
an independent integration over po, too, in order to be
able to deGne qo.

Instead of integrating independently over Po, we can
integrate over stt'= p'. Since an irreducible representa-
tion of the Poincare group contains only one single mass
value, " it is clear that such a representation cannot
allow for a time position operator in the above sense.

We wish to emphasize, however, that the analogy
between po, qo and P», q» is not complete. The reason is
the condition Po)0. As a consequence of this the
operator qo is not hypermaximalts (self-adjoint) with
respect to the scalar product (4) but only maximal
(symmetric).

We shall discuss the physical implications of the
above results in the next section.

In order to obtain the "wave functions" of the

» Higher Transcendeeta/ PNNctioes, edited by A. Erdelyi,
(McGraw-Hill Book Company, Inc. , New York, 1955), Vol. II.
p. 13."J. von Neumann, 3lathomatscat Folmdatsons of Qgantstra
Mechassks (Princeton University Press, Princeton, New Jersey,
1955), Chap. II.

» E. P. Wigner, Ann. Math. 40, 149 (1959),
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operators q„ in x space, we have to evaluate the integral

d4peiy s

The details of the calculation are given in Appendix A
and the result is

d4p e'&'=4vr(x')-'

This function is singular on the light cone and vanishes
for fixed t and large r as r ' and for 6xed r and large
task 4.

Since the conformal group is a simple group of rank 3,
one can construct three independent invariant opera-
tors'8 which commute with all elements of the Lie
algebra of this group and which, therefore, are a multiple
of the unity operator in the case of irreducible repre-
sentations. Something similar holds in the case of the
more general algebra (Sa)—(Sf). For instance, the bi-
linear invariant is given by

J(c)—1&2~pv~ +1&(ppg (s)+~ (e)pp) D(e)2—4 g

Thus we have J&'~= —4, J(o&=4. Finally, we want to
discuss the finite transformations e'~~6" and e'~ . For
6(1, we write e'~1."&" and ei "~~ ).

In order that these operators be unitary for a=0, the
quantities c„(0) and n(0) have to be imaginary. In this
way the dilatations degenerate into a phase transforma-
tion in the limit e= 0.

III. PHYSICAL INTERPRETATION

We now wish to give a physical interpretation of the
mathematical structure described in the last section.

Whereas, the dilatations have a relatively simple
structure, the more complicated (and interesting) prob-
lems are connected with the special conformal group (2).
If we look at the Lie algebra (3a)—(Bi) we see that the
subalgebra of the Poincare group and the subalgebra of
the homogeneous Lorentz group and the special con-
formal group are isomorphic. This is a consequence of
the definition (2). If we have a unitary representation
of one of these subalgebras then we can obtain a
unitary representation of the other by the similarity
transformation S(R) which represents the transforma-
tion by reciprocal radii R. If the unitary representations
of the Poincare group were sufhcient to describe the
space-time properties of atomic systems, then we might
as well use the group which consists of the homogeneous
Lorentz group and the special conformal group (2), for
these two groups are isomorphic.

The essential difference between the quantities E'„
and E„is given by their behavior under dilatations, but
before we discuss this point, we wish to analyze the
isomorphy of the two groups considered in more detail.

V. Murai, Progr. Theoret. Phys. (Kyoto) 9, 147 (1953).

First, let us compare the eigenfunctions of the
operators P„and E„in coordinate space. For the trans-
lations they are the plane waves e'&', and because of
Eq. (2), the corresponding functions of the special
conformal group are'

g
—ih x/am

7 (9)

where h is a four-vector (ho,h). Since Bessel-Hagen"
was the first who considered the quantities h in connec-
tion with classical electrodynamics, we shall call them
"Bessel-Hagen momenta. "

In order to describe the motion of particles by plane
waves, we have to build wave packets. In the simplest
case such a packet is formed by a superposition of two
plane waves with momenta p„~bp„. The space-time
position y of the particle is then given by the condition
that the two phases of the waves e'&~'»' and e'&& '»'
are the same:

(p+'p) y= (p 'p) y—

From this it follows that

BPp
yi= yo &

8

and the group velocity s;= Bpo/Bp'is identihed with the
velocity of the particle.

Exactly the same procedure can be applied to the
functions (9), with the result

Bho
yi= yp, z=1 2 3.

ah'
(10)

Thus we can construct wave packets from the functions
(9) which describe motions of particles with a constant
velocity. This is in sharp contrast to the behavior of the
phases of those functions. The surfaces of a constant
phase A are given by

h x=Ax'.

This equation constitutes a quadratic relationship be-
tween space and time coordinates. We believe that the
difference between the Eqs. (10) and (11) provides the
answer to the question why the interpretation of the
special conformal group as one which describes systems
with constant acceleration ' "has not been very success-
ful. This interpretation is connected with the quadratic
relation (11).But we know from quantum mechanics
that the physically interesting quantity is the group
velocity, and that velocity has the same form for the
group (2) as for the translations. If one considers the
fact that the translations and the group (2) generate
the Lorentz group and the dilatations Lsee Eq. (3d)j, it
is indeed hard to understand why such accelerations
should account for the motions of constant velocity and
dilatations. Furthermore, the interpretation of ac-
celerated motions is suggested by taking the nonrela-

+ E. BesseI-Hagen, Math. Ann. 84, 258 (1921).
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tivistic limit. But, as we have pointed out several
times, "the extreme relativistic limit seems to be far
more interesting for physics.

The difference between Eqs. (10) and (11) corre-
sponds to the difference between group velocity and
phase velocity in the case of plane waves.

There is, nevertheless, a di6erence between the mani-
folds of the wave packets which can be constructed by
plane waves and the functions (9). An expansion of a
function fi(x) in terms of the former is given by

and has the inversion

f, (p) = d'x f, (x)e

In this case we integrate over the whole p space. The
corresponding expansion of a function f~(x) in terms of
the eigenfunctions (9) is

d'h f2(h)
g2

It follows immediately from the inversion formula for
the Fourier transform of fq(Rx) that

This means that the "h-transform" of fm(x) exists if the
Fourier transform of fm(Rx) exists. Thus the functions
fq(x) and fi(x) form two different classes with a non-
vanishing intersection, the properties of vrhich seem
to be of particular interest for the theories of quantized
fields. '

Because of the above considerations we abandon the
interpretation of the special conformal group as a system
of transformations describing constant accelerations and
adopt the interpretation given in Ref. j.. Because of the
relation

ds"=o-'(x)ds',

ds =dx"dx~ )
o'= 1—2e' x+6 x

which follows from Eq. (2), we have interpreted that
group as a generalized dilatation, the scale factor of
which is space and time dependent. There are, of course,
a number of geometrical questions connected with this
interpretation, too, but w'e defer them to a later analysis
because we have the impression that in the case of
the conformal group the more algebraic approach is
more promising than the purely geometrical one (see
Appendix 3).

Ke have a1ready mentioned that the essential diGer-
ence between the quantities E„and E„is their trans-

formation behavior under dilatations: The right-hand
sides of Eqs. (3g) and (3h) differ by their sign; the
momentum operators have the dimension of length —1,
the operators E„ the dimension +1. In other words,
because of the relation ED= —DE the transformation
of reciprocal radii assures that the eigenvalues of D are
symmetric in sign; if s is an eigenvalue of D, then —s is,
too. Since the eigenvalues of D describe the dimensions
of length of physical quantities, ' we can characterize the
transformation by reciprocal radii E. as the "inversion
of the dimension of length. "

The fundamental mathematical importance of the
transformation E can also be seen from the relation
(3d). It shows that all the operators M„„and D can be
constructed if the quantities I'„and K„are given. Be-
cause of the relation E„=EP„E,which follows from
Eq. (2), we can generate the whole algebra of the con-
formal group if the translations and the transformation
E. are given.

Let us return now to our special example of Sec. II.
Since that representation of the conformal group con-
tains a continuous set of masses it cannot describe a
single atomic particle in the same sense as the represen-
tations of the Poincare group do. This situation is dis-
cussed in detail in Ref. 7 and we can, therefore, confine
ourselves here to a few remarks. The dilatations (1) and
the generalized dilatations (2) do not allow for the dis-
continuous energy structure of the atomic world. tAre,

therefore, have to break this symmetry in some way in
order to take into account the quantized structure. How
this breaking might be done mathematically was de-
scribed in the last section; we now have to discuss its
physical meaning.

We define the Fourier transform f(x) of the functions
f(p) in coordinate space as

f(*)= d'P 4 (P)e'"'

The function f(x) transforms under dilatations as

and under the group (2) as f'(x')=o'(x) f(x). This can
be seen easily from the infinitesimal transformations

f'(x) = f(x) u(2+xI'8„)f(—x), [n/«1,
f'(x) = f(x) e&(4x„+2x„x"—8„x'8„)f(x), i—e„j«1.

The operator Dt''& of the last section obviously corre-
sponds to 2+ex"8„and the operators E„&' to 4x„
+~(2x„x"8„—x 8„).That part of these operators which
is multiplied by e comes from the transformation of the
coordinates, the rest of the transformation of the func-
tion. In the limit e=o only the latter remains.

Thus quantum theory is characterized by the fact
that the scale or gauge transformations of space-time
degenerate into a transformation of the functions with-
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out transforming their arguments. In this way the
dilatations degenerate into a phase transformation and
the special conformal group into position operators. The
quantum-mechanical framework usually considered ap-
pears if we also drop the time position operator. This
"dropping" is associated with a shrinking of the
"localized" wave functions; for jtf we co~~ne ourselves to
a single mass value, these functions fall o6' as e " for
large distances r, in contrast to the above power law M4.

Since the phase transformations in quantum me-
chanics are related to the conservation of charge, one
may ask whether the dilatations themselves have some-
thing to do with charge conservation, too. This seems
indeed to be the case. In an earlier paper6 we showed by
semiclassical arguments that in the case of a very fast
particle of charge 0.'~' in a Coulomb potential generated
by a charge Zo.'~' the quantity D has the expectation
value Zo,, where e is Sommerfeld's constant and Z an
integer.

These results shed some new light on %eyl's con-
jecture that charge conservation is connected with
gauge transformations in space-time. ' In view of the
success of the gauge transformation in quantum me-
chanics, Weyl revoked his earlier attempts to a large
extent. ' But we have seen that the geometrical picture
and the quantum mechanical picture are the two
opposite limits of the same structure and that they are
not so far apart as %eyl later thought.

In Ref. 7 we mentioned that a representation of the
conformal group with a continuous set of mass values
can be interpreted in the restricted ("passive'"p) sense
that it describes an isolated atomic particle of a certain
mass, the numerical value of which is arbitrary as long
as we have not Gxed the units of the macroscopic
measuring apparatus which determines the mass. In
this picture the discarding of the time position operator
occurs when the actual measurement of the numerical
value of the mass takes place.

All the above considerations show that one has to
incorporate the problems connected with the conformal

group into the theory of the quantum-mechanical
measuring process" in order to obtain a theory which
deals with all elements involved in such a process. Our
deliberations in this paper are merely a erst attempt at
analyzing this situation.
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dsp eio o

. dsp
dm m (y'+ms) —'~ es'& *=8(x).

no&o

Except for a constant factor the second integral is the
usual 6&+) function and its value is"

f(r) =~Ãp(mg(x')) —-', e(xp) Jp(mg(x')) for x'&0,
= ( 1/s—r)Ep(mg( x'))— for x +0

e(xp) = 1 for xp) 0
for xo&0.

(Jp=Bessei function, Zp ——Neumann function, Ep='
Hankel function of the 6rst kind for imaginary argu-
ments; all functions are of order zero. )

For the integration over m we use the following
relations" '4.

I'(s+si )
y"fp(e)dy=2"o " '-

I'(l —
W )

—1(Rep(-s', (A1)

I'(-'+-.'~)
y

"Are�(ay)

dy = 2& cotL:,'sr (1—ls) fats-&-'
I'(xs —sv)

—1(s«s, (A2)

p
y"Ep(ay)dy=2" 'a o 'I"

2

Re(p,+1))0. (A3)

The conditions given in Refs. 23 and 24 for the parameter
in Kqs. (A1) and (A2) are not fulfilled in our example.
But we can de6ne the left-hand sides by analytic con-
tinuation of the right-hand sides as functions of p, , if we
avoid the poles of the cotangent and the gamma
functions in the numerator. In Eq. (A2) the pole of the
cotangent for p=1 is compensated by the zero of

~N. N. Bogoliubov and D. V. Shirkov, Inkoducfiom, fo fke
Theory of Quaesised Fields (Interscience Publishers, Inc. , New
York, 1959), p. 148.

~ See Ref. 15, p. 49 and p. 51.
'4 Tables of laiegro/ Transforms, edited by A. Erdelyi (McGraw-

Hill Book Company, Inc. , New York, 1934l, Vol. II, p. W.

APPENDIX A

U we introduce the variable m= (ps)'i instead of pp,
we have
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I/I'( —', ——',p). Thus we get

dm mJ,(mg(x')) =0,

dm m%0(mg(x')) = (2/s)(*') ',

dm mEO(mg( —*'))= —(&') '
i

and therefore

dm m/(r) = (I/m) (x')-'.

After diGerentiation with respect to r, we finally have

F(x)=4s.(x')-'.

APPENDIX 3
The most detailed discussion of the interpretation of

the special conformal group in geometrical terms has
been given by Fulton et a/." These authors analyze
diferent examples and arrive at the conclusion that the
group (2) is nothing other than a special case of general
relativity, even if one considers it as a gauge trans-
formation in the sense of Weyl. We shall not give a
complete clarification here concerning the interpretation
of the conformal group as a generalized dilatation and
its relationship to general relativity, but we want to
point out that the situation is not as simple as the
above authors assume. Ke shall mention two points,
the second of which is the essential one.

The most interesting example of Fulton et uI,. is the
falling emitter (Sec. 4 of their paper).

In the case of their "conformal" interpretation the
authors employ Lorentz' equation of motion and
transform the rest mass, according to Schouten and
Haantjes, "contravariant to the proper time. This is a
mathematical possibility, but it is hard to understand
from a more physical point of view. As far as we know
from quantum mechanics and field theory, the four
momenta and, therefore, also the masses are nonlocal
quantities, explicitly shown, for instance, by Noether's
theorem, applied to translation invariance. It is, there-
fore, hard to understand if one transforms the mass as a
local quantity. In Ref. 7 we gave an example of how
the masses are transformed in an irreducible representa-

"J. A. Schouten and J. Haantjes, Koninkl. Wed. Akad.
%etenschap. Proc. 39, 1059 (1936).

tion of the conformal group without any reference to
the coordinate space.

One can illustrate the situation also in the following
way: The formal local transformation of a nonlocal
quantity has the consequence that no conservation law
exists, at least not in the usual sense, as one can see
from the Klein-Gordon equation with nonvanishing
rest mass.

Yet the main point is the following: The authors
start from a frame of reference, where the emitting
atom and the emitted light from a system with sharp
momenta which, as a consequence of translation in-
variance, obey the usual energy-momentum conserva-
tion law. Then they apply transformations of the group
(2), assume again sharp mornenta and, invoking trans-
lation invariance, the conservation of these momenta,
and consequently draw their conclusions.

We believe that these last assumptions are not justi-
fied. The reasons can be seen from the commutation
relations (3d). Let us consider a linear manifold of
states )p) with sharp momenta p„which are trans-
formed by the generators E„of the special conformal
group. It follows from Eq. (3d) that the states E„~p)
are not longer eigenstates of the translation operators
P„. Furthermore, these states do not even form an
invariant manifold under the combined groups of trans-
lations and special conformal transformations, for these
two groups combined do not form a group. To obtain
a group, one has to include the Lorentz transformations
and the dilatations. Thus the situation with respect to
translation invariance of Lorentz' equation is quite
diferent before and after the transformations E„.Be-
fore these transformations are applied, that equation. is
invariant under translations and Lorentz transforma-
tions separately, but afterwards, it is invariant sepa-
rately under special conformal and Lorentz transfor-
mation, not under translations. The latter invariance
can be guaranteed in this last case only by considering
the whole 1.5-parameter conformal group.

The situation becomes a bit clearer if we recall our
results of Sec. II: in a conformal invariant theory the
momenta p„and the Bessel-Hagen momenta h„are
mathematically on the same footing. This is in sharp
contrast to our physical knowledge of them. We shall
probably learn more about the physical meaning of the
Bessel-Hagen momenta in the future. It may be that
their physical importance is small in comparison to that
of the momenta, but at least they should not be
ignored. The corresponding equation to Lorentz' equa-
tion of motion for the momenta is an equation of motion
for the Bessel-Hagen momenta, not the former equation
in which the mass is transformed like a local q~santity.


