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A perturbation theory of the ionization of atoms by simultaneous absorption of several photons, each of
whose energy is less than the ionization potential, is developed from the evolution-operator formalism. A
precise computation is made for the hydrogen atom, giving transition rates as a function of photon energy
fol' two- tllrollgll 'twelve-plIO'tolI pllotolojllsatloll. Tile eighth-order 10111sa'tion I'a'tc (III cgs units) a't thc
1.78-eV ruby-laser line is found to be 10~~X (photon Aux)8 and should be observable using available
techniques. Good agreement is obtained with Zemik's exact calcualtion of the two-photon ionization rate of
metastable 2S hydrogen. Approximate calculations are made for the rare gases. Assuming "typical" experi-
mental conditions of a gas density of ~10'0 atoms cm ' and a ruby laser focused into a volume of.~10 ~

cm', we Gnd that the Qux required to liberate one electron during a 10-nsec pulse is ~10~ cm ~ sec ' for
Xe, Kr, and Ar and 5&1030photons cm~ sec ' for Ne and He. These gases ionize with the simultaneous
absorption of '7, 8, 9, 13, and 14 photons, respectively. The predicted rate for Xe is found to be in excellent
agreement arith the recent direct measurements of Voronov and Delone. Ke conclude that multiphoton
ionization provides the initial electrons required for the optical breakdown of gases, though it does not ac-
count for the over-all growth of the discharge except possibly at very low pressures. Impurity atoms (par-
ticularly heavy rare gases) may be the source of "initiating" electrons in Ne and He.

I. INTRODUCTION

HE breakdown of various gases in the focal region
of a Q-switched laser has been reported by several

workers. ' ' The growth of optical discharges in rare
gases seems to be quite well accounted for by inverse-
bremsstrahlung theory which gives results very close
to those obtained through the ad hoc use of the classical
theory of microwave breakdown. ' The cascading ioniza-
tion is found to take place through the agency of "free"
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electrons absorbing energy from the 6eld while in the
neighborhood of gas atoms. There thus remains the
query, "Whence the initial electron(s) which trigger
the breakdowns" %e assert that they are provided by
direct multiphoton ionization of neutral gas atoms,
cautlonlngq howevers that ln sonle instances the lonlza"
tion of impurity atoms present in minute concentra-
tions may play a dominant role.

The advent of the laser has led to abundant experi-
mental veri6cation™ of Goeppert-Mayers' theory"
of the simultaneous absorption of two photons by an
atomic system. This new experimental capability has in
turn motivated application of the theory to a variety of
speci6c systems. " '~ In particular, Zernik'6 has per-

' W. Kaiser and C. G. Garrett, Phys. Rev. Letters 7, 229 (1.961).
I. D. Abella, Phys. Rev. Letters 9, 453 (1962).
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formed an exact calculation of the two-photon ioniza-
tion rate of metastable 2S hydrogen atoms and
Geltman'~ has made an estimate of the two-photon
photodetachment of negative halide ions. The latter is
in quite reasonable agreement with the measurements of
Hall, Robinson, and Branscomb. "The present authors
have extended the perturbation-theory treatment to
the computation of 2V-photon photo-ionization rates for
rare-gas atoms, using rather crude approximate wave
functions and matrix elements. "Keldysh has written a
semiclassical theory of multiphoton ionization. " He
extends Oppenheimer's" perturbation theory of tunnel-
ing in static fields to the optical-frequency regime.
Voronov and Delone have measured the rate of ioniza-
tion of Xe atoms by ruby-laser light. "Their results are
in good agreement with our calculation's prediction for
this seven-photon process.

In this paper we carry out a precise, detailed calcula-
tion of the 1V-photon ionization rate of atomic hydrogen
for N= 2 to 12. (N= 8 for the ruby laser. ) The general
features of and insights gained from this calculation are
then applied to the rare gases Xe, Kr, Ar, Ne, and He,
whose ionizations require 7, 8, 9, 13, and 14 ruby laser
photons, respectively. All rates calculated are high
enough to be measured using presently available lasers. "
The rare-gas results indicate that direct multiphoton
ionization provides the initiating electron(s) for the
observed optical breakdown of Xe, Kr, and Ar, while
it seems likely that very small traces of impurities,
particularly heavier rare gases, furnish the first elec-
trons in Ne and He.

Section II presents the formal theory of multiphoton
ionization. The evolution operator technique is used to
treat the interaction of the quantized Geld with the
atomic system. Expressions are developed for the lowest
order contributions to transitions involving absorption
of E photons. Explicit formulas for multiphoton ioniza-
tion are then written. These results are applied to a pre-
cise perturbation calculation of the multiphoton ioniza-
tion rate of hydrogen in Sec. III. Coulomb final states
are used and summations over intermediate states are
carefully performed. Section IV contains a much more
approximate computation of transition rates and
"initiation" Quxes for the rare gases Xe, Kr, Ar, Ne, He.
The calculation is based on a "hydrogenic" model. Re-
sults are discussed in Sec. V. Comparison to observed
cross sections is made. The relationship of multiphoton
ionization to optical breakdown in the rare gases is con-

"J.L. Hall, E.J. Robinson, and L. M. Branscomb, Phys. Rev.
Letters 14, 1013 (1965).
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Pis'ma Red. 1, 66 i1965l LEnglish transL: Soviet Phys. —JETP
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.
"Multiple-photon ionization experiments can probably be

most effectively performed using atomic-beam techniques similar
to those reported in Ref. 18.

sidered. The role of the mode structure of the exciting
laser beam on the interpretation of experimental data
is also brieQy examined. Appendix A derives selection
rules for multiphoton transitions in the hydrogen atom.
Appendix 8 presents the details of the calculation of
the hydrogen "average energy denominators" which
appear in high-order matrix elements.

II. FORMAL THEORY

1. Perturbation Expansion

Power and Zienau'4 have shown that the Hamiltonian
for a bound electron interacting with a radiation field
can be written

where

and

H= Ho+Hi,

Hr= e8(r, t—) r

Ho= H,+H„

(1a)

(1b)

(1c)

H.=p'/2nt+ U(r)

H, =(1/&~)
I
&I'+ l3'I'dU=P rti&tsi. (1e)

In Eqs. (1), 8(r,t) is the transverse part of the electric
field. (The Coulomb gauge has been assumed. ) The
second equality of (1e) presupposes quantization of
the radiation Geld; qq denotes the number operator for
mode X.

The use of the quantum-electrodynamic formalism is
convenient (though not necessary) for considering
optical maser sources. Following Heitler" (whose nota-
tion we adopt) we define the electric field operator in
terms of annihilation and creation operators, q), and q), ~,

&= (i/e) Q~(~),qd4 —~iqdAx'),
where

A), = (4me')'I'e""'s.

The "ladder" operators are deGned by

(2a)

(2b)

q& In&) = L(h/2coi)n~ 3'"
I
ni —1), (3a)

q~t
I ni) = [(h/2toi) (ni+1)j"'lnq+1) . (3b)

The state Ini) of the radiation field is specified by the
photon occupation number, e),. The complete radiation
Geld is described by specifying the entire set of occupa-
tion numbers over all modes, Ini, ns, .,ni„. ). These
states are the eigenstates of H, (or the number operator),

H, =Z), ni, tgoi~= Z~ L(2~&/&)qitq~g&~~. (4)

In (4), the number operator is implicitly defined in
terms of the "ladder" operators.

~ E. A. Power and S. Zienau, Phil. Trans. Roy. Soc. (London)
A251, 427 (1959);Nuovo Cimento 6, 7 (1957)."W. Heitler, The Quuntlm Theory of Rudiatiors (Oxford
University Press, London, 1954).
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We develop the theory of multiple-photon absorption
by direct application of time-dependent perturbation
theory using the concept of evolution operators. Since
evolution operators are only occasionally used in atomic
or solid-state physics, we give a brief resume of their
properties. "Within the interaction representation, the
time evolution of the system arises solely from the inter-
action part of the Hamiltonian. Suppose that at time
t'=0, the system is in one of the eigenstates

I g) of the
unperturbed Hamiltonian, JI0. Then after time $, the
state of the system is liP(t)&. We postulate that there
exists an (evolution) operator Uz(t) such that lit(t)&
= Uz(t)

I g). The probability amplitude tz„ that the sys-
tem is in some other eigenstate of Ho, say

I zs), is clearly
given by the projection of lit(t)) on to IN),

f.=&~It(t)&=&~IUz(t) lg)

If Itt (t)) is represented in terms of the complete set of
orthonormal eigenstates of H0, then b„, is just one of the
expansion coe%cients of

lit(t)&=K- f-(t) lm&

Thus, by definition, the probability that the system has
undergone a transition from

I g) to
I e& in time t is

~-,o(t)= l&~IUI(t)lg&l'= lb. f' (5)

and the transition probability per unit time is

Iz, ,= (c/ct) w„,,(t) .
Since the evolution operator satisfies Schrodinger's

equation, we may write

U,(t) =1+(itz)-' III'(t') Uz(t')Ct'

which is just the integral form for Schrodinger s equa-
'tioll (111 tile ill tel actloIl 1cplcsentatloll) wltll Hi (t)
given by

I(t) —ezzzottsH e rzzoois—

By successively substituting the right-hand side of this
expression back in for Uz(t'), we arrive at

where

Uzi "I(t)= (its)-" Ct„ ct181'(t„)81'(t. 1) Hz'(ti)

(7b)

=(ih) " C"t Hz'(t„)81'(t„ 1). III'(ti).

To calculate the IVth-order contribution to the transition rate between, say the ground state Ig) and some final
state

I f), we must determine the matrix element of Uzi~&(t). From the definition of Uzi~'(t) given by Eq. (7b),.
we have

(fl Uz&zzi(t) Ig)=(ih) zz CNt&f IHI( ts) tHz( t'ai) Hz'(ts)HI'(tr) lg)

=(it) " c"t 2 2 ."2Z&flHI'(t~) lm~-I)

x&ms IIHz (ts 1) lmiv s) &mslHI'(ts) lmi)(m, lHI (t,) Ig). (g)

The sums over the es, are extended over the complete set of states of H0, discrete plus continuum. Next we integrate
over time. To eliminate rapidly oscillating terms, the lower limits on the intermediate integrals are taken as
t' ~~."The lower limit on the anal integral is taken at 1=0 to ensure the final state was not occupied before the
perturbation was turned on. Thus&

&m~ IIHzlm~ s) (m~-slHzlm~ s& &milH. lg)
zlzz, o'"'= Z E Z Z&fIHzlm~-I& x x x

m2 ts] +my 1,g m1, g

oo For an extensive treatment, see A. Messiah, Qlarotgno 3fcchunocs (John Wiley liz Sons, Inc. , New York, 1962), Vols.I R II."See Ref. 25, p. 140.
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The frequencies appearing in Eqs. (9) are de6ned in the
usual manner, toi I= (Ei—EI}/ft, where Ei and Ei are
the eigenenergies of the unperturbed Hamiltonian Ho,.
these energies include both radiation Geld and the atomic
energies.

So far the formulas derived are quite general and
applicable to a large class of multiple-photon effects. %e
now specify that we are concerned with S-photon
photoionization. Obviously, the lowest order contribu-
tion to photoionization cannot involve the creation of
photons. Therefore, the only part of the Geld operator
E that requires consideration is

wllC1'C ENI ~& 1S glvell by Eq {13)RIid

f(~t.,t)= I(e'"' " 1-)/~r..l'
%e have neglected the depletion of the photon Geld in
the last line of Eq. (14). This is reasonable for optical-
maser sources since the occupation number is of the
order of Io'0.

It is convenient to replace I by F/c where F (No.
photons cm ' sec—') is the photon Aux. Further, since
we are interested in times long compared to 1/&ef, , we
replace f(cc,t) by its asymptotic value, 2irth(&d) The.n,
the transition rate per atom can be written

g = (i/c) pi I0),qiA)„

where qi is the annihilation operator defined in Eq. ( )
Rlld Ay ls given by Eq. (2b). For simplicity of notation
we consider a radiation Geld containing only one mode
of frequency ~ and occupation number e. Kith these
considerations, we take the interaction Hamiltonian,
Bg, as

where n is the fine structure constant, e'/hc. Equation
(15) is useful for considering transitions between two

discrete atomic states.
%hen the transitions are to the continuum, one must,

treat a group of neighboring states within a small energy
range dcf, , rather than a single state. From Eq. (15) we

have, upon integration over ct,, Lincorporating the
Rppl'opllR'tc density of states~ p(er, g)j,

&I=—ea r=(—te/c)arqA r= —teE(4ir)'t'&og. (11)

The new quantity R(=e'"'e r) operates only on atomic
states.

The matrix elements of Hl can immediately be evalu-
ated. I.et the state Ig& be denoted Ia„it), where u,
speciGes the atomic quantum numbers and I speciGes

occupation number of the Geld. Similarly the states

lm„) are represented by Iu, ; e'). Using the de6nition

(3a) for the annihilation operator q and recalling that
for each successive matrix element the radiation Geld is
depleted by one photon, the Eth order matrix element

Mr, ,& ' defined by Eq. (9b), becomes

wf, gt~i = 2irh(2It nba) ~
I E.~ ., '"I

I 'p(0) .

The density of Gnal states, p, depends on the nor-

malization of the continuum-state functions. " In this

work the continuum-state wave functions are nor-

malized so that p(k) = (2ir) '. Then, the density of states
with respect to energy becomes

(m/tt')k
p(e) = dQI„

(2s)'

(d/dt) Wt, g &N'{t)=27r(2~nFco) ~

3a x I&.I ., '"'I'&(~r. u) (15)

M, ,,&"I=
I
—te(2~m)'i'] (L~—y —1)j

X LN —(Ã—2)]X .X Lit —1jLe])"'E &"I (12)

where

&.f, ,' '= Z Z" EZ(orl~l~~-I&

In (13) we have separated the frequencies appearing in

the denominator of Eq. (9b) into the atomic and 6eld

frequencies,

& i,u=& i
—~a= L&.i+(I—1)&3—L~,—&~j

=ag, ag

Putting the results into Eq. (5) gives

where k is the wave number of the electron and the

energy is deGned by

et, g= el—St'tie+ t'I'k'/2m=0.

~1 is the ionization energy of the atom, A~ is the photon

energy, and the last term is the kinetic energy of the
electron. Substituting the density of states into (16)
gives

m/i'I

wf, s'NI(el''I) = (27r&F~)" I K~I, ~
'" I'k (17)

(2')'

Here, wf, ,i~i (ei,pi;) denotes tile "differential" transition

rate corresponding to the probability for emission of an

electron in the direction (eq,pi, ) within the solid angle

dQ~. The total transition rate per atom is

&f,.'"'(t) = l(fl U'""'(t) lg&l'
=tt '~f(cu t)IMr
=L2~(e'/a)~ej f(~,,„t)IZ. ..I, (14)

dfl~iet '"'(&i A).

~8 See Ref. 26, Pol. I, p. 170.

(18}
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Equation (17) is the central result of this section. The
integral over dQI, cannot be performed until the 6nal-
state wave function has been more fully speci6ed.

The Eth-order contribution to the perturbation ex-
pansion for the transition rate can be written in the
form

wy, ,(»=const(0. 85X10 "Fhor) ~I E,~ „I
'k,

where h~ is the laser photon energy measured in elec-
tron volts, the number in the bracket is just a combina-
tion of natural constants, and other symbols are as pre-
viously defined. The convenience of the expansion Rnd
the adequacy of keeping only the lowest nonvanishing
term follows from the quantity in parentheses. The
IC.~.,("& (with matrix elements in atomic units and
energy denominators in electron volt) vary but slowly
with E. Hence, conservatively speaking, the present
perturbation treatment should suKce for Quxes & j.033,

higher order contributions being negligible. However,
for very strong intermediate resonances saturation of
the intermediate state may place a lower limit on the
validity of perturbation theory. ' The typical Quxes en-
countered in breakdown experiments are F j.029—10"
photons cm—' sec '.

2. Damying and Level Shifts

A rigorous treatment of damping and level shifts is
de.cult even for "one-photon" problems and is an un-
explored area in multiple-photon effects. Although de-
tailed discussion is beyond the scope of the present
paper a phenomenological damping term can be put into
the theory following Weisskopf and Wigner. " They
assume initial- Rnd filial-stRte wave functions with tlQle
dependence

I p (]))—s (agr y~r/s
I
a)— —

The principal consequence is an addition of a —,iy to
every energy denominator appearing in our equations,
where y is the combined width of initial and 6nal states.

Detailed treatment reveals a complex, Aux-dependent
damping parameter y'+iy" causing both a shift" and
broadening" of the resonance hnes. %&th the photon
cruxes available from optical maser sources, the shift
of lines and even the ionization edge may sometimes be
significant. (Order of magnitude estimates place the
shifts in the tantalizing region of 0.1 eV.) We reserve
further discussions of damping. Henceforth, we shall
include it in our energy denominators when it is im-
portant and omit it otherwise. This slight looseness in
usage should cause no confusion.

3. Notation

Because of the complexity of the Ãth-order matrix
elements it is convenient to develop an abbreviated

~ V. F. %eisskopf and E. P. %'igner, Z. Physik 63, 54 {1930);
65, 18 {i.930).

sr M. Misushimar Phys. Rev. 133, A414 (1964).

(20)

The Xth-order matrix element, (13), is now written in
terms of the A th-order transition operator,

(»= (a& I
r(»

I a,). (21)

If we wish to separate out the (N—1)th order, we write

(»—(arI T' rN 1I a )-
(a~ I

~
I a~-~)=Z

~~ ' (~~re-r, ~rr (+ 1)or+&'y/2)

X(a&—&Ir" 'Ia, ). (22)

Only the portion of the matrix element of interest need
be explicitly displayed.

4. Evaluation of Nth-Order Matrix Elements

The chief difhculty in calculating the transition
probability for Ã-photon ionization is the evaluation of
the .Vth-order matrix element E z,,,(~). Perhaps its
most conspicuous feature is the appearance of many
infinite summations over electronic eigenstates. The
energy denominators associated with these summations
over intermediate states can, under fortuitous cir-
cumstances, become small. If, say in vth order, &co is
nearly equal to one of the atomic energies, then that
atomic state will make the dominant contribution to the
sum. "These "near resonances" are the key to making
approximate calculations of the matrix elements. The
"near resonances" also cause a characteristic dispersion
in the transition probability as a function of the photon
energy.

For simplicity of notation, we immediately make the
dipole approximation and assume the radiation field is
polarized in the s direction, then,

8=ee'r~. r= q.

Kith this simpli6cation the )7th-order matrix element
(13) is given by

&.g.,("'= Z Z "Z Z(arlsla~-i)
ag-I apl-g ae a1

~iV-1 ~ ~N—2

X
(~. .,N(& 1)~+i—v/2)—

CN 2 8 C~ 3

X X 0 ~

(~.N s .,—(-&—2)~+is/2)
812'8X, (24)

( II.)
(or, —or+i'y/2)

notation. We associate R transition operator T, with
eRch sum over stRtes:

E
I a.)(a, I

T„=Q 4

N. (or.„, r—or+i'/2)

We also de6ne ~ as
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HYDROGEN
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FIG. 1. Relevant portion of the hydrogen spectrum. All energies
are in electron volts. Integral multiples of the ruby-laser photon
energy (1.785 eV) are also indicated.

(N)—
N-1

&+Is I
~.&

(25)

II [~(v)—v~+zp/2]
v =1

The equal sign is retained in (25) since there must exist
some set of frequencies co(v) such that the two matrix
elements are equal. No approximations are yet involved.
In fact, a little algebra reveals that the "average" fre-
quencies are defined (neglecting damping) by,

(mls" "lo &&~.ls" l~.& (vis"l~.&

6) V VCO(&o,„,„ural)— (26)

where the "sums" extend over complete sets of atomic
eigenstates, l a„).

We eliminate the "sums" by using an "average"
frequency, "co(v), independent of the state, to replace
the atomic frequencies co „,, Then, the numerator of

Eq. (24) can be "collapsed" to give

ay

&vis" "l~ &(~ ls" l~.&

N —1

(co,„,, vo&+i—y/2) II [~„(ii) ii&e+—iy/2]
p, =i
p, +v

N —1

II (~ —
i ~+ 4/2)

p, =1
p Qv

"l~ &(~ ls" I~.&

, (29)
(&v. .. uu+i—p/2)

where we have added the subscript v to the average fre-

quency ~„(p) to remind us that its value depends on the
states g„. Unless v =N —1, two equations are required to
define co„(ii), one for p) v and one for p(v:

(26) and (27) and calculating a single matrix element.
Of course, a straightforward evaluation of or„still in-
volves an infinite sum (see Appendix 8). From a purely
formal point of view, the number of matrix elements to
be evaluated has been greatly reduced and we have
therefore made progress. In addition the occurrence of
"near resonances" can be used to simplify the
calculations.

The electronic spectrum of atomic hydrogen is shown
in Fig. 1. Integral multiples of the photon energy of a
ruby laser (1.785 eV) measured from the ground state
are also indicated. It will be seen that the v=4 state of
hydrogen falls within 0.25 eV of being seven photon
energies above the ground state. Owing to this "near
resonance, " we expect the x=4 state to make a domi-
nant contribution to the sum over states. To make use
of such coincidences, we avoid "collapsing" the matrix
element on the sum containing the near resonance. If,
the near resonance occurs in only one order, say v, we
take the matrix element (24) to be

+af, ag
(N)

This result is obtained by defining &u(p) in each succes-
sive order p by equating the right-hand sides of (24)
and (25).

Additional reduction of Eq. (25) is possible by assum-

ing there exists a single "average" frequency for the
virtual states, co„ independent of the order, v. The new
"average" frequency is

N—1

and

p, gv

a, s" p gp apery ag gvs" ag
(31)

(~.„.,—~~) L~.( )—~~]

g 3 " a a 3" a a
(30)

(~.„,.„—~~) l:~.(~)—~~]
p)v

v=1
~ v —v(g = cov

v=1
(27) The final average co. is defined in analogy with Eq. (27),

~ ~

N —1

The Ãth-order matrix element then becomes II l:~.(i )—1~]= II (~.—~~) (32)
Jtt =1
p, gv

p=i
p, +v

(N)—
af, ag

N —1

II (~.—v~+2 is)
v=1

(28)

In this form the problem of evaluating an Nth-order
matrix element is reduced to determining an "average
frequency, " which in principle is well dined by Eqs.

The extension to additional "near resonances" is
obvious. "

Strictly speaking, co. depends on the state a„as well

as af, a, and the photon energy and finally the order N,
of the matrix element. Thus co„must in principle be
evaluated for each term of the indicated summation in
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Fq. (29). What we hope, and indeed find, is that fo.
does not depend strongly on the parameters and can
therefore, to a good approximation, be replaced by some
fixed value. Direct computations for hydrogen, which
are outlined in Appendix 8, sct this value near the
6rst excited level which possesses nonvanishing ma-
trix elements coupling to the ground state, i.e., for H,
~2„,~,= 10.2 CV. For more complicated atomic systems,
we cannot perform the direct computations required to
define eu„' hcncc, wc simply choose co, as thc 6rst cxclta-
tion level in analogy with hydrogen. This choice of e„
diQ'crs from the value assumed by Gold and Bebb; in
that work ~, was taken as the ionization energy. Conse-
quently, the absorption cross sections reported there are
somewhat too small. For continuous Anal states the sum
over the intermediate states Ia„& contains the matrix
element &abls -"-~la„&, where Iaf& and Iu„& are both
in the continuum; an integration over Ia„& must then
be performed. This difhculty is not encountered in prac-
tlcc, howcvcI', slncc thc dcnsc sct of stRtcs foI' v=E—I
generally contains important "near resonances. "

III. HYDROGEN

In this section we turn our attention to detailed cal-
culRtloDs of E-photon lonlzRtlon of atonllc hydlogcn.
Since the hydrogenic wave functions are weH known, we
expected that rather accurate computations can be per-
formed. The development of realistic computational
procedures is emphasized. While the techniques em-
ployed are not exact (in the sense of Zernik's treatment"
of two-photon photoionization of 25-metastable atomic
hydrogen), they are quite precise. Careful computations
serve a twofold purpose: first, atomic hydrogen is of
interest in its own right and experiments though difIicult
may be feasible using atomic-beam techniques. Second,
the results of the calculations for atomic hydrogen aid
the establishment of reasonable approximations for
DloI'c COIDpllcR ted RtoIDs.

1. Nth-Order Transition Rate for Hydrogen

%C now evaluate the Eth-order matrix element dc-
6ned in Eq. (24) for hydrogen. The positive energy
continuum stRtcs RI'c formed fI'onl clgcnsolutlons coIQ-
mon to &„ Ill ', and /, where H, is the Hamiltonian of
the unperturbed atom and 1 is the angular-momentum
operator. These wave functions will be denoted lk, l,m&.
The hydrogenic final state is given by the partial-wave
CXPRDS1OD

Iag&= lit)=4s P g i'e' 8('(ykr)
l=o m=l

X 1'i"(0,4)1'i"'(~a,q4) (33)

=4s. Q P i'e' lk im)V '(8 y )

I k,l,m& =Rg'(y, kr) 7'g"(tI,p),
R(e(y, kr) =E('(y)(2kr)'

Xe
'""iv(i+1+i'll

2l+2I2ikr), (34c)

~'~'(V) =
I
1'(1+1—iv) I

e ""l(2~+1)i,
Rnd 6nallyq

r) g
——argI'{1+1—iy) . (34d)

These wave functions have been treated at length by
several authors. "

Using the partial-wave expansion (33), the iVth-
order matrix element becomes

co

(kl relay)=47r Q Q i'e'"'V)"(81„&I,)

X&k,l,mlr" lm„i„m,), (3S)

where In„l„m,& denotes a "hydrogenic" ground state
Since we have chosen our coordinates such that 7~ de-
pends only on s (not x or y), m=m, in the final state,

I k, l,m, ).With this simpli6cation the absolute magnitude
of the matrix element squared is given by

=(4~)' Z 2 ( )i" —'"'( )i'-'e" '1"-(f),y )
5-0 l'-0

X 1'v"*(ex&I)(rl„l,
I
rN

I k, P&(k,l I
r"

I e„l,). (36)

Thc IQRgnctlc quRntum Dumber fÃ hRS bccD supplcsscd
in Eq. (36). Since we are interested in the total ioniza-
tion rate, we integrate (36) over all angles assumed by
k, i.e., over dQI, . Using the orthogonality relations for
the spherical harmonics, I'~ {HI„pl,), we 6nd

d()~l&lrlr"IN. ,4) I'=(4~)' Z I &k,ilr" I~„4)I' (»)

FoI' convcDlcncc wc dc6nc

l(kl "l~.4&l'= «el&1 lr" I~.,4&l' (»)

This "integrated" matrix element depends on the wave
number k while the "old" matrix element depends on
the wave vector k

The total transition rate can now be written from
Eqs. (17) and (18)

m/k
wr, g&"&= -- (2seFce)"

I &kl r" I ng)le) I'k. (39)
(2s.)'

Gordon, Z. Physik 48, j,80 (j.928); Ann. Physik 2,
1013 (1929); A. Sommerfeld aud G. Schur, ibid 4, 409 (1930).;N. F. Mott and H. 8. %.Massey, The Theory of Atomk Collisions
(Oxford University Press, ¹wYork, 1952); and H. A. Bethe and
E. Salpeter, Quavers Theory of Ole end Two Eleckrorl, Atoms
(Academic Press Inc., ¹vrYork, 1957). For a morc recent and
complete account, see Ref. .26.
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PIG. 2. Dkspex'sion fox' the 12-
photon ionization rate of hydrogen.
This is reproduced directly from the
digital plotter output as are the subse-
quent dispersion curves. The dispersion
curves are cut o6 near the resonant
energies for l&(co~'. ~e +co) l(~(~)/200&
vrhere A(tuu} is the range of photon
energies spanned in the f}gure. To 6nd
the transition rate at resonance appropri-
ate to a vridth y multiply the maximum
value of rsr, ~&N&/FN (indicated by
the break at each resonance) by
Lya(M)/Sorer. This gives the value of
ter, r&~&/F~ as the resonant denominator
L(~...,.—v~)'+p'/4j goes to Lp'/&1.
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FIG. 3. Dispersion for |1-photon
ionization rate. The large peak as
@a=1.275 eV is due to simultaneout
resonances in eighth and tenth orders.
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The (S—1)th order will always be treated as a near
resonant state. Using the selection rule hi=+I for
dipole matrix elements, the Sth-order matrix element
in (39) can be written to display the near resonance

&&&&llrs' 'I" l ) +Iterminl —1I' (40)

typically falls in a spectral region where the states are
relatively dense (see Fig. 1), it is reasonable to expect a
near resonance for at least one of the values of I (or per-
haps several values of e). Hence, only a small number of
states together ma, k.e the dominant contribution to the
sum over n, and. we can approximate (40) by taking
only those states with energies near (E—1)hco. Since,
on the other hand, the states may be closely spaced,
ku, „,—(E—1)hco can of course be small over a large
range of m. However, it is well known'2 that matrix
elements of the form (N, ll s"

I
rs', l') decrease rapidly with

increasing e (for n &rr') so that the number of signi6cant
terms in the sum over ~ is still limited to about ten for
each allowed value of /. In many cases, only one term is
needed to obtain a good approximation.

where the values assumed by / are determined by the
nonvanishing contributions of &e,l I

rN 'I eg, ls). For
convenience the sum over l is referenced to the (N—1)th
intermediate state.

Formally, the sum over the principal quantum num-

ber e spans the complete set of electronic states, dis-
crete plus continuum. However, because (E—1)ro

2. Computational Formulas for Nth-Order
Hydrogenic Matrix Elements

The calculation of Ãth-order matrix elements breaks
naturally into two parts; (1) The evaluation of the
bound-bound matrix elements (n, lI rl'I n„l,) appearing

"H. A. Bethe and K. Salpeter, QNuntum Theory of One end Two
L7ectron Atoms I,'Academic Press Inc., Neer York, 1957).
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I'ro. 6. Dispersion for eight-photon
ionization rate. The resonant transi-
tion rate at jku =1.82 eV (appropriate
to a Iinewidth y/2 =10 6 eP) is
indicated. See caption of Fig. 2.
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Pro. 7. Dispersion for seven-photon
ionization rate.
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The average frequency 0, though riot easily calculated,
can be reasonably estimated. The term involving 0 rep-
resents a sum over the discrete states near the ioniza-
tion edge together with the continuum states; Q is the
average frequency appropriate to these states. The
dominant contribution from the continuum states occurs
in a region i-3 eV above thc ionization edge. Thc
energies of the discrete states are near 4oI. Hence, we
expect AQ to be near koI.

Choosing 0= i.2~1 gives good agreement with
ZernikV' results for 25—H (second-order photo-
ionization) and ensures that [0—(X—1)co] will not be-
come small introducing an artificial resonance behavior.
The results are not critically dependent on the choice
of 0 since the term involved normally represents only
a small contribution to the matrix clement.

3. Humerica1 Results

A FORTRAN computer program was written to evalu-

ate the Ãth-transition rate. The main program computes
the Eth-order matrix element (42) (using several sub-
routines to calculate the various radial and angular
integrals) and then calculates the transition rate from

Kq. (39). The ground-state and intermediate-state
quantum numbers and energies, the order E, the num-
ber of orders containing near resonances, and the aver-
age energies Ak, and AQ are supplied as input. The out-
put from the IBM 7074, m f,,&~' and ~, is written on
magnetic tape which is used as input to a Calcomp
digital plotter. The digital plotter draws the transition
rate as a function of photon energy. The dispersion
curves reproduced in this work are taken directly from
the digital plotter output [the label W/(Ii~) on the
ordinate should be read as uy, ,&~&/F~j.

The Eth-order photoionization transition rates in
hydrogen have been calculated for photon energies
ranging from i.i4 to 13.4 eV corresponding to thc
simultaneous absorption of from twelve photons to
two photons, respectively. The results are given in Figs.
2 through i3. The figures are ordered with increasing
photon energy starting at 1.14 eV (%=12). The reso-
nance states and the order v of the intermediate reso-
nances are indicated, i.e., the resonance in Fig. 2 denoted
by I = i i and, I=4 corresponds to a small energy de-
nominator h(&a4, &

—11~). The states explicitly summed
over in each order s are shown in thc inset with the rc-
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FIG. 8. Dispersion for six-photon
ionization rate. The large peak near
2.55 eV arises from resonances occur-
ring simultaneously in fourth and Gfth
orders. Note that the second harmonic
of the neodymium 1.06 line falls near
2.34 eV.
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maining states being incorporated through the agency
of the average energy AQ=1.2k'~. The lower order
sums not involving near resonances are approximated
by "collapsing" over the average energy 10.2 eV [see
Eq. (42)j.

Atomic hydrogen ionizes with the absorption of
eight ruby quanta (1.785 eV). The dispersion for the
8th order transition rate is given in Fig. 6. It will be
seen that seven ruby photon energies fall between the
n=3 and n=4 atomic levels. Increasing the photon
energy to 1.82 eV makes 7Aco resonant with the n=4
state. We have indicated the corresponding transition
rate (wr, ,&~'=2.5)&10 "'E' sec-'/atom) appropriate
to a linewidth of —,'y = 10 ' eV.

The dispersion curves show several interesting "co-
incidences. "Referring to Fig. 2, we note that near reso-
nances occur in two separate orders, v=11 and 10, at
nearly the same photon energy, Puo=1.21 eV. In
fact, the n=3 state is a near resonant state for the
complete range of photon energies (see Fig. 14) with

~
h(a&q q

—10~)~'(0.47 for all Pea within, 1.14 eV(h~
(1.22 eV; similarly for the 2p state,

~
h(o&2, ~

—9&v)
~

'(0.6
within the indicated range of photon energies. Hence, we
have treated only the 2p and 3d states as near resonant

states (~=10 and 11, respectively). The 3s state (de-
generate with 3d) is of course also near resonance, but
we have neglected its contribution since the matrix
element involved is small compared to the 3d matrix
element (the larger angular-momentum states, in

general, make the dominant contribution to the photo-
ionization transition rate).

Additional simultaneous resonances occur at Acr

1.275 eV (1V= 11) and h~= 2;55 eV (%=6) shown in

Figs. 3 and 8, respectively. The lower energy "simul-

taneous resonance" at 1.275 eV, occurring in orders v= 8
and 10, is particularly interesting because the resonant
atomic states are separated by two photon energies
(rather than a single photon energy as with the reso-
nance at ko =2.55 eV), i.e., Pua4, 2

——2.549 eV and
2Puo=2. 55 eV while SAco=10.2 eV is very nearly reso-
nant with the 2s state (see Fig. 14).

In Fig. 13, our calculation of the two-photon i.oniza-
tion transition rate of 2S metastable hydrogen is com-

pared with Zernik's" "exact" treatment (Zernik's re-
sults are indicated by the dashed line). The average
energy hQ is taken as 1 2hcor (~r =3.399. eV for 25 H).
The agreement is good with noticeable discrepancies
appearing only far from resonances. This, of course, is
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Fzo. 10. Dispersion for four-
photon ionization rate. The sharp
valleys reflect a cancellation effect
as the photon energy passes from
one resonance to the next. The
second harmonic of the ruby
6943-A line falls near 3.57 eV.
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expected since our technique is most accurate for pho- experiment, we Gnd that the initiation Aux required to
ton energies in near resonance with an atomic state. The liberate one electron is 10" photons cm ' sec ' for
ruby photon energy (1.785 eV) is near resonance with Xe, Err and Ar and 5X10"photons cm-' sec ' for
the 3p hydrogenic state (1.889 eV above the 2s state). Ne and He.

IV. RARE GASES

In this section we estimate the S-photon ionization
rates of the noble gases Xe, Kr, Ar, Ne, and He, for
ruby laser light (hor=1.785 eV). These processes re-

quire (in the lowest nonvanishing order) the simul-.

taneous absorption of 7, 8, 9, 13, and 14 photons, re-

spectively. Subsection 1 summarizes some minor modi-
fications in the theory and general selection rules. In
Subsec. 2 we treat each of the rare gases in turn begin-

ning with He. We give a brief resume of certain features
peculiar to each gas, the relevant portions of the spectra
and the dispersion for the transition rate in the neigh-
borhood of 1.785 eV.

Most experiments on gas breakdown have been per-
formed over a limited range of atomic densities around

10" atoins cm ' and using a Q-switched ruby laser
with 10-nsec pulse duration, focused into a volume of

10 8 cm '. Taking these values as dehning a typical

1. Theory

The wave functions for the noble gases are approxi-
mated by hydrogenic wave functions with the radius of
the appropriate Bohr orbit scaled to the atomic radius.
Expressing the Eth-order matrix elements in units of
(ao/Z)~+'12, all frequencies in units of electron volts,
or( /sec)=(e/300k)or(eV), and measuring the wave
number k in ao ', we can write the integrated transition
rate (39) in a convenient numerical form,

up, g'"& =Z—'(1.412X10")
X/0. 84564X10 3'Z—'&or.vj"((k( r" (ny, lg) ('k. (43)

The computational form of the matrix element is given

by (42). The procedures used for hydrogen are applied
unaltered to the rare gases. In analogy with hydrogen,
we will take Ace, as the 6rst excitation energy and
AQ= 1.2A'cop. This choice of Ace„divers from that used by
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n= 3 Fxo. 12. Dispersion for two-photon
ionization rate. The Rydberg series is
evident with the peaks corresponding
to the hydrogenic spectrum.

1p-51

7 2
I

7i95
I

8i7
I I

9WS 102
PHUTCIN ENERGY (EY)

I

10 95
I

1i 7
I

12 %5
I

1L2

g P=(2, sg
y=1 gc 2 7 jI-1

10%8

]

n=5 FIG. 13. Dispersion for two-photon
ionization rate of 2S H comparing
the present calculation (solid line)
with Zernik's results (dashed line).

1n-50

l.78
I

2. 11
I I

2.27S 2.04
PtiUTQN ENERGY(EY)

I

2.60S
I

2.77
I

2.93S

Gold and Bebb," where the average energy AM„was
taken as the ionization energy, Acoq.

In contrast to our earlier work, we take explicit
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FIG. 14. Resonant energies. The brackets show the range of
vkeo, v spanned in the dispersion curves (Figs. 2-12) for hydrogen.
X speci6es the order of the process and the number accompanying
each bracket speci6es the order v of the intermediate'resonances
explicitly "summed on."

account of the intermediate near resonances using the
appropriate scaled hydrogenic functions (rather than
"collapsing" the matrix element over the resonant de-
nominators) and use scaled Coulomb functions (rather
than plane-wave states) to represent the continuum
states. The resulting transition rates are larger than
those previously reported.

Selection rules for an X-photon transition are most
easily derived by successive applications of the selec-
tion rules for one-photon processes. Both (I.S) and (jl)
coupling are employed as appropriate. (jl) coupling
obtains when the "electrostatic interaction is weak
compared to the spin-orbit interaction of the parent
ion, but is strong compared to the spin coupling of the
external electron. " In this case we couple the J, of the
core ion with orbital moment 1.of the external electron
to form a resultant K. The total angular momentum J
is formed by coupling K to the spin s, of the external
electron:

J.=1,+s„
K=J,+1„
K+s,=J.
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TABLE I. Summary of properties of the rare gases. The intermediate states displayed are explicitly summed on according to Eq. (42).

Gas
AG) I
(eV)

Ace,

(eV)
Atomic radii
(angstroms)

Intermediate resonant states
LS jl

Designation Designation Energy

He

Ar

Xe

13

24.580

21.559

15.755

13.996

12.127

21.0

17.0

11.8

11.3

9.6

0.93

1.12

1.54

1.69

1.90

0.57

0.96

1.03

1.25

1.4

13

12

12

1s3p (IPI)
4p(P)
4fPJ'" )
5f('~.)

1s2s(ISO)

2p~10p(3P, )
11p('D2)

2p54s(IP, )

3p55p(SS,)
5p(&D,)

4p'6s(8')
6s('P )
4d('P2)
4d'(V'3)

4d('PI)

Sp'7p('s1)

10p tkjo
11p L-:ja
4s' P*3~

5P Pihm

Llh~

Bj~

23.082
23.737
23.732
24.038
20.611

21.4038
21.4294
19.7749

14.46
14.51

12.3494
12.3827
12.2552
12.2816
12.3518

L-', 7g 10.8995

The selection rules in (jl) coupling are

AJ, =O,
AE=O, ~1,
~t,=a1,

together with d J=0, ~1, and parity change. The levels
are specifled by nl[E]s (e.g. , the 4s 'P& state of neon
written in (jl) notation is 4s[, j&). Levels belonging to
the 'P~~~ core are indicated with a primed / value, the
unprimed belonging to the 'P'3~2 core.

Certain of the lower lying states and the np'n's
states can be significantly assigned with LS designa-
tions. "The higher lying states show (jl) coupling. In
Ne, the 2p'3p states and the 2p'ns states can be taken
as LS-coupled'4; in Ar the 3p'4p, 3p'4d and the lower
np'n's states are LS coupled, " in Kr and Xe, (jl)
coupling obtains throughout the spectrum while He, at
the other extreme, is LS coupled. The dominant
coupling scheme for a given state, of course, affects the
selection rules. However, the selection rule AS=0 is very
weak. except in He even for the states listed above as
I.S coupled. We will adhere to the more familiar I.S
term designations where meaningful but will resort to
(jl) coupling notation where necessary.

In our approximation, the rare-gas wave functions
are replaced by scaled hydrogenic functions. Consider
for example the one photon excitation of neon to the
2p'4s('P~) state; we approximate the dipolar matrix
element corresponding to the 2p' ~ 2p'4s transition by
(4s~s~2p), where the ~n, l) are hydrogenic functions

» Q. Q. Shortley, unpublished material reported in Ref. 37.
34 A. Gold and R. S. Knox, Phys. Rev. 113, 834 (1959).
» R. 8. Knox, Phys. Rev, 110, 375 (1958).

scaled to match the radius of the appropriate Bohr
orbit (in this case the 2p orbit) to the atomic radius.
The scaling is accomplished through the effective charge
parameter Z appearing in (43). We should note that
the effective Z determined by scaling the orbitals is
quite different from the effective Z for energy. Slater"
has pointed out that the discrepancy is due to screening
effects of the core electrons.

2. Numerical Results

We have obtained numerical results for each of the
rare gases He, Ne, Ar, Kr, and Xe. They are presented
in two forms: the dispersion in the Eth-order transition
rate in the neighborhood of 1.785 eV (the ruby-laser
photon energy) and the initiation flux required to liber-
ate one electron in a gas concentration of 10' atoms
cm—' with a 10-nsec pulse of light in a focal volume of
10 ' cm' (i.e., the flux, F, required to produce a transi-
tion rate per atom of 10 ' sec ').

Some properties of the rare gases needed for the
computation of the E-photon ionization rates are sum-

marized in Table I. The order N given in the table is
appropriate to ruby laser photons (1.785 eV). The inter-
mediate states explicitly summed on in evaluating (42)
are listed together with their energies. Both (LS) and

(jl) designations (where appropriate) are given. In the
sixth column we give the effective Z scaling parameter.

The energy levels and assignments for the rare gases
are taken from the Moore tables. '~

36 J. C. Slater, Quantum Theory of Atomic Structure (McGraw-
Hill Book Company, Inc. , New York, 1960), Vol. I, p. 227.

"C. E. Moore, Atomic Energy Levels, Natl. Bur. Std. (U. S.)
Circ. No. 467 (U. S. Government Printing Ofhce, W'ashington,
D. C., 1949).
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The relevant portions of the spectrum of He are
shown in Fig. 15(a). Integral multiples of the ruby
photon energy are marked. It will be seen that the
3P('Pi) state of He is rather near 13 (1.785 eV) photon
energies above the ground state. The dispersion curve
for wf, g&~&/F~ giveii iil Fig. 15(b) shows the effect of
this near resonance. It is interesting to note that the
peak at 1.825 eV [shown in Fig. 15(b)] incorporates
two nearly degenerate states, 4p('Ei) at 23.737 eV and
4f('F~) at 23.732 eV.

Neon is of particular experimental interest because of
a very near resonance of 12hco (=21.4200 eV for
A&v=1.785 eV) with the 11p('D2} state at 21.4294 eV
above the ground state [see Fig. M(a)]. Under ideal
circumstances it may be possible to observe this reso-
nance, shown in Fig. 16(b), with presently available
Q-spoiled ruby lasers. The resonance is centered at
6940.6A (1.7858 eV} which corresponds to the wave-
length of a ruby cooled to 250'K. The initiation Aux
at resonance ( 5&&1029 photons cm ' sec ') is reduced
by a factor of 7 from that at 6943.5 A (the ruby
wavelength at room temperature).

A more detailed investigation of the spectrum of neon
reveals a total of eight even parity states between
21.3908 eV and the ionization edge. '~ Six arise from the
2p'10p configuration and two from the 2p'11p con-
figuration. They are

2p'10p 'Si [2]i 21.3981 eV

'Dg, 'D2 [-,']g, n 21.3986 eV

'Di, 'D2 [-,']i,p 21.3995 eV
'Po [-,']0 21.4038 eV

2P'11P 'Di, 'D, [-;],, 21.4294ev.

All of the states listed possess Qrst-order nonvanishing
matrix elements to the 4s[-,']i (i.e., the 4s'I'i state) ex-
cept the 10p[—',],state which violates the selection rule
AJ=O, ~1. The 10pp]s state couples to 4s[-,']2. We
have taken the 4s'Ei, g (or 4s[-,']i,2) states as near reso-
nant in eleventh order [the 4s'Ei and 'P~ states violate
M, =O in the (jl) coupling scheme where they are
speci6ed as 4s'P, ]i o].

c. Argon

Argon, krypton, and xenon all show comparable initia-
tion fluxes ( 5X10" photons cm ' sec ') for ruby-
laser light and a density of 10'0 atoms cm '. Referring
to the spectrum of Ar [Fig. 17(a)], we see that the
3p'4s states at 11.5 eV ale tlie 61st excitation states.
%C have taken ~„=11.8 eV. Nine 1.785-CV photons
are required to liberate an electron in Ar aided by a
reasonably near resonance occurring in eighth order in-
volving the Sp excited states. All of the 5 and D states

in the 3p Sp con6guration possess nonvanishing eighth-
order matrix elements to the ground state 3p' '5, while
the I' states are probably coupled somewhat more
weakly to '50." We have approximated the 5P 'Si,
Sp'D and 5p 'D states with two (rather than five)
hydrogenic 5P functions taking the energies as 14.46
and 14.51 eV, respectively [compare the energies given
in Fig. 17(a)). Hence, the transition rate is believed to
be conservatively estimated. The peaks (valleys) in
the dispersion curve for the transition rate (flux) shown
in Figs. 17(b) and 17(c) are due to the resonances as
84o approaches 14.46 and 14.51 CV, respectively.

d. EryPfoe

Krypton ionizes with the absorption of eight ruby
laser quanta through the agency of a near resonance in
seventh order with several closely spaced 4d and 6s
levels around 12.4 eV [see Fig. 18(a)]. The transition
rate (initiation Aux) for Kr is unusually large (small)
due probably to the presence of 4d near resonant inter-
mediate states which have the same principal quantum
number N(=4) as the ground state. The dispersion
curve for the transition rate is carried through these
resonances in Fig. 18(b) with the lower energy
(A&0= 1.784) peak arising from the two nearly degener-
ate levels 6s[32]2 and 4dP]i and the higher energy
(Ace 1.766) peak arising from the 6s[-,']i leveL

As evidenced by the pair structure apparent in the
spectrum, Kr is (jl) coupled. The resonant 4d and 6s
levels indicated in Fig. 18(a) belong to the 'Pa~u core.
The 4d' and 6s' levels belonging to the 2Ej~2 core lie
above 12.8 eV while the remaining 4d states lie below the
12.2 eV. We have included only the states (falling be-
tween 12.3 and 12.8 eV) listed in Table I in the computa-
tion of the transition rates. The sixth-order near reso-
nance seen in Fig. 18(a) is illusory since the 4p'Ss states
are odd parity states. The average energy Ace, has been
set (above the Ss states) at 11.3 eV to avoid introducing
an artificial resonance.

The relevant portions of the spectrum of Xe are
shown in Fig. 19(a). It will be seen that the Sp57p even-
parity states lie approximately 6 ruby photon energies
above tlic ground state wliilc 5k') falls bctwccn thc 6g
and 6s' "pairs. "Kc have incorporated only the lowest
7p state as a near resonant state in sixth-order collapsing
over the average energy A~, =9.6 cV in the lower orders.
The dispersion curve for the, seventh-order photo-
ionization is shown in Fig. 19(b).

The transition rate for Xe (and the other rare gases)
has been computed in several diGercnt approximations.
In addition to the calculation outlined above, we have
computed the transition rate treating both v=6 and 5
as containing near resonances as well as increasing the

"See, for example, A. Pery-Thorne and J. E. Chamberline„
Proc. Phys. Soc. 82, 133 (1963) and references quoted therein.



16 H. B. BEBB AND A. GOLD

HE LIUM

l4
- 24 992 glgly 24.580

Pp IP

~I
2S.20r6

~4&~i r'ss's,
25.082

25.069
25.06$

25.002

l2
2I.42a4

II

19.6572

ap IP

ap PIAP
I'So

ae ~S)

21.215
— 20.959

20.6II

I9.8I5

1P&34
He (N -«14)

1p&36—

1p&38

li 76

(Ruby 6

I

1 77
1
1.78

I I

l 79 1.8
PNQTQN ENEfK Y(KV)

(b)

Il.81
t

l.82

& =13
4y( P

i

l.83 l.84

FIG. 15. Fourteen-photon ioniza-
tion of He. (a) Relevant portion
of the spectrum of He with integral
multiples of the ruby photon en-
ergy (1."/852 eV) indicated by the
left-hand scale. (b) Dispersion for
the fourteenth-order transition
rate in the neighborhood of the
ruby photon energy. (c) Threshold
Qux for an atomic density of 10
atoms cm 3 and a 10 nsec pulse
focused into a volume of 10 8 cm'.

1,76
I

1~ 77
I

1.78
I I

1~79 1.8
PtCTQN ENERGY&EV)

I

1~ 88
I

1~ 8%

(C)



MUI TI PHOTON IONIZATION OF H AN D RARE —GAS ATOMS

l5
R5.2076

NEON

LIIIIT

2I 4224 IIP D)y Dg

(Ilp[W2]~)
10p Po

(Iop[IS2],)

2I.559
2I.4294

2I.4058

II
19.6572

IQ
I7.8520

4s'P,
4s ~Po s4s PI

4s Pz
5p I

5P Ds,a,I'Da

5psS)

I9.7749
I9.7557

l9.6855
l9.6592

l8.96I5

I8.577I

9
l6.0668

5s'P,
5ssP0

5s SP
I 35s P

I6.8459
16.7 I I 5

l6.6667
16.6150

1O 394-
5.0 x 10 Ne Pt ~ 1$)

Fzo. 16.Thirteen-photon ioniza-
tion of Ne. (a) Reievant portion of
the spectrum. (b) Dispersion for
the thirteenth-order transition rate.
The transition rate at the
=1.7858 eV resonance is ap-
propriate to a width y/2 = 10 ' eV.
(c) Threshold Qux for Ne.

L0-396—

1o-398

10-400
Li 782

I
L 789 I.784

I

I' 785 L.786
IIICTQN ENERGY&EV)

I

L.787

I

I

L.788 I,.789
I

L~79

CO

c4
C5
IP
C)

Ia. cv
e

Cl

W
X: LQ

L.782
I

L. 789
I

L ~ 784
I' I

LE 785 LE 786
I'tlÃQN ENERGY(EV)

{c)

I

L.787
I

L ~ 788
I

L ~ 789
I

L ~ 79



18 H. B. BEBB AND A. GOLD

ARGON

9
16.067

15.755

5p Pie, 'So
5p Pp

5p Di, 'Dp

14.282 5p D~, D3
3 3

14.73
14 52 14a57

14.50
14.460

7
12.496

6
10,711

4p'So
4p P, PI

4p Ds,a, i

4s'P,

4s3PI
4s3p2

(a)

13.477
13.169

12.904

I I.826
11.721

11.621
I I.546

Ar (N= 9)

10"262

10

FIG. 17.. Nine-photon ionization of
Ar. (a) Relevant portion of the spec-
trnrn. (b) Dispersion for the ninth-
order transition rate. The four D states
of the 5P con6guration (shown in u)
have been approximated by a single
hydrogenic 5P state at 14,51 eV. (c)
Threshold Aux for Ar.

10-266

1 76
I

1~ 77
Il.78

(Ruby 69432 line)

I
1.79 1.8

I'tlOTOM ENERGY(E&)

I
1 81

I
I. 82

I
1 8S

I
1.8%

(b)

trs
N
Cll

lQ
~»

Ck

ES
X
ID
lal

Ill
f

I
I/O

l,.76 1 77
Il.78

I I

l.79
I'ItWCIN ENERGY (CV)

I
1.81

Il.82
I

1.88 l.84

(c)



7
l2.4964

6s [S/g,
4d [We],

6s[5/2l~

4d [5/3)s
4V[5/g,

l2.3827
— I2.55l 8

l2.5494
l2.2552
l2.28 l 6

6
l0.7l l 2 5s [l/2])

5s' [l/2]o

5s[W23,
5s[W2],

l0.64I 5
l0.560 l

— l0.0502
9+I5 I

FIG. 18. Eight-photon ionization
of Kr. (a} Relevant portion of the
spectrum. (b} Dispersion for the
clghtllM1'licl' 10IBKRtlOQ Mtc. (c)
Threshold flux for Kr,

j 76
I

l»775 l.78
PHOTON

ENERGY�(D)

(Ruby 6943E 1ine)

l.78S l.7S l»79S l»8

y$

Ck

ElX:

IL'

04

k» 76 i 766 I..77
l I

1 77K L.78
PHINQN FHERGY(EV)

f. 786
fl.79 l.8



8
I0, 7f fP

T
I P„.49gq

LfMfT

YP fwP3,
~p tag]

&pt5/p3
~oh~2)

p Et/2],

XENON

l f.0008
f0.eSS6

f0.8g95
f0 95~

IO~Q667

6s'Qz23,
6s'tf123

8,92g0
es t:Pg23

6s t.&/23

9.5679
,4454

8.4p49
8.~ta.y

& !408

xe (N y)

p &9 Seven- go
of Xe (@) R i

-P own ioniza, t&on

sPectrum. g,~
D. P rtlon of th

Ux fo~ Xe

I
E.77

I

E ~ 8
I

E.8y
I

E.82
Il.8Sl

I
E~78
~" I~0& &NERGy -p

(c)

I
l 8

Il.8g
I

E ~ 82
I

Eo 88



number of '/p states exphcitly summed on. While these
calculations are not detailed here, we stress that the
different situations lead to consistent answers insuring
that the results are not an artifact of a particular
Rpproxlmatlon.

V. DISCUSSIOH

%hat is the ro1e of multiple-photon ionization in the
optical blcRkdown of gases' Thc bI'cakdown occurring
in the focal region of a Q-spoiled ruby (or neodymium)
laser, is conveniently divided into three stages: (1) ini-
tiation, (2) growth, and (3) recombination. Our results
1ndlcRtc thRt dll cct multiple-photon lonlzatlon can
provide a number of free electrons to initiate the break-
down. After the onset of absorption, additional pro-
cesses (sllcll Rs lnvcl'sc brcmsstrahlung) CRllsc tllc
ionization rate to increase rapidly until a large fraction
(if not virtually all) of the atoms are ionized, resulting
in a very high-density plasma ( 10"electrons cm ')'.
At the termination of the laser pulse, the plasma
rccombines slowly via reasonably well understood
processes. "

In Fig. 20, we plot the pressure dependence for the
direct multiple-photon ionization of the rare gases. The
general trends in the observed pressure dependence for
gas breakdown of Ar and He are also indicated. %hile
the data given by Meyerand and Haught, ' Minck, ' and
Waynant and Ramsey4 diGer in detail, it is clear that
the pressure dependence for gas breakdown is much
stronger than the weak So 'I~ predicted for E-photon
ionization. Hence, even if direct ionization does provide
the initiating electrons in the rare gases, some other
process (e.g., inverse bremsstrahlung) determines the
threshold for the gross discharge.

However, the weak density dependence wi11 greatly
enhance the role of any low ionization potential trace
impurities present in the gas in providing initiating

lps2

lpslE
CP

C:
O

lo50

Ar

)pl@

Cll

—lOl2—

~ lp«—5
I

los
K
t2
~ lp~—

52
& lO"—
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tpa—

l l l l ill I l l l l l lilt l l l l l lilt l l l l l ill
lp2B I020 i050 tp5l lp52

FLUX (ha. Phatohs cm SOC )

Fn. 21. Number of electrons liberated as a function
of the photon Qux.

clcctrons. Fol' cxRInplc a hydrogcnlc Inodel 1Dlpul lty
of ionization potential 7 cV (a reasonable value for
many organic molecules) for which 1V=4 will give an
initiation Aux of 1029 photons cm 2 sec ' for a con-
centration of 10" atoms cm-'. An even more severe
problem is the presence of "other" rare-gas impurities.
A concentration of 10"atoms cm ' of Kr (one part in
10') in He would lower the initiation flux to 0.45)&10'0
photons cm ' sec ' as would a concentration of 10'~
of Xe and Ar.

Figurc 21 ls a plot of thc number of clcctrons llbcr-
Rted by direct multiple-photon ionization as a function
of flux (still assuming the "typical" conditions of a
density of 10'0 atoms cm ' and a 10 nsec pulse from
Q-switched ruby laser focused into a volume of 10 '
cm'). The number of ionizations increases very rapidly
as E~. Eth-order photoionization rates are, in fact,
proportional to F~, where F is the instantaneous value
of the photon Aux. For an optical maser operating in R

single mode, we expect the flux (or the occupation
number, n= cE) to be a well-defined number and that4'

(44)

where the brackets denote the expectation value. How-
ever, for radiation containing more than a single mode,
instantaneous Quctuations will cause a different result
fol' (P ). Fol' cxRlllplc, lf wc consider R lalgc Ilulllbcl of
modes so that the Quctuations become similar to a
thermal source (Gaussian light) we have4' "

l l l l l l l l l l l l

lplo lpl2 lpl4 lots OI8 ip2a lp22

CONCENTRATfpN (ho. atoms cm"s) (Px) g f(p)v (45)

FIo. 20. Atomic density dependence of the N-photon ioni-
zation threshold and gas breakdown threshold (see text for a
discussion) ."See, for example, R. S. Mulliken, Phys. Rev. 136, A962 (1964)
and also %. Finkelnburg and 'L Peters, Handbook der Physik 0Nd
Spectroscopy (Springer-gerlag, Berlin, 1955), Vol. D, pp. 28, 79.

In this extreme, the transition rate is increased by S.
over that produced by a siegle-mode laser with the same

40 L. Mandel and E. %olf, Rev. Mod. Phys. 37, 23I (1965).
4' J. Ducuing and N. Bloembergen, Phys. Rev. 133, A1493

(1964).
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APPENDIX A: SELECTION RULES

We consider simple methods for evaluating the angu-
lar part of the matrix element,

(~',l', m'[s [~,l,m) =C.-(l'[l)(N, l'[r [~,l), (A1)

where

C. (l'
i 1)= (Y "

f
cos"8

[ Y "). (A2)

~ H. Hodara, Western Electronic Show and Convention, Paper
17.4, 1964 {unpublished). See also Ref. 40 for a summary of
Hodara's paper and additional relevant discussion.

43 S.L. Ridgway, G. L. Clark, and C. M. York, J.Opt. Soc. Am.
SB, 700 (1963).

average power. The average Aux required to produce a
given transition rate is reduced by (E!) 'I~.

The radiation from a typical optical-maser source
falls somewhere between these two extremes, into the
dificult intermediate regime where little is known.
Hodara4' has investigated the distribution for a small
number of sinusoidal waves superimposed on Gaussian
noise. He found that the deviation from a pure Gaussian
distribution decreased rapidly as the number of sinu-
soidal waves was increased, with the distribution for
only five sinusoidal waves plus Gaussian noise approach-
ing very closely a pure Gaussian. In an ordinary ruby
laser (as well as a neodymium-glass laser) many differ-
ent frequencies and spatial modes are observed to be
present. 4' It would thus seem that in the absence of de-
tailed information we might reasonably associate a
Gaussian distribution with multimode laser light (at
least in preference to assuming single-mode operation).
In comparing the theory of E-photon ionization with
relevant experiments, we must keep in mind that the
"effective value" of the Qux may be greater than the
average measured value by as much as (1V!)"~. The
theoretical initiation Quxes quoted are, therefore,
probably larger than those required in most cases. In
fact, it would be of considerable interest to repeat the
experiments on gas breakdown utilizing a single-mode
laser to determine the effects of fluctuations on higher
order processes.

Recently reported experimental techniques can meas-
ure higher order multiple-photon ionization transition
rates directly. While gas breakdown provides some evi-
dence for E-photon ionization, other effects obscure the
process. However, at very low pressures, N-photon
ionization dominates. Voronov and Dclone" have
measured the ionization threshold for Xe. They And a
"cross section" w/F', of -5X10 "', in good agreement
with the value 4)&10 ' ' predicted from theory.

The selection rule m'=no is an immediate consequence
of our choice of coordinates. Since cos8 is proportional
to V~', we can write

cos"8Yl"(8A) 2=v C."(l"Il) Yv "(8A) (A3)

The expansion coeflicients C„(l"[l) are defined by Eq.
(A2). The problem of evaluating the angular part of
(A1) is just that of determining the expansion coefFici-
ents in (A3). For v = 1, Eq. (A3) reduces to the ordinary
recursion relation for the spherical harmonics,

cos8 Yi =Ci (l+1il)Yi+i +Ci (l—1[l)Yi i, (A4a)

where

C (l+1i l)
=L(i+m+1)(l—m+1)/(2l+1)(2l+3) j'" (A4b)

Ci"(l—1
[ l) = L(1+m) (l—m)/(2l —1)(2l+1)j"' (A4c)

The coefFicients (A2) can also be immediately re-
corded for an s state. Using the well known expansion".
for cos"8 (in terms of the I.egendre polynomials) and the
relation Yi'(8) = L(21+1)/4m)'"Pi(cos8) we have,

(a) for even powers of cos8, v =2p, l'= 2s,

C2„'(2s
i 0)

=Is!2'(4s+1)"'/( s)!g(2p+—2t+1), (A5a)
S=o

(b) and for odd powers of cos8, v=2p+1, l'= 2s+1,

Cg„+io (2s+ 1 [0)

= '2'(4 +3)"'/(~ —) ' II(2~+2&+3), (A5b)
5=0

with the additional condition that C.'(l'[0)=0 for
1'&v. These formulas evaluate

Co(l'[0)=(Y, oicos 8i Y,o).

It is now a straightforward matter to evaluate (A2)
for an arbitrary pair of spherical harmonics. Using (A3)
we have

V

cos"8=(4~)'i' P C„'P.[0)Yi,'
'A=0

with the coeKcients being given by Eqs. (A5). Forming
the matrix element (A2) we get

C "(l'[l)= (Yg "[cos"8
[
Yi")

= (4m.)'" Q C,'P. [0)(Yi ~[ Yx"
[ Yi") (A7)

X=0

The integral (Yi "[Yq'[ Yi ) arises in calculating
Clebsch-Gordan coefficients and related vector-coupling

44 P. M. Morse and H. Feshbach, Methods of Theoretical Physics
{McGraw-Hill Book Company, Inc., New York, 1953), Tol. II,
p. 1326,
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problems. It is given (in terms of the "3j"symbols) by"

(4ir)'~' Y ~ I' 'I' dn

= (—1)"[(2l'+1)(2l~+1)(2l+1)j'i'

The selection rules can be inferred from (A7) using
the definitions of C„s(X

I 0) and the 3j symbols. "
For v even

X-4 l-3 L- 2 L- l X 2+ I 1+2 I+3 1+4

/ —/, /+2, /+4 . /+v (A9a)
Fzo. 22. Diagram for obtaining selection rules and

values of (Yp '~cos"s~ Fpl.

and for v odd

/'=/+1, /+3 . /+v (A9b)
To obtain Cs (l+1 I l) we multiply vertically (from bot-
tom to top) and sum over the products,

together with /'~& 0. Formal evaluation of the nonvanish-
ing angular integrals (A2), however, is unnecessarily
complicated.

A simple diagrammatic technique is based on suc-
cessive applications of the recursion relation (A4a).
In Fig. 22, the order v is plotted along the ordinate and
the angular-momentum quantum number / is indicated
on the abscissa. Let / denote the initial angular state,

I l,m). The "allowed" final states in order v are deter-
mined by the "intersections" occurring along a line
drawn through the desired value of v parallel to the
abscissa. The value of the angular integral C, (l'Il)
is given by a sum of products of Ci (i+1

I l) determined
by the possible "paths" between / and /'. Referring still
to Fig. 22, a "path" between / and /' is any line along
the diagonal lines shown starting at / and proceeding to
/' always in the direction of increasing order, v,' a
"path" must not include any negative values of /.

To illustrate the use of the diagram, we calculate
Cs (l+1I l). Start at l and follow "path 1" (indicated in
Fig. 22) going through the "steps" i =1, l'=l+1, and
i =2, l'= 3+2, and finally to v= 3, l'= l+1.We associate
one of the coefficients (A4) with each "step, "C, (l+1 I l),
Ci (l+2I l+1), and finally Ci (l+ 1

I
l+2). Multiplying

these three coefFicients and adding the appropriate pro-
ducts associated with "path 2" and then "path 3,"we
obtain the desired result. The bookkeeping is conveni-
ently tabulated below:

th

APPENDIX B

Using the concept of an average frequency, co„, the
pth order bound-bound matrix element ca,n be written,

(n, l
I

i."In„l,)= (n, l Is In„l,)/g(iu„Xcu) . —(81)
)t 1

The central problem in the evaluation of (B1) is the
computation of the average frequency co„defined by
Eqs. (31) and (32). Writing out these definitions ex-
plicitly, we have

(n, lI"-iI n', t')(n', i'I.i In„l,)
n', l' (Qi„~,„—Xiu)

(n, l
I

s"-"
I ~,l')(~, l'I s" In„i,)

+Q —k'dk
(~r+ &k'/2m —X~)l' 7r

C m(l+, 1Il)
= Ci (l+1

I
3+2)Ci"(l+2

I
l+1)Ci"(l+1

I l)
+Ci"(l+1Il)Ci (lIl+1)Ci (l+1Il)

+C,-(i+1Il)C,-(iIl—1)C,-(l—1Il).

Note that if /=0, "path 3" is not allowed, i.e.,
Ci (l—1I l) =0. The validity of the diagrammatic
method for evaluating C. (l'I l) is readily established by
successive applications of the recursion formula (A4a).

Ci"(l+1 l) Ci"(l+1
I l) Ci"(l 1

I
l)—

Ci"(l+2 l+1) Ci"(l
I
l+1) Ci"(lI l—1)

Ci (l+1 l+2) Ci (l+1Il) Ci (l+1Il) with co, defined by

(n, lIssIn„l, )
(B2)

(iu„P,)—ho)

5 See Ref. 26, Vol. II, p. 1051.
6 H. B. Bebb, thesis, University of Rochester, 1965 (unpub-

lished).
(B3)
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TssLE II. Average energies computed using Eqs. (B4) and
(B7). The initial state is taken as

~
1,0). The Grst two energies in

the last row are missing because of computational difhculties.

State Average energies (eV) Ace

(n, l) Order Euo(1) A~(2) Ace(3) Ace(4) Ace(5) M(6) (eV)

2, 0 2

3, 0 2
3 2 2

21 3

4, 3 3

2, 0 4
4, 0 4
4, 2 4

4, 1 7

8.44
8.52
8.63

10.38
8.19

8.49 11.98
8.56 11.48
8.63 11.00

6.74 10.27

7.37 10.55
9.82 3.30
7.30 10.72

10.10
4.63

10.63

4.6
5.0
6.0
5.0
5.0
3.5
4.0
4.5
4.0
2.8
2.8
2.8

9.23 10.55 11.05 12.59 1.785

8= g P(n, lIs~-"In', l')(n', l'Is" In„l,)
n'=1 l'

2
+2 -k'~k(n, iI s" "IV'&&k, i'I s" In. ,4& (85)

To account for the states not included in 8, we define a

In (82), ear is the frequency associated with the ioniza-
tion energy, sr= I@or=13.595 eV. The factor 2k'/w is
the density of states appropriate to the continuum
eigenstates, Ik, l,ns& Las contrasted to the density of
states, (2s) ', appropriate to Ik)j. Denoting the left-
hand side of (82) by A„,p(X), we can solve for ro„()I,)
obtaining

(84)

Thus, the evaluation of the average frequency hinges on
a realistic computation of A„,~sf,).

The general procedure for calculating A„~&(X) is to
sum over a reasonable range n' (say to n'= 18), and all
allowed /', perform the integral over the continuum
states directly, and then add a correction term for the
states not included (n'= 19 to ~). We de6ne

correction term,

C= (n, lIssIn„l, &
—B. (86)

Using these definitions, we can write a computational
formula for

(n, iI"-& In', i'&(n', P I"I n„i,&

A. ,ts())= P P
n'=1 l' ((e, ,—) rd)

2 (n, lIs" "Ik,l')(k, l'I s" In„l,&

+Q —k'dk
(d'or+ kk'/2nr )~)—

+C/((or —) a)) . (87)

The only approximation contained in (87) is the re-
placement of re„„,(n') 18) by aor in the correction term.
Since h(cur —c0„—ig „—i) 10 ' eV, the numerical error
is insignificant.

Several typical values of the average energies h&o(v)

are given in Table II. The word "order" in column two
refers to the order LM, of the bound-bound matrix ele-
ment de6ned in (81). The numbers tabulated were
selected to illustrate the possible range in Ace(v),
rather than to substantiate k~, = 10,2 as a "uni-
versal" average energy (for hydrogen). For example, the
average energies for (4,0Ir'I1,0) fall well below the
first excitation energy of hydrogen (10.2 eV) with
hco(2) =3.30 eV. This is due to strong coupling to the
ground state. Nevertheless, replacing these small ener-
gies by Pseo, = 10.2 eV causes little error in the transition
rate as the contribution from (4,2Ir'I1,0) dominates.
The average energies appropriate to the eighth-order
photo-ionization of hydrogen with ruby laser light are
given in the last row (order= 7). The first two energies
are missing due to computational difficulties in evalu-
ating certain high order bound-free matrix elements.

A zoRTRA. N computer program was written for the
IBM 7074 to evaluate (84). The initial and 6nal states,
the order, and the photon energy are supplied as input.
Several subprograms calculate the matrix elements
with the main program supplying the selection rules
and performing the integrals over k. On the grounds of
practicality, we choose to approximate the true average
energy with 10.2 eV in our calculations.


