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The low-energy three-nucleon system is considered using the multiple-scattering formalism of Faddeev
and an approximation scheme that preserves bound-state and three-particle scattering unitarity. The ap-
proximations involve the use of nonlocal separable potentials to describe the low-energy nucleon-nucleon
interaction and a phenomenological three-body force to represent the effects on the three-nucleon system of
the nucleon-nucleon tensor and short-range interactions. The neutron-deuteron scattering problem above and
below the three-particle threshold, and the triton binding-energy problem, are solved exactly. The theoretical
results are in impressive agreement with the experimental data.

1. INTRODUCTION

HE work of Faddeev,! who succeeded in formulat-
ing a correct theory of nonrelativistic three-
particle scattering, has opened the way for calculations
on the three-body problem in its full complexity. In
contrast to equations of the Lippmann-Schwinger type,
the Faddeev equations have kernels that depend upon
the solutions of the three two-particle subsystems.
Thus, all the properties of the three-body problem may
be derived as long as one knows the exact two-body
scattering amplitudes off the energy shell.

Solutions to these equations exist in principle for a
very wide class of two-body interactions.? However, the
number of degrees of freedom involved in the three-
body problem render impractical attempts at numer-
ical solution without approximation. Approximation
schemes that still allow the exact treatment of the
three-body aspects of the problem have been presented
by several authors.?~5 In this paper we present numerical
results based on the application of Lovelace’s®® theory
to the three-nucleon system.

The Lovelace formalism takes into account com-
pletely the effects due to spin, statistics, bound-state
scattering unitarity, and three-particle unitarity. It
does so, however, at the expense of ignoring the high-
energy behavior of the two-nucleon interaction and the
effects of tensor forces. To include these effects would
greatly increase the numerical difficulties involved in
the solution of the three-nucleon problem. We have
therefore chosen to represent these effects by a single
adjustable parameter in the hope that with a single
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choice of this constant a good representation of several
three-nucleon observables can be obtained.

In Sec. 2 we describe the two-nucleon interaction, its
low-energy representation, and the phenomenological
representation of the tensor and high-energy behavior.
The bound-state scattering equations and the three-
nucleon equations are presented in Secs. 3 and 4.
Section 5 contains a discussion of our results. We
conclude our remarks in Sec. 6.

Several authors®® have considered the three-
nucleon problem with equations similar to ours. Their
results show a considerable degree of disagreement. As
this is probably due to inaccurate numerical approxima-
tions, we present in an Appendix a brief description of
the numerical methods used in this work.

2. THE TWO-NUCLEON INTERACTION

The two-nucleon system contains the deuteron bound
state (denoted by @) and a singlet antibound state (s).
In this work the assumption is made that the two-
nucleon transition operator is dominated by these
states. This assumption leads to the use of a nonlocal
separable two-nucleon interaction.!* It was shown in L
that such an interaction, if adjusted to give a good
description of the deuteron and the antibound state,
will automatically lead to a 7 matrix that has the
correct behavior in the neighborhood of the bound and
antibound state poles and will also satisfy two-particle
unitarity. Furthermore, in this approximation the two-
nucleon transition operator 7" can be written as a simple
analytic function of the two-nucleon low-energy
parameters. Assuming charge independence
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where
1 @p g’ (p) T
wo-[+ ) ol
(p*—s—1e)
and P4 and P, are the appropriate spin-isospin projec-

tion operators. The s and d form factors g.(p) are
taken as

gx(p)=Na/ (P*+u.?).

The parameters ua, Ad, ts, As, and Ng are determined by
the deuteron binding energy, the triplet and singlet
scattering lengths, and the singlet effective range.!* It
should be noted that no physical significance is meant
to be attached to the nonlocal separable nature of this
interaction.

We pause here to consider the data for the low-energy
two-nucleon system. The triplet parameters are
accurately known.? The singlet parameters are less
well determined. This situation is aggravated by our
assumption of charge independence which forces us to
take an average neutron-neutron neutron-proton inter-
action. If we take an average of 1/k cotdo, the singlet
scattering length and the effective range are given by

as= _;_[:asnp_l__ asnn] y
2

ry=——
a"Pta,m"

l:asnpasnp_l_asnnasnn
dsnpds"" (7snp+r8nn)]

asnp_l_ asnn

Experimentally the singlet neutron-proton scattering
length is accurately determined to be —23.68 F.2? Two
recent measurements'*1% of the neutron-neutron scat-
tering length give a value of —17=41 F. This value is
adopted in this present work as it is consistent with the
charge symmetric value of —16.96 I.16

The situation with regard to the effective ranges is
less certain. There are no experimental measurements
of the neutron-neutron effective range. We have
adopted the charge symmetric value of r,»"=2.8455 F
calculated by Signell, Yoder, and Heller.!® Recently,
Noyes!” has pointed out that the accepted value for the
singlet neutron-proton effective range of 2.5140.11 F
was incompatible with charge independence. Using a
model constrained to fit the experimental nucleon-
nucleon scattering lengths, he predicted a charge-
independent value of 2.73:£0.03 F; a new analysis of
np total cross sections below 5 MeV showed that all
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and T. Maung, Bull Am. Phys. Soc. 9, 443 (1964 )

16 See also M. Bander, Phys. Rev. 134, 1052 (1964) for a
discussion of theoretical error involved in the determination of as™m.

16 T,, Heller, P. Signell, and N. R. Yoder, Phys. Rev. Letters
13, 557 (1964)

T H, Pierre Noyes, Stanford University, Report SLAC-PUB-59,
1964 (unpublished).

FADDEEV EQUATION AND THREE-NUCLEON PROBLEM

985

but two measurements were consistent with this
prediction.

As yet no attempt has been made to take into account
the effects due to tensor forces and to the high-energy
behavior of the two-nucleon interaction. Amado ef al.%'7
attempted to simulate these effects by weakening the
residue of the deuteron pole of the 7' matrix. This
resulted in the use of a 7" matrix which did not satisfy
two-particle unitarity; the resulting three-body equa-
tions did not satisfy unitarity. In our work an attempt
is made to represent the effect on the three-nucleon
system of both the nucleon-nucleon tensor and the short-
range interactions by a phenomenological three-body
force. This force is taken to be separable in the initial
and final variables. That is

Vi=Xa|4)4]. (2.2)

The three-particle equations, in the presence of this
force, are formulated in the next section. They are
found to sarisfy bound-state scattering unitarity and
three-particle unitarity.!s

3. THE SEPARABLE APPROXIMATION WITH
THREE-BODY FORCES

In this section we generalize the equations of Sec. 3
of L to include the possibility of a three-body force. Our
formulation is as in L with the exception of the choice of
momentum variables. These variables are such that the
kinetic energy of three free particles is given by

E=q2/2p1+p:2/2my,

where p; and m;, are the reduced masses for the 1-(2,3)
and the 2-3 systems, respectively. The scattering

amplitudes for bound states and resonances may be
defined as

X an,pm(s)=(an|Go(s) Uag™ (s)Go(s) | Bm)
"Zan,ﬁm(s)l:l_‘")\ﬁm(ﬁm | GO(S) Iﬁm)] ’

where in the equation for U,g,

Uagt(s)=22Vy— Z Uast(5)Go(s)T's(s)

yHa

(3.1)

and for Z,u,pm(s),
Zan,m(8)= (l—aaﬂxaanO(S) lﬁ%) ’

a, B3, 8, v now run from 0 to 4. X, gn(s) now satisfies
the equation

Xan,ﬂm(s) = _Zan,ﬂm(s)_z Xan,'yr(s)
yr

X7y (8)Zyrpm(s).  (3.2)

In particular,
Xan,4= '—Zam,(](s)_z Xan,'yr(s)Tyr(s)ZvT,'i(s) .
yr

18 For similar work on the relativistic Faddeev equations see
C. Lovelace, D. Z. Freedman, and J. M. Namyslowski, CERN
report, 1965 (unpublished).
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Tt is possible to solve completely for the three-body
force. Inserting Xana(s) into Eq. (3.2) we get an
equation for X on, gm(s) with « and 8 running from 1 to 3.

Xan,ﬁm(s) = {Zan,ﬂm(3)+zan,ﬂml (S)} -2 Xan,'yr(s)
XT7r(5){Zvr.ﬁm(s)'l'Zvr,ﬂml(s)}y (3.3)
where
Zan,gm’ (8)=—Zan,0(5)70(5)Z0,8m(s) .

The amplitude for a bound state, |an), to disintegrate
to give three final particles is given by

—{an|Go(5)U oot (8) = — Z an,a(s) 7a(s)(4]
+ ;Z, X an,gm(8)Tom () {(BM| — Zgm,a()Ta(s)(4] }. (3.4)

"
B4
The three-particle and bound-state scattering unitar-
ity relation is

Xan,ﬂm(s‘l‘ié)_Xan,ﬂm(s—ie)
=2mi Z Xan,yr(5+7:é) l qy)d3qa,8(q2/2u7—E7,—s)
yr

Xy | X g (s—1€)+2mi{an | Go(s+1i€)
XU og™(s+i€) I U, D2) P2 @208 (¢ 21y 1%/ 21— 5)

X(D‘/yq‘)‘l Uoﬂ_(s—ie)G0<5—'ie) [Bm> ’ (35)
where E,, is the binding energy of the y» bound state.
The proof of Eq. (3.5) is straightforward but tedious.

4. THE THREE-NUCLEON EQUATIONS
(a) Neutron-Deuteron Scattering

We may generalize Eq. (3.38) of L to give the scatter-
ing equation for identical particles in the presence of a
three-body force. We have

Xnm(s) = {Zan(S)—I—Zan/N(s)+Z”m,p(s)}
— >0 Xnr(8) 7 (){2Z 1 (s)

1220 N () +Zen'P(5)}, (4.1)

where Z,,'¥(s) and Z,,'P(s) are the nondiagonal and
diagonal elements of Z . g (s), respectively.

For the three-nucleon problem, in addition to being
an operator in the Hilbert space L:(q), Zun(s) also
depends on spin and isospin. The spin angular-momen-
tum analysis is given in L. There are two states of
interest; the quartet state with /=%, S=3, which is
described by a single-channel Lippmann-Schwinger
equation (i.e., #, m take on one value corresponding to
d-N scattering), and the doublet state with /=%, S=1,
consisting of two coupled channels corresponding to
d-N and s-N scattering.
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(b) The Triton

The triton is taken as a pure /=S=1 state of three
nucleons. The triton wave function satisfies the equation

W)= —Go(—E) 3 Valw), 42)

a=]

where E, is the triton binding energy. Following
Faddeev,! we write

W= 3 g9, 43)

a=1

where

[¥)= g —Go(—E)Ta(—E)[¢F).  (44)

In the separable approximation for 7, |¢2) has the

form
[¥*)=Go(—Eq)|am)|Qam), (4.5)

where

IQam>= _'Tarn(s)z Zam,w(_Et) 1Q77>- (4-6)
yr
Again we can solve completely for the three-body force
and thus eliminate |Q.). We have
lQam>= '—Tam(_El)Z{Zam,'yr(_"Et)
yr
+Zam,7r,(_Et)} IQ‘YT>'

Finally, using the identity of the particles, the set of
integral equations (4.7) reduces to

{Q'n): —Tm(—'Et) Z {2Zmr('—Et)

r=d,s

(4.7)

+2Zmr,N(_Et)+an’D("' Et)} |Q7‘> (48)
Thus we have a set of homogeneous integral equations
that has a solution only at an energy equal to the
binding energy of the three-nucleon system.

5. DISCUSSION OF RESULTS

The aim of this research is to predict a considerable
number of three-nucleon observables in terms of the
low-energy two-nucleon data and one phenomenological
parameter. No attempt is made to include Coulomb
effects, and therefore we restrict ourselves to the
neutron-neutron-proton (nnp) system. In our approxi-
mation, the total spin and orbital angular momentum
of the system are conserved. One effect of tensor forces,
which cannot be simulated by the three-body force, is
the mixing of states of different spin and orbital angular
momentum. This mixing of states plays an important
role in polarization effects, but it is less important in
the prediction of the triton binding energy and the
neutron-deuteron cross sections. Consequently, we
confine our discussion to the latter aspects of the nnp
system.
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The experimental values for the triton binding
energy and the neutron-deuteron scattering lengths are
given in the first row of Table I. Note that there are two
sets of scattering lengths, set 1 and set 2, which satisfy
the data.

First let us consider the results obtained when only
the low-energy nucleon-nucleon interaction is used.
For the quartet scattering length, which is free from
the uncertainties of the singlet nucleon-nucleon interac-
tion, our calculated value is 6.28 F. This value agrees
with previous theoretical values™ and with the
experimental result associated with set 1 (Table I).
We have calculated the triton binding energy and the
doublet scattering length for several values of the singlet
effective range. In particular, for »,"?=2.51 F, the
binding energy is 11.5 MeV and the scattering length
is —1.06 F. The corresponding results for the charge
symmetric effective range of 2.73 F are 11.1 MeV
and —0.79 F.

In brief, the low-energy two-nucleon amplitude (2.1),
while giving rise to a reasonable description of the
quartet state, gives too much attraction in the doublet
state. However, it should be noted that the hitherto
neglected tensor forces and nucleon-nucleon short-range
interaction will play a more significant role in the
doublet state. In this state the over-all attractive
interaction weakens the centrifugal barrier which
normally prevents tensor forces, etc., from being
effective at low energies.

Now we consider the results of the calculations when
the effects of the nucleon-nucleon tensor and short-
range forces on the nnp system are represented by the
three-body force, V4 (see Sec. 2). The form factor in
Eq. (2.2) is taken to be

Pyl | 4> = (Pa2+%Qa2+#d2)_l

and A4 is taken to be an adjustable parameter. For the
quartet state, the terms 2Z,,,’Y and Z,,,"? in Eq. (4.1)
cancel. This state, therefore, is independent of the
three-body force. The doublet state, on the other hand,
is quite sensitive to V4. However, no reasonable value

TasLE 1. Theoretical and experimental observables
for the nnp system.

Triton Doublet Quartet
binding scattering scattering
energy length length
(MeV) (F) F)
Experimental® 849  Set1,0.7 £0.3 6.38+0.06
Set 2, 8.26+£0.12 2.6 +0.2
Phillips (this work)
Vi=0 11.1 —0.79 6.28
V40 9.1 0.7 6.28
MB 9.25 5.91
SK 12.5 —2.76 6.28
AAY Z=0 11.0 —1.01 6.28
Z=0.0488 8.76 0.7 6.14
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of V4 gives rise to the set 2 doublet scattering length.
Nevertheless, we do obtain the set 1 value and a good
value for the triton binding energy. In particular, with
a singlet effective range, 7,"?=2.73 F, the value of V,
which gives a doublet scattering length of 0.7 F is
repulsive and corresponds to a 4.39, effect; i.e,
(4] Zun/(s)| ') in Eq. (3.3) is 0.043 of {(q|Z.n(s)|q")
for g=¢'=0 at the elastic threshold. The corresponding
result for 7,"?=2.51 F is 5.79,. We believe that 4 to 5%,
is a reasonable measure for effects due to the two-
nucleon tensor and short-range behavior. We present
in detail the results obtained with 7,"»=2.73 F. '

The scattering lengths and triton binding energy
obtained with V4=0 and V40 are shown in Table I.
Other calculations very similar to ours have been
performed by Mitra and Bhasin (MB),? Sitenko and
Kharenchenko (SK),8 and Aaron, Amado, and Yam
(AAY).” Their results are also shown in Table I. Our
V4=0 results agree moderately well with the results
of AAY obtained with the deuteron wave-function
renormalization Z=0.1 Bander has also considered
the three-nucleon problem in a separable approxima-
tion.l* He found that the three-body scattering ampli-
tude had two poles.’ One of these poles was found to
be a ghost. This result prompted us to search for
additional singularities of our three-body amplitude.
For the V4;#0 amplitude, we found one pole only.
This pole corresponds to the triton.

Inspection of Table I shows that our V40 amplitude
gives rise to the set 1 scattering lengths and to a
reasonable value for the triton binding energy. These
results are encouraging. However, they are crucially
dependent on the assumption that the singlet antibound
state and the deuteron bound state dominate the two-
nucleon amplitude. Whether or not this assumption is
justified can only be resolved by investigating its
consequences for other three-nucleon observables.

In Figs. 1 to 7 we plot the calculated (V4#0) and
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experimental®~? angular distributions for neutron-
deuteron elastic scattering at various energies below
and above the three-particle threshold of 3.334 MeV.
Except at large scattering angles the agreement is
excellent for center-of-mass energies from 0.5 to 14 MeV.

In Fig. 8 the calculated total, elastic and inelastic
cross sections are plotted. The experimental points are
for the total cross section? and are in reasonable
agreement with the calculated values. In Fig. 9 the
total cross section for disintegration is compared with
the experimental data of Catron ef al.?”

Finally we compare our results for the total cross
section in the neighborhood of the inelastic threshold
with the experiment of Willard e# @l.28 This experiment
was designed to search for the violation of charge
independence which would be caused by the existence
of a dineutron. In comparing their results with the
calculations of Alzetta ef al.,? it was concluded that the
dineutron may or may not exist. Inspection of Fig. 10
shows that Willard’s results are consistent with our
results and hence with the assumption of charge
independence.

6. CONCLUSIONS

We have considered three aspects of the nnp system.
They are (1) the binding energy of the triton, (2) the
differential and total cross sections for the elastic
scattering of neutrons by deuterons, (3) the total
cross section for breakup of deuterons by neutron
impact. In all three cases our results are in favorable
agreement with the experimental data. We conclude
with confidence that the Faddeev theory in the separ-
able approximation gives a good representation of the
low-energy nnp system. In particular, the well-known
ambiguity existing in the experimental scattering
lengths is certainly removed.
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The momentum-space integral equations for the
quartet and doublet partial-wave amplitudes and for the
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triton wave function, were cast into matrix equations
by approximating the integrals by summations of the
integrand at discrete values of the momentum. A
100X 100 mesh was taken. Integrations over 74 were
approximated using a method that took into account
the analytic structure implied by the d-N bound-state
scattering cut.®® The required integral is of the form

f@= i M‘”-

1 t'—l—te

(A1)

We make the conformal mapping
t—1o
L=t (T

which takes the cut ¢ plane into the interior of the unit
circle in the 5 plane. The upper lip of the cut becomes
the upper half of the unit circle; the lower lip becomes
the lower half. Under quite weak restrictions the power
series in 7, for f(¢) converges inside and on the unit
circle. If this power series is truncated, it is possible to
relate f(#) to Imf(¢), and hence evaluate integrals of
the form (A1l). The program was arranged such that
the integrations over 7, there being no s-V scattering
cut, could be approximated by any one of several
Newton-Cotes formulas.

Above the three-particle threshold the kernel of the
integral equations has logarithmic singularities. In
evaluating integrals of the form

S f@)n|z|dz,

In|x| was replaced by lne—1 in range —e to +e. If
f(x) is quadratic in «, the error incurred is of the order
e In our work e=10"* was taken. An alternative
method,® involving distortion of the contour of integra-
tion into the complex momentum plane, was considered
but not used since the method is only applicable in the
determination of elastic amplitudes.

The K-matrix integral equations were solved using
standard matrix routines. As a check on the numerical
accuracy, the corresponding 7-matrix equations were
also solved at selected energies.

For the triton binding energy the 100X 100 matrix
equation corresponding to Eq. (4.8) has the form

Kii(E)X;(E)=nX;(E)).

An iterative method for finding the largest eigenvalue,
Nmax, Of K;(E;) was used. If E, is the binding energy of
the triton, gmax=1. A search for zeros of the Fredholm
determinant of the three-nucleon amplitude provided
an independent but less accurate determination of the
triton binding energy.

3 C. Lovelace (unpublished).
3t J. H. Hetherington and L. H. Schick, Phys. Rev. 137, B935
(1965).



