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The present article consists of two parts. First, we assume that the conservation laws for energy and
linear momentum are valid and that these quantities are the sums of the energies and linear momenta of the
individual particles, i.e., that there is no interaction energy and no interaction momentum. We then repeat
a familiar argument and show that there can then be no interaction between the particles, that is, their
world lines are straight. In the second part of the paper the interaction quantities for energy, linear and
angular momenta, and the center-of-mass law are derived for the equations of motion proposed in an
earlier paper. We then study these interaction quantities in the asymptotic region of collision processes, in
order to arrive at asymptotic conservation laws. We find, in agreement with the earlier paper, that the inter-
action energy and the linear interaction momenta vanish asymptotically. This, however, is not true in
general for the interaction angular momenta and center-of-mass motion. Asymptotic interaction angular
momentum is present in all theories, such as classical electrodynamics, which lead to inverse-square-law
forces.

INTRODUCTION AND SUMMARY

w E wish to discuss some aspects of the relativistic
dynamics of a system of e interacting classical

point particles. The history of each particle, i= 1, 2,
e, will be described by an orbit in Minkowski space.
This orbit will be given, parametrically, in terms of the
proper time r;, i.e., the orbit i is given by a vector-
valued function x; (T;), where n refers to the time and
the spatial coordinates. Proper time is the same as arc
length so that

Q.l.[*,.(T,)$1=1,
where the dot refers to differentiation with respect to
the argument 7; and where —lp=l]=l2=l3= 1 and
we assume that i;o(T,))0, i.e., that the proper time runs
in the same direction as the actual time.

The components of the linear momentum and the
energy of the individual particle i at time t& will be
defined as follows: Let v-;& be the solution of the equation

X~O(Tjl) = $1 q (2)
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then the expression for the energy and the components

of the linear momentum at li will be

P;.(tl) =m;X;.(T,l) . (3)

In Sec. 1 we repeat, in detail, a familiar derivation of
a "no interaction theorem"' by showing that if (a) the

'See, for instance, P. G. Bergmann, The Special Theory of
Relativity, Handbuch der Physik. IV (Springer, Berlin, 1962),
p. 147. The theorem discussed here has a purely kinematical basis.
Several "no interaction" theorems with a dynamical origin have
appeared in the recent literature: D. G. Currie, T. F. Jordan,
and E. C. G. Sudarshan, Rev. Mod. Phys. 35, 350 (1963);D. G.
Currie, J. Math. Phys. 4, 1470 (1963); J. T. Cannon and T. F.
Jordan, ibid. 5, 299 (1964);H. Ekstein, Consistence of Relativistic
Particle Theories, Universite d'Aix-Marseille, (1964, unpublished),
H. I eutwyler, Nuovo Cimento 37, 556 (1965).

Henceforth, we shall use the term linear momentum for
both energy and linear momentum. Similarly we shall
use the word angular momentum for center-of-mass
momentum and angular momentum, i.e., all six com-
ponents of the usual antisymmetric tensor. The com-

ponents of the angular momentum of particle i at time

f& are

p(fl) X" (T '1)P~p(tl) P (/1)S~p(Til) ~ (4')
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and are conserved, i.e., independent of t, in every co-
ordinate system of the special theory of relativity,
(b) the particles do not coincide, i.e., there are no pairsi,
k, and proper times r, and r2 so that x; (r;) =x2 (rI,)
for n=0, 1, 2, 3, and if (c) asymptotically, that is either
for all 7;~~, or all 7;—+ —~, the orbits are straight
i.e., the x; become constant, then for e=2, 3, or 4 the
orbits are straight throughout. Even if the preceding
conclusion were valid only for m= 2,i.e., for all pairs i,
k, this would ordinarily be interpreted as the absence of
interaction between pairs of particles except at coin-
cidence. A coincidence of two world lines is, however,
infinitely unlikely as soon as the dimensionality of
space-time is 3 or more. It follows that the total linear
momentum can be given by (5) only in the asymptotic
regions. In the region of interaction one must add to the
right side of (5) interaction linear momenta. '

In Sec. 2 we give the expressions for the interaction
linear momenta and the interaction angular momenta of
the dynamics which is described by the equations of
motion which we proposed in an earlier paper. ' These
expressions are then studied, in Sec. 3, in the asymptotic
regions of collision processes. The interaction angular
momenta approach constants in these regions. In Sec. 4
we illustrate, by a kinematical argument, that such
asymptotic interaction angular momenta are present in
all relativistic theories, such as classical electrodynamics
and gravity theory, which involve inverse-square-law
forces.

1. PROOF OF A "NO INTERACTION THEOREM"

Let us make the assumptions (a), (b), and (c),
mentioned in the preceding section. According to as-
sumption (a) the total linear momentum P (/) is given
by (5) and does not depend on t, and this is true for
every coordinate system of the special theory of rela-
tivity. The asymptotic condition (c) implies that P„,
given by (5), transforms as a vector under proper
inhomogeneous I orentz transformations. In order to see
this, consider two coordinate systems such that the
coordinates x ' in the second coordinate system are
related to those in the first frame x by

x(g —QpL~pxp ~ (6)

~ That one must introduce interaction energy and linear momen-
tum for classical relativistic inechanics has been pointed out also
by L. Brillouin, Compt. Rend. 259, 2361,(1964). For a simpliled
derivation of the conservation laws from invariance postulates,
see W. Macke, Forsch. Fortschr. 39, 193 (1965).

3H. Van Dam and E. P. Wigner, Phys. Rev. 138, B1576
(1965). The status of the classical theory of interacting point
particles, prior to this article was summarized by P. Havas, in
Statistical Mechanics of Fquilibrium and Eon-equilibrium, edited
by J. Meixner (North Holland Publishing Company, Amsterdam,
1965). Also see D. G. Currie, Phys. Rev. 142, 81'l (1966).

components of the total linear momentum are given by

P (t,)=P,P;,(t&),

Let us assume that x; (r;) become constant for 7;~~ .
It is then possible to choose t~ in the first frame such that
x; (v;) .become independent of r; for r;& r;2, where the
r, r are given by (2). The time t&' in the second coordi-
nate system can, furthermore, be chosen so large that
r,z') r;& for all i, where the r;z' are given by (2) in the
second coordinate system, that is, by

tr' ——x;2'(T 'y') =P Lp x; (r;q') . (&)

One can achieve this by choosing t&' larger than the
largest of the x;2'(r;~). Let us now calculate the com-
ponents of the linear momentum in the second coordi-
nate system. We obtain

P.'=P,m, gpL px,p(r;g').

Since the x; are under the conditions independent of
the r;, the 2,&' can be replaced in (6) by r, & and we have

P. =P,m, QpL.px,p(r, ,)=P&L.pPp.

Hence, the components of the linear-momentum trans-
form as the components of a vector. It is in order to
assure this that the asymptotic condition (c) was
introduced.

I.et us view the linear momentum in the interact-
ing (nonasymptotic) region as given by the two
frames. The first frame gives for the total linear momen-
tum g,m,x,,(r;~), where the points x; (r,~) are simul-
taneous at tj in that frame. The second frame gives
P,m;x; (r;~), where the points x, (r,q) are simultaneous,
at time tj', in the second coordinate frame. The total
linear momenta are conserved in their respective
frames, i.e., independent of t~ and t~'. Furthermore
,they are asymptotically related by (9), which means
that they are always so related. Hence,

Z.m'*'-'(r'~') =P-'= EpL-pP p

=gpP;L.pm;x'~p(r, ,) (10)

is valid for all values of tj and t~'. Since, however,
P~L px;p(7;~) =x; '(r;~), we obtain the result that the
sum of the 0, components of the individual momenta is
the same not only on any plane of constant time in the
coordinate system considered but also on any plane
which represents constant time in any other coordinate
system. Replacing the primed variables by unprimed
ones, and conversely, we have

Pm, x;.(egg)=P;2m~;. (rn'), (11)

where the points x; (r;2') are simultaneous from the
p'oint of view of any coordinate system. This is illus-
trated in Fig. 1. Equation (11) immediately implies
the no interaction theorem, as we shall see next.

Consider first a closed system of two point particles.
Let x& (r&) be the coordinates of an arbitrary point on
the orbit of the first particle, and let x2~(r2) and x2, (T2 )
be the two points which are simultaneous with x~, (r~) in
two different coordinate frames. Equation (11) gives
mlxl (rl)+m2x2 (T2)=mix2 (r2)+m2x2x2 (T2 ), so that
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The equations of motion considered before are

z plane
m, x;.(r;)=P dry, F;g (r;,ri,), (12a)

1 plane
=X

-- t1ptane

I'IG. 1. Interpretation of Eq. (11).The world lines of particles
1, 2, and 3 are assumed to be coplanar and to lie entirely in the
x-t plane. The x components of the momenta of three particles
are shown at times t& and t2, Their sum must be equal because of
the conservation law for linear momentum. It follows, however,
from (11) that the sum of these components is the same also if
taken on the t1' plane which represents the points which are
simultaneous from the point of view of any other coordinate
system.

x2~ (r2) x2~ (r2 ) We conclude that the linear momen-
tum in the second orbit does not change in the section of
the orbit which is outside the light cones based on the
point xi~(ri). Using several points xi (ri) as bases,
it follows that x2~(r2) does not depend on r2 Asimila. r
argument is possible also for m= 3, i.e., three orbits, un-

less they are coplanar. Let us choose a point on each of
the first two orbits, say, the points with the parameters
v-~, 72, so that these are in a spacelike relation to each
other. There is, in general, still a finite section on the
third orbit the points of which are in some coordinate
system simultaneous with the selected points on the
6rst two orbits. The momentum vector of the third
particle must then be constant along that finite section.
In general, the entire third orbit can be decomposed
into such sections so that the momentum vector
maxa (r3) must be constant throughout. This amounts
to the absence of three-particle forces in the usual

language. The same argument is possible even for
n=4.

2. INSTANTANEOUS CONSERVATION LAWS
FOR A DYNAMICS OF INTERACTING

POINT PARTICLES

Ke shall now give the expressions for the interaction
linear momenta and angular momenta for those equa-
tions of motion which we proposed in an earlier paper. '
We then study these expressions in the asymptotic
regions of collision processes. For forces between pairs
of particles which are, in the nonrelativistic sense,
proportional to the inverse of the square of the distance
between the particles, the interaction angular momenta
approach constants in the asymptotic regions. This
leads to a modihcation in the formulation of the asymp-
totic conservation laws for angular momenta.

g ——l.x; (r;)ii, (r,), (13b)

'.=Z-1-*'-( ')[ '-( ')- .-( .)j, (13 )

0~;——Q 1 xi (ri,) t xi,, (ri,)—x, (r;)j. (13d)

All the quantities are functions of v; and r&. We shall
assume that the functions y,&(p) go to zero rapidly if
p becomes larger than the "range" R;~ of the inter-
action. The orbits, incidentally, can be calculated by
an iterative procedure from the positions and velocities
of the particles at one instant of time in an arbitrary
Lorentz frame. It can be shown that this iterative pro-
cedure converges to a unique set of orbits for distant
collisions.

Since p;&(p) = p&, (p), Eqs. (12) imply that the con-
tribution, from a small interval 81, around 7I, on k, to the
change in linear momentum of i during a small interval
8; around 7; on i,is equal and opposite to the contribu-
tion from 6; to the change of linear momentum of k dur-
ing bA, . That means that linear momentum is exchanged
without loss between the orbits i and k. Since, further-
more, the exchanged linear momentum has the direc-
tion of the line connecting x;„(r;) and xi, (ri,), angular
momentum is also transferred without loss between the
orbitsi and k.

The situation is analogous to that for central forces
between pairs of particles in Newtonian mechanics.
The only difference is that in Newtonian theory the
transfer of linear momentum and angular momentum
is instantaneous, whereas here the times x;0(r;) and
xio(ri, ) will not be the same in general. Hence, there is
linear momentum (and angular momentum) which has
left i and not yet arrived at k. These quantities "in
transfer" constitute the interaction momentum and
angular momentum. Since no linear momentum is lost
during the interaction, the sum of the linear momenta of
the particles, which is given by the right side of (5),
and the linear momentum in transit is conserved and
this sum will be called total linear momentum. This is
illustrated, for a single exchange of linear momentum, '

4An interaction of this type has been proposed by P. Havas
and J. Plebanski, Bull. Am. Phys. Soc. 5, 433 (1960).

where

F;.( ', )=—F *.-(, ')=L. '-( ~)
— -( )j

X Pq;~(p;~)f;a+ q;~'(p;. )~,a~.;/p;.j. (12b)

In this, p;I, =p&; is an essentially arbitrary function
representing the interaction between particles i and k
which, however, is to be set equal to zero for imaginary
p, & so that the integration in (12a) covers effectively
only a finite range; pa, '(p'i, )= dq;i, (p;i,)/dpp, and where

* ={2-—1.L '-( ~)
— -( )3')'", (13 )
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3. ASYMPTOTIC CONSERVATION LAWS

We assume that the world lines become widely
separated for large values of

~
tl~ and wish to evaluate

(14b) and (15b) under this assumption. This implies the
evaluation of double integrals, over v-; and v.l, . However,
the integral over v.I, under the assumption of wide
separation has been evaluated. before; it is the erst
term of (20), Ref. 3. This gives

—xi, (ki„,)j—0;o(r;,ki «)xl (ki «))I, (17a)

and I is given by (20b) [oi,;(r;,ki,«) is negative j
I= —-', [oo,(r;,ki «)] 'pg, ', (17b)

I'&(p)p dp (17c)

where ki„~ is the value of 7-~ which corresponds to the
point on the world line of k where the retarded light
cone from r; intersects it. Since f;o, 0;l, o.o, all depend on
7 ' and ~&, the value of these variables is given explicitly
in the Kqs. (17).It is noteworthy that the value of the
integral on the left does not depend on v». The reason
for this is that the integrand is very small except in the
neighborhood of the value ~I, =ki„& so that the region
around ~» contributes signi6cantly only if r; is near
the advanced light cone from rll. For this r;, (17) is
indeed inaccurate but this is only a small part of the
total integral over r; in (14b) or (15b).

It should be possible to calculate the expressions
(14b) and (15b) for the interaction momenta, assuming
only that the spatial part of the distance of every point
on the world line of k, which is spatially located with
respect to the point 7,~ on the world line of i, is large as
compared with the range of q;~, and that this holds
for all pairs i, k. This assumption is already implicit in

(17a). Such a calculation would give an expression
for the interaction momenta which is valid throughout
distant collisions, as also in a gas with low density, in
addition to being valid in the asymptotic region of all
collisions. Both calculation and result become much
simpler, however, if we interpret the asymptotic regions
as the regions in which x; (r;) can be approximated by
r,x;, with a constant x;, in the sense that x; (r;)
—v;i; is small as compared with v;i; . Using this inter-
pretation of asymptotic, we shall obtain expressions for
the interaction momenta which are valid only a very
long time before, or a very long time after, an arbitrary
collision but are not valid during any collision, however
distant.

Let us derive, first, a more simple expression for the
integral in (17a). For this purpose, we first calculate

From this

Xla(ki«l) =XOar;Q' O
—

Q 7,
'—1)"'g (18b)

og, (r;,ki «)=P l.x;,[x; (ri) xo—,(ki,«)j
= r;[1 f'a, +—t, i (f' g, 1)'i'j—

oi,;(ki,«,r;)=Q l xo [xl (ki«) —x; (r;)j
= —'({'"—1)'" (18d)

Hence (17a) and (17b) give

t taxia xoa
droF, l (r;,ro) = oo,o',

. 2 ] 3/2
~ O.o )

For (14b), this has to be integrated with respect to r;
f1 0111 r l to the maximum value at which (17a) remains
valid which is near ik,d . However, even the integral
from 7;~ to ~has a 7,~ in the denominator so that the
linear interaction momenta go asymptotically to zero
as v-;& —+~. This result was obtained already. ' The cal-
culation also shows that the small inaccuracy of Eqs.
(18) does not affect the result.

The interaction angular momentum is given by (15b).

W;kap(tl) = — dr;[X, r, (f', lX;p Xop)—

where
xipri(fikxia xka) jvij7c Zio/2ri ) (20a)

Z'. = (f.;"-1)-'t'. (20b)

The lower limit of the integral in (20a) is r, l. It upper
limit is given by ik, z which is the limit of the validity
of (17a). For r;) ik,d, the integrand must be replaced
by 0, the correct value of the left side of (17a) if r; is
in the light cone of all 71,. Hence,

Wikap(tl) oZikV'ik (xipxka xiaXkp) In(ik, dv/r, l), (21a)

where ik„d is given by an equation similar to (18a)

(ikadv) +rkl 2{ikrkl(ikadv) =0. (21b)

This permits the calculation of ik,z . Finally, z;& and
7» have to be expressed in terms of t&, since only the
logarithms of these quantities appear in (21), ti/x;o and
tl/xoo are sufFiciently accurate expressions for them. We
obtain, finally,

W;lap(tl) = ',Z, l ip;O'(X;pXi. -X;,XOp)—
X{ln(xio/xoo)+1n[f'ii, +(fg, 1)' j) . (22—)

The last ln drops out if one forms the symmetric ex-
pression W;o p(tl)+ Wl, ,p(tl) which appears in the

xka(ki«&). This is given by the equation

0=+.t.[x;.—x,.(ki„,)jo=g.l.(r,i',.—ki.«x,.)i
= r y(ki, «)' 2g—;or;ki,«. (18s)

Since all velocities are assumed to be independent of
r;, rl, this holds also for 1;i,. From (18a)
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total interaction angular momentum (15a). Hence, the
final expression in the asymptotic region, as defined
above, is

W.p= g Ze, p;k'(x;pxg. x;—.xgp) ln(x, p/xl, o) .
~&Ie (23)

Z, I, is given by (20b); p;I, ' by (17c).'
In the center-of-mass system for a collision of two

particles, the interaction term (23) vanishes for the
spatial components and all the components vanish if
the two masses are equal. However, no component of
S'

p will vanish in general in a collision of three or more
particles and the aforementioned cancellations occur
also only in the center-of-mass coordinate system.

4. KINEMATICAL ORIGIN OF THE INTERAC-
TION ANGULAR MOMENTA

The existence of the aysmptotic interaction momenta
has, to our knowledge, not been pointed out before. '
It is worth while to mention, therefore, that their exist-
ence can be demonstrated also kinematically and that
they are due to the relatively long-range nature of the
inverse-square law of force.

The most simple case which shows this is a collision
of two charged particles of equal mass, moving along
the x axis, separating from each other. One has, asymp-
totically, in the coordinate system in which the center

' For y;&(p) =e;eI, (d/dp')8(p'), one obtains the equations of
motion proposed by J. A. Wheeler and R. P. Feynman, Rev. Mod.
Phys. 21, 425 (1949).

'The presence of interaction angular momentum in collision
processes has been recognized by a number of authors. Pt seems,
however, that one has, so far, assumed this angular momentum to
vanish asymptotically, i.e., as the particles separate. See, for
instance, H. Yilmaz, Introduction to the Theory of Relativity and
the Principles of ill odern Physics (Blaisdell Publishing Company,
New York, 1965), pp. 56—57. Also, see J. W. Dettman and A.
Schild, Phys. Rev. %, 1059 (1954).

C' —S'=1, one obtains, assuming that the logarithmic
term in (24) is small as compared with vt and neglecting a

Cv+S e' t'/r,
Xy'= - ln

C+Sv 4v'(C+Sv) C+Sv
(25a)

/X2—
—Cv+S e' 1'/tp

t'+ -ln
C—Sv 4v'(C —Sv) C—Sv

(25b)

In order to calculate M' = x~'dt, '/dr ~+x2'dt'/dr,
t'(dx&—'/dr&+dx&'/dr2), one may note that the deriva-

tives of x~' and x~' do not contain a logarithmic term;
d&'/dr&=(C+Sv)(1 —v') '~' d&'/dr2=(C —Sv)(1—v') '~'

Hence one obtains

2

JI/I'= — ln
4v'(1 —v') "' C—Sv

(26)

Since the whole M tensor vanishes in the original co-
ordinate system, this (26) must be compensated by the
interaction angular momentum. Clearly, if there is a
logarithmic term in the distance-time relationship, the
occurrence of an interaction angular momentum is a
purely kinematical effect in the sense of the no-inter-
action theorem of Sec. 1. In classical electrodynamics,
the asymptotic interaction angular momentum is part
of the asymptotic angular momentum of the 6eld.
This part is distinguished from radiation by the way it
transforms under Lorentz transformations.

of mass is at rest

x,= x,—= a+vs (e—'/4v') lnt/t„, (24)

e being the terminal velocity. Transforming this to a
moving coordinate system

x'=Cx+Sr t'=Sx+Ct


