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Light Fluctuations Due to an Intergalactic Flux of Gravitational Waves~
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A formula is derived that gives the time dependence of the intensity of a light beam that has passed
through an arbitrarily varying gravitational Geld. The formula is valid to second order in the gravitational
Geld strength and is valid only in the geometrical-optical limit for the light beam. An application of the
formula to the case where there is only a single source of gravitational Geld, such as a binary star system,
shows that the eGect is exceedingly small. Then the case where space is Glled uniformly with gravitational
radiation is considered. It is found that for a small light source at a distance of a few billion light years the
largest effect that can be expected amounts to an intensity variation of a thousandth of a percent. At larger
distances it is conceivable that there would be observable intensity fluctuations; however, the formulas
derived in this paper are not valid at such great distances.

I. INTRODUCTIOH

A PE% years ago it was suggested by Bertotti'
that gravitational waves should interact with

light waves in a way that could make the CGect observ-
able on an astronomical scale.

The reason for believing in such an c8cct is the fol-
lowing: It is known that under some circumstances
when light waves travel through a gravitational Geld
the Geld acts like a refracting medium. In this analogy
the gravitational potentials take the place of the re-
fractive index; indeed this analogy was used by Ein-
stein to calculate the bending of light as it passes near
a star. ' It then seems reasonable that if the potentials
vary in time, 'a light wave passing through the Geld
will be bent to diferent degrees at diGerent times and
also that a beam of light will change in intensity as a
function of time. The analog in ordinary refracting
media is the twinkling of stars as viewed from below
the atmosphere and is just due to Auctuations in the
density and temperature of parts of the atmosphere. '

The purpose of the present paper is to investigate
the twinkling of stars which may be caused by time-
varying gravitational fields in interstellar and inter-
galactic space. Only the limiting case of geometrical
optics (of the light) will be treated in this paper.

In Secs. II and III a formula is derived which gives
the intensity of the observed light in terms of the gravi-
tational Gelds through which the light passes. Most of
the rest of the paper is devoted to applying the formula
to various cases. Section IV deals with the case of a
single source of gravity and it is shown the cGect is
probably unobservable. Section U deals with the case of
a universe Glled uniformly with gravitational radiation.
Various quantities of interest are calculated and it is
shown that the light fluctuations are probably unob-
servable. Even under the rather extreme conditions

*Research on this paper was supported by the U. S. Air Force
under AFOSR 409-65.

' J. Weber {private communication).
'A. Einstein, A. A. Lorentz, H. Minkowski, and H. %'eyl,

The I rinciP/e of Re/atiyity (Dover Publications, Inc. , New York,
1923},p. 99.

'L. A. Chernov, 8'aw I'ropagaHon in a Random Medium
(McGraw-Hill Book Company, Inc. , New York, 1960}.

assumed for the calculation the intensity probably
does not vary over a thousandth of a percent. A more
exact calculation could conceivably show, however,
that for extremely distant sources L 10" light years
(l.y.)j there would be an observable effect. Sections
VI and VII deal with two points that had been omitted
from previous discussions and Secs. VIII and IX give
the conclusions and acknowledgments.

We will look for a solution of (1) of the form:

A„=B„exp(iS).

In the limit of geometrical optics the (scalar) phase, S,
is a rapidly varying function of x& whereas the amplitude,
8„,is a slowly varying function of x&. In the absence
of a gravitational Geld 8 is just k„x&,where k„is the
(constant) frequency 4-vector of the light wave. The
flcqucnclcs contained ln Bp alc those charactcrlstlc of
the gravitational Geld and are assumed to be very
much smaller than the frequency of the light wave. We
set J„=Oand insert (3) into (1).

B„".,„+R„"B„S"S,,B„=0, —

2S "B„.+S "
,„B„=O. .

(4)

(~)

With the approximations inherent in geometrical optics

4 J. Weber, Genera/ Re/akvzty and Graeitationa/ W'aves (Inter-
science Publishers, Inc., New York, 1961),p. 59.

'Summation over repeated indices is used throughout the
paper. Greek indices run from 1-4; Latin indices run from 1-3.
The signature of the metric is —2. Usually c and 6 will be set
equal to one.
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II. GEOMETRICAL OPTICS

Maxwell's equations for the potentials in the presence
of a gravitational Geld can be written4 5:

A„'",„+R„"A„=—4srJ„, A".
,„=0.

A„is the Maxwell 4-potential, 8„"is the Ricci tensor
and J„is the 4-current density. The Maxwell Gelds

Pp, y alC
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mentioned above we see that the solution of (4) in the
first approximation is

normalization factor S is given by

X=k„vp"=—orp, (12)
5 "5 =0 (6)

This is just the usual equation that governs geometrical
optics. The theory of geometrical optics (Hamilton's
theory) tells us that we may introduce curves that are
normal to the surfaces of constant phase, S.' These
curves are the paths of light rays and 5,

„

is their tangent
vector field. On each ray this tangent can be written
in a different form. Define

where orp is the frequency of the light beam as measured
by the observer [as can be seen by evaluating (12) in
the observer's rest frame]. The stress tensor T„,can
be calculated in the geometrical optical limit to be

1 1T„„=[F„—&Fp„4ig„„F—&'Fp,J k„—k„—B'. (13)

Equation (10) can now be written in the form':

S ~= k~=X—x~(tt—)=XU~.—
dN

(7) F0=np~(T&„)ovp"~(1/4x)(do 8

The functions x"(tt) are the parametric equations of the
ray and I is a "special parameter" on the ray. ' ) is a
constant on each ray but may vary from ray to ray;
it can be chosen to make kl'= 5 & on each ray [Eq. (7)j.
k& is the frequency 4-vector of the wave and it is a null
vector [Eq. (6)j.

k„k~=0; U„V~=0.

We see that we only need to find 8' from (9) in order
to calculate Fp.

III. SOLUTION FOR 8'

In order to solve (9) for 8' we need to evaluate
P 'k&.,„.It is a scalar and so we can define a convenient
set of coordinates in which to evaluate it. Let one of
these new coordinates x" be the parameter N. Then

The rays are geodesics as can be seen by differentiating
(8) and using (7).The parameters u and X will be defined
in more detail below. We can get an equation for
8„8"=8'by contracting (5) with 8".

and

k~'= X—x~'= Lb&~,
dl

l9

7 k~.,„=—in[a/( —g')),
BN

(15)

(16)

—8'+X 'k„.,„B'=0.
dN

(9)

Before proceeding with the solution of (9) we will
define what is meant by the observed energy Qux in
the light beam. The energy Aux, Fp, measured by the
observer is given by the Poynting vector measured in
his rest frame':

Fp ——no~(T, 4) p. (10)

Here wo&=dxl'(s)/ds is the 4-velocity of the observer,
xl'(s) is his trajectory and s is his proper time. The

6 J. L. Synge, Relativity: The General Theory {North-Holland
Publishing Company, Amsterdam, 1960), p. 25. Hereafter this
book will be referred to as "Synge. " The notation used in this
paper is slightly different from that in "Synge. " The main dif-
ference is that Synge's metric signature is +2 and the roles of
Greek and Latin indices are interchanged.' Synge, Ref. 6, p. 7.

8 The subscript 0 will denote quantities pertaining to the ob-
server and the subscript s will denote those pertaining to the light
source.

The unit 3-vector np points in the direction of the ray.
Both no' and (T,4) 0 refer to the observer's (instantane-
ous I.orentz) rest frame. In this frame no' can be thought
of as proportional to the 4-vector k& with the component
parallel to the observer's world line subtracted oQ'. In
general then

n,~=IV '[k~ (k.v,")t0~],-n, „n—,~= —1. (11)

where g' is the determinant of the metric g„,'. In terms
of the transformation coe%cients between the primed
and unprimed systems,

Bx" Bx" Bxt' Bx'
v'( g') =n",.—

Bx' Bx' Bx' Bx'
(17)

' T. Fulton and F. Rohrlich, Ann. Phys. 9, 499 (1960),Eq. (3.1).
'0 Synge, Ref. 6, p. 18.
"Synge, Ref. 6, p. 83. These coordinates are similar to Synge's

"optical coordinates. "

is the completely antisymmetric tensor of Levi-
Civita. "The rest of the primed coordinates are con-
veniently defined as follows. " Choose an event I" on
the world line C' of a point source of light and construct
all of the null geodesics which are emitted at this event
[Fig. 1(a)]. The coordinate I can be though of as a
radial coordinate measured along these geodesics. One
of these rays will intersect the world line C of the ob-
server at the event I' when the proper time, s, of the
observer is s~. We define the time coordinate x" for
each ray that intersects C to be s, the proper time of
arrival as measured by the observer. For completeness
define the value of x4' for all the other rays that leave
I" to be s&. The value of I for any event on C' will be
defined to be zero; on C it will be defined to be a con-
stant o-. The special parameter I can always be defined
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Fro. 1. (a) World lines of a light
source C' and observer C, and
two null geodesics connecting them.
The various symbols are explained
in the text. (b) Coordinate labels of
three light rays leaving the source.

P'

=v, , q=q, +Sq, s=s,

q=q), s=s,

~+Sv q=q~

U=

(a)

to make this true. "There are two more coordinates to
be defined. Construct an infinitesimal spacial sphere
around the event P' LFig. 1(b)j.On the surface of this
sphere we can set up a two-dimensional coordinate
system. For our purposes it will be sufficient to define
these coordinates only in the neighborhood of the ray
P'P of Fig. 1(a). I.et the coordinates be p and q and let
their values be pi and qi for the ray P'P. The coordi-
nates of two neighboring rays are shown in Fig. 1(b).
With these definitions (17) becomes

—gV
)

are tangents to their respective coordinate lines. With
this notation we define a quantity A.

A=7+( g') =~„„.k~a"b—~t . (19)

BX"BX" 8$l' 8$'
V ( g') =~v~n~

BN Bp Bq Bs

Now Bx"/8N= U" which is the tangent to the curves
along which u varies. Similarly,

It is

where
(b'/bu')a~ —1(.~ a"=0,

E"„=R"Pv, U~U~,

(21)

(22)

1 d
(a, U&) =—U& a, = U&—U—,=——(U&U, )=0. (24)

dl bm bp 2 dp

All of the vectors that appear in (19) satisfy an equa-
tion of geodesic deviation so that the problem reduces
to solving (21).

Equation (21) is rather complicated in that it in-

volves covariant derivatives. It can be greatly simplified

by introducing an orthonormal set of basis vectors
(tetrad), )i( &&.

(4 The subscript in parentheses is not a
tensor index but nierely denotes the 0.th basis vector
(a=1—4); the summation convention is used on these
tetrad indices. The main properties of the tetrad are

and R&,„,is the Riemann-Christoffel curvature tensor.

Z~,„.=i",„,.—r,.„+r„.r-,„—r .„I..., (23)

where F&„„is the Christoffel symbol of the second kind.
Note that the "angle" between a& and U& is independent
of u.

Inserting (19) and (16) into (9) gives

8'= h/A, (20)

~( )"~(~).=~ ~~ ~""=~~~(~)" ~

(25)
l(( i9, '~&"=g&" g P=diag( —1, —1, —1, 1).

where h is independent of u.
The reason for this rather detailed (though geo-

metrically simple) set of definitions will now become
evident because we have a way to calculate k, u, b, t
in (19).In Fig. 1(b) the vector distance of (or deviation
of) the ray labeled by pi+ bp from the original ray P'P
is just given by a"bp. This latter quantity is the devia-
tion between two geodesics that are an infinitesimal
distance apart. There is a well-known and fundamental
equation that tells how a&bp varies as we move along the
rays, namely, the "equation of geodesic deviation. '"'

~ Synge, Ref. 6, p. 7.
"Synge, Ref. 6, p. 19.

(~) Io» ('
~ (~) (26)

where s' is the proper time of the source. It is easy to
show that the relations in (25) are preserved everywhere.

"Synge, Ref. 6, p. 8.

Such a tetrad can be defined at some event on the
world line of the light source C'. It is constructed at
other events on C' by parallel transport along C', and
it is constructed at any other event in space-time by
parallel transport along the future pointing null geodesic
that connects C' to the event. That is,
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3Iii+3Po M a. I E ~dN (43)

E» =R p„UPU&=Rp,UPU&. (44)

This is zero in free space. We are not in free space be-
cause there is at least a nonzero electromagnetic stress-
tensor around. But T pU U&=0 for the Maxwell stress
tensor of the light beam and this implies (44) is zero
also. Of course, there may be other stresses around such
as those caused by a matter distribution. These can
give nonzero results for (44), however we will defer
consideration of this case until Sec. VI Lwhere we will

Gnd that for the case considered the contribution from
(44) is small] and take the case wh. ere there is no first-
order eRect.

K =0. (45)

A detailed look at the first-order terms in (36) and (37)
when (45) holds shows that what happens is that when
a& increases, b& decreases such that their product is
constant. Geometrically what happens is that if the
initial cross section of the light beam is square (for
instance), it becomes deformed into a rectangle or
diamond of the same area. This is a rather general
property of free gravitational fields. "

Using (41) and (45), we find

Pii+P'o ——P (46)

(47)

The last equation is just the usual formula for the
Doppler shift written in terms of 4-velocities rather
than 3-velocities. "

Formula (40) has a simple physical (geometrical)
interpretation. In the absence of gravity only the first
term survives and it is just equal to the cross-sectional
area of the beam (times opp) at the observer. The rest
of the terms can then be interpreted as the change in

the cross section due to differential bending of light rays
by the gravitational field (see Fig. 2).

If we make use of (41) and the definitions of M~p (36)
we find

/,/

I
I I
I I
I
I«W

FIG. 2. A light beam in free space {dashed) and the beam when a
gravitational 6eld is present (solid). Different rays are bent to
different degrees and so the cross-sectional area changes as well
as the direction of the beam.

AP= Pn8 p=s4~—T pp, Pr'8y= r'8pp. (50)
4rA (u)

A (u) is obtained from (28), (33)—(35). In the limit that
u (and r) go to zero, (50) becomes

~&s
I'o,oy =— (51)

which gives us h in terms of the constant Pg. Combining

(14), (20), (48), (49), and (51), we obtain

P&lp~pq'l'dry '( bApq-

~' k~,) &du), E Ap)
(52)

We note that (49) is independent of the choice made in

(38) and (39) and it is also independent of our choice
of tetrads.

In order to complete the derivation of the energy
received by the observer we have to compute the func-
tion ls in (20). This can be done by assuming that in the
rest frame of the source the energy Aux and frequency
of the light beam are independent of time. The Aux near
the source can be obtained from (11) and (14) by re-

placing the subscript 0 by s. For a point source it is
more meaningful to use the power radiated per unit
solid angle I'g, rather than Aux. Construct an inGnitesi-
mal sphere of proper radius r around the source. The
light beam in (49) passes through a small area I'8y and
so the power 5P passing through this area is

a~o

~o f7 o

tI

du du'E p(u')
0

1 'g

Ao can finally be written as

A p =os ptr'8 &p 1+
~o-

uI

dp dpYEP (p')
0 0

If we assume that the characteristic length of varia-
tion of the gravitational Geld is large compared to the
telescope objective, then the total power I'o received by
the telescope (of a,rea Ar) is

Ar (pso)o (dr) '/ ikAp)

~' i~,) &du), & Ap)'

20' p

du du'u'E p(u')

X du du'u'EP, (u') . (49)
0

"J. D. Jackson, Classical L&'lectrodyssamics (John Wiley 8i
Sons, Inc., New York, 1962), p. 363.

' F. A. E. Pirani, Phys. Rev. 105, 1089 (1957).

The factor (dr/du) o can be evaluated by using (25).

l' dr) o dx" dx"
= —(g„„—p,„p,„)U~U~ (,

= (&."U.).'= (~ '~.)'=
(
—

~

(po" U.)'
kM p)
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U co'

$ ~

U=O

Bina
gO
btL

U

FlG. 3. The configuration used for a calculation of the light
intensity variations induced by a binary star system that is near
the path between the light source 5 and observer O.

IV. SOME MODEL CALCULATIONS

As a first example we will consider a light beam that
passes close by a binary star system (Fig. 3). A look at
(49) would indicate that the radiation Geld from the
binary may give a large effect because there would be
appreciable contributions to the integrals from all along
the light path. A closer study shows this to be untrue,
however, because of the transverse character of gravi-
tational radiation. At large distances from the binary
system the direction of the gravitational radiation is
almost parallel to the light beam and under this circum-
stance the quantity E p approaches zero."Further study
of the integrals then shows that the near Gelds (New-
tonian Gelds) give the largest contribution. Under this
condition there is a much faster way to calculate the
effect than by (49). Liebes" has calculated the intensi-

"Synge, Ref. 6, p. 86.
~ G. C. McVittie, Fact and Theory in Cosmology (The Macmillan

Company, New York, 1961), p. 114."L. Witten, Gravitation: An Introduction to Current Research
(John Wiley k Sons, Inc. , New York, 1962), p. 215-217.

"- S. I.iebes, Phys. Rev. 133, 8835 (1964).

The quantity o (vo&U„) in flat space is just the observer-
source distance as measured by the observer. It is
natural to define this scalar to be the observer-source
distance L in general. "

Our final result is

( Ap) prdp) ( DAO)
(55)

I,'I %co,i ( Aoi

The physical interpretation of the three factors in
(55) is simple. The first factor is just the power that
the observer would measure if there were no gravita-
tional effects and if the source were at rest with respect
to the observer. The second factor comes from three
effects. One factor of (coo/co, ) is just due to the Doppler
shift of the emitted frequency. Another factor comes
from a change in the rate of emission of photons by the
source because of its motion with respect to the ob-
server (time dilation plus retardation). "The last two
factors of (~0/co, ) are due to the aberration of the
emitted light because of the source's relative motion.
The last factor in (55) contains the gravitational effect
and can be interpreted as due to a change in the cross-
sectional area of the light beam caused by differential
bending of the light rays induced by the gravitational
fields through which they pass.

fication of starlight that passes through the Newtonian
field around a star. His technique is valid when the
gravitational field is static (or quasistatic); his result
is not restricted to weak fields as is (49). Evaluation of
(49) for the binary system gives a result in agreement
with that of Liebes and since the eGect is very small,
only the final answer will be given

hA o )8Gmdq' I. q'
cos2 (~t+ p) . (56)

4 c'f' ) I.)
The stars, each of mass m and a distance d apart, rotate
in the x-y plane and the light beam travels in the s
direction and passes at a distance b from the binary.
The frequency of the binary is co and it has been as-
sumed that ~b is much less than one. L is the source-
observer distance and L& is the source-binary distance.
Equation (56) is the largest time-varying part of the
eGect and arises from the interference between the
static and dynamic fields around the binary. In (56)
we see that the effect is small if the binary is near the
source or observer. This is because if the binary is near
the source the light rays are very close together and so
the "force" tending to give relative bending is small
[Eq. (29)j; if the binary is near the observer the "force"
is relatively large but the rays do not have enough time
to converge or diverge much by the time they reach the
observer. If we take m=3I o =2X10"g, a binary period
of ten years, b=1 l.y., L=2&(10' l.y., and L&——10' l.y.
we get:

Ado —10 '4 cos2(~t+y),
Ap

an extremely small effect. A similar calculation using the
lowest quadrupole vibrational mode of a perfect Quid

sphere as the source of gravitation gives a result com-
parable to (57). The other factors in the received power
(55) have been estimated and seem to have at most a
logarithmic dependence on L. They give much smaller
contributions than (57) does to the received power.

We saw above that the wave field does not contribute
to the result when the source of gravity is near the light
beam. We now consider a more distant gravity source,
in fact, we will consider the eGect of a gravitational
plane wave pulse on the beam. In the linearized version
of Einstein s theory the deviations It„,of the metric
from the Minkowski metric g„,can be written"

h„„=E(m„n„+e„*m,*)f(npx&), (58)

where E is the (real) amplitude of the wave, n~ is a null
vector giving the direction of propagation and n„is a
complex vector orthogonal to Ap."

e„ill'= —1, e„el"=0, n„nI'=0, n„nl'=0 (59).
The (real) function f will be chosen to be an arbitrarily

~ Reference 21, p. 218
'4 See Ref. 23,
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shaped pulse which, for convenience, will be chosen to
be zero at the source and observer. The Riemann tensor
(23) is then given by

ity. Rather than calculate E in detail we can make a
reasonable guess at the result by analogy with results
in electrodynamics"

R.„„,= ', EP-(n„rt, n„—ri, ) (n,rt, n.—N, )+c c jf.".(ni,x ),
(60)

GM

c'r c)
(63)

where f" is the second derivative of f with respect to
its argument. Assume that the source and observer are
in Oat space and at rest with respect to each other; then
the difference between invariant components and tensor
components in (49) are of higher order in the Riemann
tensor and can be neglected. When we insert (60) into
(49) we have to express the argument of f"as a function
of N. Choose the path of the light ray along the s axis
(to lowest order), then x=y=0, s~ u, and t~ t+u.
This puts the source at the origin of coordinates and
makes t the time that the ray leaves the source. After
integrating by parts a few times we obtain for the lead-
ing term (in the distance L) in DAO/Ao.

where M is the mass in the explosion that moves with
velocity v and r is the distance from the explosion to
the light ray. The factor G3f/c'r is characteristic of all
gravity calculations involving finite source sizes and the
factor (r/c)' is characteristic of quadrupole radiation.
Using M=108M r= 103 l.y. , v/c=10 2 L=2Li ——109

l.y. , AL= 1 l.y. , 8=90', Eqs. (62) and (63) give

DAO/Ao —10 " (64)

Even with this extreme example of an explosion of a
galaxy the result is negligible. It wouM appear that it is
dificult to get an observable effect from a single source.

hA 0 E'p
u(L u) [f'—(n4t+&u)]'du (61).

V. RADIATION-FILLED UNIVERSE

A. Hubble's Constant

hAo f Li) 1
1—cos8) . (62)

L) ~LAp

It should be noted that this result is independent of
the details of f; indeed, even if f were a truncated sine
wave with S wiggles the result would depend mainly
on the total length of the wave and only to a small
extend on its frequency. The result in (62) is quite
general and does not depend critically on the plane
wave character of f Therefore we. will regard f as a
gravitational wave of dimension d,L in all directions,
i.e., a highly directed pulse of radiation. The intensifica-
cation of the light beam (given by the negative of (62)j
lasts for a time of order hL/c(1 —cos8); this is just the
time that the light beam is inside the wave pulse.

As a model for calculating the dimensionless ampli-
tude E, consider the extreme case of an explosion of a
massive star or galaxy such that the explosion has a
large dynamic quadrupole moment. Such an explosion
could consist of two large masses being blown apart
such that they move in opposite directions at high veloc-

Here L, the source-observer distance, replaces a to a
sufficient approximation and &=n„U&=n4(1—cos8)
where 0 is the angle between the direction of the light
beam and the gravitational wave. Take f to be localized
in a small region of length hL at a distance L~ from the
observer. Choose n4= (hL) '; then f is nonzero only
when its argument is between zero and one. Normalize

f such that the integral of its square is unity; this is
consistant with calling E in (58) the amplitude of the
wave. Under these conditions and if f is reasonably
smooth then the integral of the square of f' is also of
order unity. Then

The next thing is to calculate the effect of many
sources. As a reasonable and simplifying assumption
we will assume that space is filled homogeneously and
isotropically with gravitational radiation of arbitrary
frequency spectrum and then try to see what spectrum
(if any) can give an observable effect.

First of all we will make a calculation of Hubble' s
constant in order to get some information about the
spectrum, and also to show the calculational technique
that will be employed. We will assume that the curva-
ture of space is caused by this distribution of gravita-
tional radiation; that is, we will assume that gravita-
tional radiation is the major constituent of the universe.
This assumption may even be correct because the meas-
ured energy density in space is not large enough to
account for the measured red shift, at least in those
Friedmann universes where the cosmological constant
is taken to be zero."The results that we obtain should
always be thought of as upper limits to the actual power
spectrum.

For convenience in calculating we will express the
radiation as a discrete sum of plane waves. These
waves will be confined to a large cube of dimension Lp
so that the components of the wave vectors of the vari-
ous waves will be integral multiples of 2m./Lo. Eventually
we will pass to the limit of Lp ~~. In order to make the
problem tractable we will use an iterative method to
solve the vacuum field equations G„,=O. This is done
by rearranging the terms in the equations such that all
the linear terms are on the left and the nonlinear terms
are on the right. The general form of the resulting equa-
tions is that of a wave equation with source terms. Since

"Reference 17, p. 526.
"Reference 20, p. 145,
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the source terms are at least quadratic in the potentials,
they will be all equal to zero in the first iteration. The
resulting homogeneous wave equations have the usual

plane wave solutions.

zero. From (58):

1 12'„„=——(RHS) =—P(iE(k) i')k k, .
I

(75)

where

h„„=gE„„(k)e"*+c.c. ,

E„„=E(k) (N„e„+e„*N„*),E„.k"=0.

Since we assumed that the radiation is isotropic, E only
depends on the magnitude of k. We now convert from
a sum to an integral and integrate over the directions
of lr.

The definitions of the various quantities are the same
as in (58) with n„replaced by ik„It.should be noted
that the sum on k in (65) is over its spacial components;
k4 is determined by the wave equation.

k,= il [&0. (67)

The second iteration is performed by inserting (65)
into the right-hand side (RHS) of the rearranged field

equations mentioned above, retaining only terms to
second order in h„„,and solving the resulting inhomo-

geneous wave equations. Instead of doing this we will

get the answer correct to second order by treating the
RHS as an ordinary stress-energy tensor and inserting
it into the exact Geld equations.

1 )8 00

T„„=', lim —-~ (~ E(k) ~')k4dk
~0 " 2z)

Xdiag( —-', —-', —-', 1). (76)

This is just the form for the stress tensor for a radiation-
filled universe. '~ We denote the density pp and the pres-
sure poby

(Lol'
po

——3po ———,
' hm

(
—

( ((E(k) (')k'dk. (77)
&o-" 'f2+i

I.et us define the power spectrum P(k) of the Riemann
tensor by"

G„=R„——,
' „R=—SxT„„=RHS. (68) (K.PK.,)—= P(k)dk (units of cm '), (78)

RHS = ,'(h —(h—„p,+h„p„, h„.,p)
—j,

+ ,'(h-eh-. p) „„rP„.r—-„p+r-„„re.p (69)

Consider the third term

PP.-I' .p=Z Z LB.-'(k)B.p (l)e""+""
A l

+B„„P(k)B"„p(l)e'&' "'+c.c.], (70)

where K p is given by (22). (It would be more sensible
to define the power spectrum through an average value
of some scalar quadratic form of the Riemann tensor
itself. It turns out that all of these are identically zero
for plane waves and so we have to settle for (K~PK p).)
A calculation of (K PK p) in the same manner as above
gives

where

B„p(k)= ,'i(E„kp+Ep k„—E„pk-). (71)

6' I-p '
(K PK p)= lim — (~E(k) ~')k'dk. (79)

5 o 2~ ~p

The quantity that is of interest in the usual cosmological
equations is not the actual stress tensor but rather the
smoothed stress tensor. In keeping with these approxi-
mations we will ensemble average (69) and (70). To do
this we assume that each wave is only correlated with
itself.

(B„.(k)B„(1))=(B„.(k)B„(k))8'
=

(~ B„Jp(k)Bp (lr)
~

e"+&"&)8'1,~=0, (72)

where y(k) is the phase of the wave and is uniformly
distributed between 0 and 2m.

(B..p(k)B*,p-(1))= & I B..p(k)B*,p-(lr)1»'. ~

,'(iE*p E Pi)k„k„Ppr-
=-;(~E(1)~ )k„k,e„,(73)

so that
(rp„.r-„p)=p(~E(1)~2)k„k,. (74)

It turns out that the rest of the terms in (69) average to

5 " dk
p p

——3po=—P (k)—.
128~ p

(80)

The relation between Hubble's constant and the
density depends on how far the universe is along in its
expansion phase. If we assume that it still has a long
time to go before it reaches its maximum size, we find

by manipulating Tolman's equations" that

Sm 5 " dk
H'~ po= P(k)— —

3 48 p
k'

(81)

"R. C. Tolman, Relativity, Thermodynamics and Cosmology
(Oxford at the Clarendon Press, Oxford, 1934), p. 219.

"For a formal de6nition of power spectrum see: A. van der
Ziel, Noise (Prentice-Hall, Inc. , Englewood Cliffs, New Jersey,
1954), Chap. 12.

"Reference 27, p. 413.

where H is Hubble's constant (H=100 km/sec Mpc
=10 " yr ') (Mpc=megaparsec). Putting in the e's
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and converting from wave number to (angular) fre-
quency, we get

the power spectrum of the first-order Doppler shift.

d(o 48 B'
P(o))~ 10 "sec' cm 4.

p CO 5 C

(82)
~5 3C I CO

—= IDg M de.
~Ms Gdg p CO p

(88)

The power spectrum must drop o6 faster than + at
Iow frequencies and must not increase as fast as co at
high frequencies in order that the integral in (82) be
finite. As an example of a simple power spectrum that
has these properties let

Mp CO

P(o)) =Po
~ 4+~4

(83)

This reaches a maximum at about cop with a peak value
of about Po. From (82)

Po/(oo —10 "'. (84)

An experimental upper limit for P((o) in the vicinity
of one cycle per hour has been found to be 10—"cm—'
sec ' so that if we arbitrarily set cop=10 3 sec ' we get

Pp~10—"cm—4 sec.

This would perhaps indicate that in the near future
experiments will be performed that will actually be able
to set cosmologically meaningful limits on P(o)).

B. Doyyler Shift

We will now consider fluctuations, due to the above
Aux, in the first-order Doppler shift and in the first
order jitter of the apparent position of a light source.

The Doppler shift can be obtained from (54).

O)p Sp&U~

e,"U„

Mp—= 1— (o.—u)E(44) (u,0)du
Ms p

A calculation of this ratio to first order, using Synge's
notation" yields:

First of all we note that in order for this to be finite,
P(&o) must drop off faster than (oo for small (o. Using

mom
P(~) =Po

Mo +(d
(89)

we find that (84) still holds. LIndeed, (84) holds ap-
proximately for any broad peaked spectrum. ) The
quantity that can be obtained from observations is only
a portion of the Doppler-shift spectrum, namely that
ranging from a, period of at most a hundred years (of
observation) down to a period equal roughly to a photo-
graphic exposure time. Let (o& (=2or/100 yr) be the
lower limit on the integral in (88). A study of (89) indi-
cates that the optimum value of cop is roughly co& and
this then gives for the largest possible mean-square
Doppler shift

c4=~].0 16 (90)

This corresponds to a line shift of about one part in 10 .
It is difficult to see how to make this much larger and
still be consistent with (82).

A calculation of the second-order Doppler shift using
Synge's technique has not been attempted; however,
our calculation of Hubble's constant (81) corresponds
to the average second-order shift. The second-order
Quctuations would be extremely tedious to calculate and
no attempt has been made on it.

C. Jitter in Position

We proceed with a calculation of the fluctuations in
the apparent position of the source. We have already
defined in (11) a unit spacelike vector that points in the
direction of the light ray. Let

ro= (U„vo") 'PU"—(Urvoo)vo"7; ror)"= —1. (91)

' ds'

o U(4) o

E(44) (u, s')du. (87)

We can define a unit vector s& in the average direction
of the ray as

sl'=N '(U" (U vop)vo")
— s„s"—= —1, (92)

Our notation diGers from Synge's in that we use the
opposite signature for the metric and we use the opposite
direction for increasing I, otherwise the symbols mean
the same thing'; in particular, the parameter s is
the observer's proper time, Proceeding in the same
Inanner as above we can calculate the leading term in

~ R. I,. Forward, D. Zipoy, J. Weber, S. Smith, and H. SenioH,
Nature 189, 473 (1961).

» Synge, Ref. 6, pp. 91-95.

le»= fIts» —f»$p. (93)

We see that in the rest frame of the observer l„„is
nothing more than the cross product of the two unit
vectors and is therefore equal in magnitude to the sine
of the angle between them 0, The invariant -', l„„l&"is

I

where N is a normalizing factor (which in general is
not equal to (U,vo&)). It is convenient to define a rank
two tensor l„„.
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en the two vectorsof the angle betweenjust the square o e
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(94)(0')=-(~. l" ).
94 to calculatee (0') we would havey ( )

t}1 t o l h
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a,ve togo' g'

an g" go
onds to cacu a iy o po

Itismos et easily done using Synge s no a
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is
4kB

(8') = 5/Be4 P (40)—.
0 M

(95)

is identical to (88) (this seems to be
(.0), ...„,.». ..".' g

Equation (90) corresponds to measu
'

3lations ot 10 'sec of arc. '

1
k(k', l', u) =—

0 p

R

dn e' date
0 0 0

20 p

dn dppe" &

0

dn dppe"~ . (97)
0

so
'

e the same is approximatelyd so we will assume e s
true in second order and neg

e
in (49) using (22), (23,
averaging we obobtain

BAp
k' —k', L)+c.c.g,

(96)
0

s D ~ are the Fourier coef-
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because of the analogy between our calculation and
Tolman's radiation-filled universe.

The calculation of the power spectrum of area
fhictuations (and therefore the received power) is most
unambiguously carried out by noting that in general the
power spectrum of a random variable x(t) is twice
the Fourier transform of its corrolation function,
(x(t)x(t+s))—(x(/)&', a function that only depends on
the magnitude of s.32 Proceeding as before we obtain the
power spectrum for the intensity fluctuations, Pz(k).

but assume that pzpL/c))1. Then

5 q'(~q 'I' P(~)
P.()= —ll-I L"

24) ES) GO 0

P(pi)
~10 Lz' C MOPO.

If we say P(pp) —Pp(ppp/G)) foi' M))(dp.'

P,(pi )Ao

(107)

P (k)=2+ +(D s(zn)D*"(in))(D (l)D' (I)&

XL-'I f(m', I',L) I'(5(m+1+k)+b(m+1 —k))

+ I
f(m', —I', L) I'8(m —I—k)j (103)

( 5 )'(pr) 'i'
Pz(k)=l —

I I

—
I

L'
d4) (5)

"P(k+l)P(l)
dl. (106)

p (k+l)'

In (106) we have also made the assumption that the
peak in P(l) occurs at a wavelength that is short com-
pared to I.. For the opposite case the integrand has an
additional (small) factor of the order of (K)'.

In order to evaluate this we have to know P(l).
Assume, as before, that it is peaked at oro and has a
maximUm VRluc of I o. As R flI'st case assume th.at Goo ls
much smaller than the frequencies of interest in Pz(o&),

~' Reference 28, p. 316.

where: f(m', l',L)=h(m', 1',L)+k(l', m', L), and D, k, m', P
have been defined near (97).A lengthy calculation gives

(D'(m) D*"'(m)&(D-s(I)D*,p(1) &

=s (I ~(m) I'&(I ~(I) I'&(m')'(j')'(I+cos4(p —
p .))

(104)

The angles pi and yi, are the azimuthal angles of k and
I with respect to U as the polar aris.

A calculation of f(m', I',L) gives

4L' cos-,' (a+P) 4
f(m', I',I) = e&'& +i" + sin-,'n sin-,'p

(-+t)
np+3np+ p'—2 sinip(n+P), (105)
~P(~+0)'

where n=m'L, P=/'L.
If we insert (104) and (105) into (103), go to continu-

ous 1, m and study the integral we And that when
n+P Lin (105)]is near zero the integral is large whereas
for all other values of n and P it is comparatively small.
We note that we are mainly interested in the case where
I. is very large and so we use an asymptotic method for
evaluating the integral. Doing this we find that the last
term in (103) dominates (because m and I are positive)
and we eventually obtain

LpgP (Pp P (pip)
'z Jp(pz ) 'i:

Pz(~)
pp' &p (~) ~ppt ~)

For I.~1093.y. = 10'7 cm,

10 (Mp)
Pz(p))

I

—
I

sec.
Gpp (pl)

I.ct the periods corresponding to coo, co, Dco be 100 yr,
1 yr, and 1 yr respectively. Then

(DP/I'&~10 "
which corresponds to an rms intensity fluctuation of one
part ln 10x2.

As a second case assume that ~0 is much larger than
the frequencies of interest. Then (106) becomes

&~
i/2 ~ P2(pi~)

Pz(pz)~I —
I

—
I

L'c' dco'
(24) 5) p (pi')'

J3~10-xol

0)0
(108)

which is independent of co. For 1.=10' l.y. and coo and
dec corresponding to 1 yr and 10 yr, respectively,

(109)

So we see that even at distances equal to about one-
tenth of the Hubble radius of the universe the e6'ect is
very small. Before trying to use our formula for even
larger values of I we should try to make an estimate
of its lcglon of VRlldlty.

E. Region of Validity

By iterating the equation of geodesic deviation such
as was done in (36) and by taking the absolute values of
the result we could show that an upper limit to the eth
jters tjon is given by ( I

It
I I )"/n!d.

I
I&

I
js the max jmum

value of any component of IE „Iand d is the diameter

If we consider measuring the intensity fluctuations
around a frequency cv in a bandwidth of hen we get for
the mean-square intensity fluctuation:

b,IP 10—"
(Pip) 7

~Pz (ru) Dpi~
I Mp EM)
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P))'A,L ) (110)

where / is the size of the diffracting region and X, is the
electromagnetic wavelength. The size of the diffracting
region is of the order of the distance over which the
gravitational fields are correlated' and this in turn can
be shown to be about equal to the wavelength of the
gravitational waves being considered. Using L= 10"l.y.
we find that the calculations are valid for optical waves
when the Quctuation periods are longer than minutes

of the telescope objective. Although this result can be
used to show that the series converges, it does not give
a very useful result for an upper limit on the size of
succeeding terms because the value of

~
E~ can be very

large.
The above result did not make use of the fact that E

is a Quctuating quantity and therefore that there would
be cancellation taking place when it is integrated. We
can obtain a qualitative but useful relation between
succeeding terms in the iteration if we take the ratio of
the average square of succeeding terms. When this is
done we find that this ratio is of the order of (EP)LKp.
(E') is the average square of any component of E~, and
we have assumed a power spectrum which is peaked at
cop=c/Kp. We can put this ratio into a more significant
form by making use of the relation between (E') and
Hubble's constant; the ratio then turns out to be
HL/c=L/Lp, where Lp is the Hubble radius of the
universe (—10"l.y.). So we see that our expansion is in
the usual form of cosmological formulas, namely, an
expansion in powers of the fractional distance to the
"edge of the universe. " We can be reasonably certain
that if we use values of L up to a few times 10' l.y. in
our formulas that the result is correct to an order of
magnitude or so. Even then the intensity fluctuations
are only about a thousandth of a percent.

This last result is close enough to being measurable to
make it worthwhile to go back and investigate our as-
sumptions to see whether they are valid and, if not,
whether they can be modified in order to enhance the
effect. We have already chosen as big a Riemann tensor
as is possible and we have pushed L about as far as it
can go. Indeed, in order to push L further we would at
least have to 6nd an assymtotic solution to the geodesic
deviation equation that was valid for large L. Moreover,
we would have to take into account the usual cosmologi-
cal solutions because we are in a region where the large
scale curvature of space is important. No attempt has
been made to carry out this more diKcult investigation
but in lieu of this it would be useful to know whether
our calculation constitutes a lower or an upper bound on
the exact solution. Unfortunately there are (rather un-

convincing) arguments for either conclusion.
We can go back further to our assumption of geometri-

cal optics of the light rays. In order that diffraction be
unimportant, we have to require that the diffracting
region covers many Fresnel zones. This means that

and for ratio waves for Quctuation periods longer than
days.

(I)= (Q F,hA, )=Q (F;)hA, = (F)A„(111)
where A, is the area of the source and it has been as-
sumed that the source is uniformly bright; (F,)= (F).
The mean square Quctuation in the total intensity is

(QI2)= (I2) (I)2—(Q Q FP',gA gA ) (F)2A 2

=Q Q (DF,hF;)AA, AA; =Q(AFAR)P—DA;
= (hF')PA .. (112)

The correlation length / can be thought of as the average
distance over which the intensity Quctuations are cor-
related. The fractional change in intensity is then
given by

(QI2) (+F2) )2 (+F2) ( $ 2

(F)P kD
(113)

where D is the diameter of the source.
For an isotropic Qux of gravitational radiation of a

single frequency, it can readily be shown that l is ap-
proximately equal to the reciprocal of the wave number.
Therefore, we see that if the source size is small compared
to the wavelength of interest, there is no additional
effect whereas if the source is large our result drops down
as the inverse area of the source.

VI. FIRST-ORDER EFFECT

We now consider the case where (45) does not hold
and so there is a hrst-order effect on the beam area. As
a simple model assume that the space is filled uniformly
and isotropically with a perfect Quid which is at rest
(for convenience). Then if we proceed in the same man-
ner as above we arrive at an expression for the average
charge in area.

(
&Ap 4pr HL)'——LP(pp)

~

(10—PPI)P( 1 (114)
A, 3 c)

where (pp) is the average density of matter and we have

F. Finite Sources

The formula for the intensity Quctuations assumes
that the source of light is a point; it has to be modified
if the source is large. An approximat'e expression for
this modification can be obtained without a detailed
calculation.

Divide up the source into many infinitesimal areas
AA;, and call the intensity at the observer from the ith
area P;AA;. The Qux P,. is made up of a stationary part
(F,) and a fluctuating part d,F;, which has zero average
value. Then the total average intensity (I) at the ob-
server is



INTERGALACTIC FLUX OF GRA V I TAT I ON AL KA VES 837

used the first part of (81) to relate (po) to H. (It is ap-
proximately valid for many of the Friedmann universes. )
Equation (114) is essentially the same as (102), as it
must be. To get fluctuations we will assume that there
is a homogeneous and isotropic Qux of sound waves
traveling through this Quid. We can define the power
spectrum of the density Quctuations by

(115)

We can then proceed as above and calculate the area
Quctuation. The result for the power spectrum of the
intensity fluctuations Pr'(cu) is

(116)

If we assume that P, (&o) is peaked around &vo and if we

take the extreme case where the density Quctuations
are about 100% then (116) becomes numerically equal
to (108) (approximately) and we find that the effect is
small. Two other effects are important for this case.
First, the correlation length is of the order of an acoustic
wavelength which is about four or Ave orders smaller
than a gravitational wavelength of the same frequency.
Consequently, if the source is much larger than a. large
star, the right side of Eq. (116) is decreased because of
finite source size, (113).Second, the short correlation
length affects the geometrical optical limit according
to (110) and therefore (116) is only valid out to a few
light years; beyond this distance diffraction predomi-
nates. An extensive treatment of light Quctuations due
to an atmosphere has been carried out by Chernov. '
He has treated both the geometrical limit and the general
case and finds that the geometrical case increases as
I.' Las in (106) and (116)jwhereas the diffraction limited
case increases as I.. By analogy we would expect (116)
to be reduced considerably in the diffraction limited
case. There can be exceptions to all this if the Quid
consists of electromagnetic radiation or possibly neu-
trinos. Then the effect is comparable to the case when
gravitational radiation dominates (108) because the
correlation length is once again given by the speed of
light.

VII. ORDINARY FLUCTUATIONS

A source of light fluctuations that has not been con-
sidered in much detail is that due to Quctuations or
inhomogeneities in the ordinary index of refraction of
the interestellar or intergalactic gas. As mentioned
above, the theory has been developed by Chernov,
among others, but apparently has not been applied to
fluctuations in distant gas clouds (Chernov applied it
to the earth's atmosphere to account for the ordinary
twinkling of stars). A straight application of Chernov's

formulas to the matter distribution considered in Sec.
VI above indicates that for this case the effect is small.
The main thing that makes the effect small is the short
correlation length combined with finite source size. This
does not mean that there are no interesting effects to be
found in the application of Chernov's formulas to astro-
nomical objects but rather it merely means that for the
case considered here there is no appreciable effect.
Haddock and Sciama" have recently proposed a tech-
nique for measuring the ionized hydrogen content of
intergalactic space. Perhaps an application of Chernov's
formulas would give additional information about the
ion or gas density.

VIII. CONCLUSIONS AND COMMENTS

We have seen that the intensity Quctuations of light
from distant sources is unmeasurable under the ap-
proximations considered in this paper. To get the maxi-
mum possible effect we had to assume that gravitational
radiation is at least an important constituent of the
universe if not the most important. A recent paper by
Dicke et a/. 34 indicates that this is not an impossible
situation. They conjecture that during the early stages
of expansion in an oscillating universe the primeval
"fireball" could reach temperatures in excess of 10" 'K
and that electromagnetic radiation, neutrinos and even
gravitational radiation could be in thermal equilibrium.
Subsequently these radiations would be degraded in

energy due to the general adiabatic expansion of the
universe and would now have a frequency spectrum
that was peaked in the radio-frequency region or higher.
This is just the sort of spectrum we need to get the
maximum effect from our calculations LEq. (108)j.
Our formula is valid out to a few billion light-years
and gives intensity Quctuations of up to about a
thousandth of a percent. It was pointed out that if a
formula which was valid very near the "edge" of the
observable universe were obtained, it may show that
the effect was observable. As yet no such calculation
has been attempted. An example of an effect which in-

creases rapidly as the Hubble radius is approached is
the cosmological red shift. For a distance of 10' l.y. the
red shift is about 10% whereas at the Hubble radius
(10" l.y.) the red shift is (by definition) infinite. We
could hope for a similar situation here.

When intensity Quctuations were first seen in the
quasistellar source 3C273," it was hoped, of course,
that the above effect could account for them. The dis-
tance to 3C273 is only about two billion light years,
however, and so we see that the Quctuations must be
caused by something else.

~ F. T. Haddock and D. W. Sciama, Phys. Rev. Letters 14,
1007 (1965).

'4 R. H. Dicke, P. S.K. Peebles, P. G. Roll, and D. T. Wilhenson,
Appl. J. 142, 414 (1965).

"H. S. Smith and D. HofBeit, Nature 198, 650 (1963).
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The present article consists of two parts. First, we assume that the conservation laws for energy and
linear momentum are valid and that these quantities are the sums of the energies and linear momenta of the
individual particles, i.e., that there is no interaction energy and no interaction momentum. We then repeat
a familiar argument and show that there can then be no interaction between the particles, that is, their
world lines are straight. In the second part of the paper the interaction quantities for energy, linear and
angular momenta, and the center-of-mass law are derived for the equations of motion proposed in an
earlier paper. We then study these interaction quantities in the asymptotic region of collision processes, in
order to arrive at asymptotic conservation laws. We find, in agreement with the earlier paper, that the inter-
action energy and the linear interaction momenta vanish asymptotically. This, however, is not true in
general for the interaction angular momenta and center-of-mass motion. Asymptotic interaction angular
momentum is present in all theories, such as classical electrodynamics, which lead to inverse-square-law
forces.

INTRODUCTION AND SUMMARY

w E wish to discuss some aspects of the relativistic
dynamics of a system of e interacting classical

point particles. The history of each particle, i= 1, 2,
e, will be described by an orbit in Minkowski space.
This orbit will be given, parametrically, in terms of the
proper time r;, i.e., the orbit i is given by a vector-
valued function x; (T;), where n refers to the time and
the spatial coordinates. Proper time is the same as arc
length so that

Q.l.[*,.(T,)$1=1,
where the dot refers to differentiation with respect to
the argument 7; and where —lp=l]=l2=l3= 1 and
we assume that i;o(T,))0, i.e., that the proper time runs
in the same direction as the actual time.

The components of the linear momentum and the
energy of the individual particle i at time t& will be
defined as follows: Let v-;& be the solution of the equation

X~O(Tjl) = $1 q (2)

*Alfred P. Sloan Foundation Fellow.

then the expression for the energy and the components

of the linear momentum at li will be

P;.(tl) =m;X;.(T,l) . (3)

In Sec. 1 we repeat, in detail, a familiar derivation of
a "no interaction theorem"' by showing that if (a) the

'See, for instance, P. G. Bergmann, The Special Theory of
Relativity, Handbuch der Physik. IV (Springer, Berlin, 1962),
p. 147. The theorem discussed here has a purely kinematical basis.
Several "no interaction" theorems with a dynamical origin have
appeared in the recent literature: D. G. Currie, T. F. Jordan,
and E. C. G. Sudarshan, Rev. Mod. Phys. 35, 350 (1963);D. G.
Currie, J. Math. Phys. 4, 1470 (1963); J. T. Cannon and T. F.
Jordan, ibid. 5, 299 (1964);H. Ekstein, Consistence of Relativistic
Particle Theories, Universite d'Aix-Marseille, (1964, unpublished),
H. I eutwyler, Nuovo Cimento 37, 556 (1965).

Henceforth, we shall use the term linear momentum for
both energy and linear momentum. Similarly we shall
use the word angular momentum for center-of-mass
momentum and angular momentum, i.e., all six com-
ponents of the usual antisymmetric tensor. The com-

ponents of the angular momentum of particle i at time

f& are

p(fl) X" (T '1)P~p(tl) P (/1)S~p(Til) ~ (4')


