
E'ETVSICAL Rl» VI'EW VOLUME 142, NUM81»R 4 1» KBRUARY l9t)6

Poincare-Invariant Equations of Motion for Classical Particles*
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Classical particles, and interaction among them governed by second-order equations of motion for the
positions of the particles, are considered. Equations of motion, defined for one instant in an arbitrary frame,
are derived which are invariant under the Poincar6 group. The equations of motion are considered invariant
if, when the world-line solutions to the equations of motion are transformed, point by point, into a new
frame, the new world lines obey the same second-order equation of motion. Ke illustrate the existence of a
wide class of such invariant equations of motion. The further questions of causality and separability are
mentioned.

I. INTRODUCTION

ECEXTLY, there have been several approaches to
a relativistic description of particles which interact
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directly. By a direct interaction we mean an interaction
between particles which does not require the aid of an
intervening dynamical field. The quantum mechanical
formulation of such a direct interaction theory has been
discussed recently by a number of authors. '—' One has
been unable, however, to find an operator representing
the position which had the proper transformation pro-
perties under Lorentz rotation. Without such an opera-
tor, the connection to experimental results must be
made either by using the only quantity transforming
properly, the momentum, or by an asymptotic connec-
tion to free particles states. The interest in a quantum
theory of a finite number of particles is twofold; first,
it may be useful as a practical description of interactions
below production thresholds; second, the formal struc-
ture of a relativistic theory with interaction may be
useful for the study of the problem of interaction in a
quantum field theory.

To better understand some of the above questions,
we will consider the classical theory which seems
analogous to the above discussion, since the essential
problem will appear in both the classical and quantum
formulations. In the classical theory, we have canonical
representations of the Poincare group, instead of unitary
representations. This approach to a relativistic classical
theory of particles also has a venerable history. " '
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Once again, it is difficult to find the position function
which transforms properly under the Lorentz rotation.
Bakamjian and Thomas noted this difFiculty in con-
nection with manifest causality, " i.e., that manifest
causality, and a Hamiltonian formulation were not con-
sistent with interaction. In any case, the requirement
of manifest causality is a separate and independent
postulate which will be considered separately. Even if
manifest causality is not required, it has been shown
that a position function which transforms properly
does not exist when the representation for the Poincare
group is required to be canonical. " "Thus one is led
to suspect that the source of the difficulty for the
quantum case does not lie in the uncertainty relations
(as implied by various authors) since the same di%culty
also appears in the classical theory.

To investigate the question in its simplest form, we

shall deal with the classical-particle theory in which
the position transforms correctly. From the beginning
we start with the requirement that the position function
has the proper transformation properties. We then
proceed to build as much of the canonical representa-
tion formalism as possible. In general, we seek an
extension of the direct interaction type of theory used
for Galilean invariant systems. A possible form of a
relativistic interaction which might be considered would
be one in which the interaction propagates along the
light cone." "This approach has a difficulty in common
with classical electrodynamics, that is, there are run-

away solutions. More precisely, if the theory is assumed
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to be complete and consistent in itself (not a part of a
larger theory which is quantized") then has one to
contend with the problem that there are either runaway
solutions (in which the particle accelerates itself to the
velocity of light) or pre-accelerations (in which the
sects due to a signal generated at a finite time start
in the infinite past).

We now return to more recent attempts which have
been aimed at obtaining a representation for equations
of motion for the position of the particle which are
invariant under the Poincare group. In this approach
the question of the existence of a canonical representa-
tion, as well as the questions of separability of the
interaction and causality, are left in the background.
We shall mention two papers, those of Havas and
Plebanski" and Van Dam and Wigner "

In the Havas-Plebanski representation, the force on
particle A at a given instant is determined by the posi-
tion and velocity of particle 8 at a time which is simul-
taneous with the given instant in the rest frame of
particle A." In the investigation of Van Dam and
Wigner, the relativistic generalization of a potential
model is considered in which the acceleration, at a given
time, of particle A is determined by the interval of the
world line of particle 8 which is space-like to the
particle A at the given time.

In neither of these investigations are the dynamical
variables for a given instant (as determined in an
arbitrary frame) directly related. It is therefore dif-
ficult to use these formulations as a basis for a Hamil-
tonian theory.

The present discussion is similar to, but not directly
connected with, the model of Wigner and Van Dam
since their acceleration functions are assumed to be
nonanalytic in time, while the acceleration functions
considered in this paper are analytic. However, their
program can easily be extended to cover analytic
potentials and then these two approaches could be two
representations of the same interaction.

As a general comment on the two other approaches
just mentioned, as well as our present approach, note
that the procedure is to attack the question of the
relativistic invariance of the equations of motion before
the question of causality is considered. In the present
discussion, we mean by culsulity the requirement that
the velocity of signal propagation should be less than the
speed of light. This is the "Einstein causali. ty" of Haag"
and the causal connection of Havas. " This form of
causality is satisfied in a theory of particles and a
passive field (where the particle produces a field, but
the field does not act back on the particle). This is not

causality in the sense of the Cauchy conditions, i.e.,
that the motion is determined from a set of second-order
differential equations and a set of initial data. '4 Note,
however, that the equations of motion considered in
this paper obviously do satisfy the Cauchy causality.

In general the test of causality in a theory is to
introduce a nonanalytic change in the motion of one
of the particles and ask when a nonanalytic change
occurs in the motion of the other particle. Despite the
fact that one often considers relativistic invariance and
causality at the same time, in the present discussion we
consider (as do Havas and Plebanski, and Van Dam
and Wigner) first the question of relativistic invariance,
leaving for a later time the discussion of causality.

Another criterion conventionally applied to a theory
of particle interaction is that the interaction is separ-
able. ' ' For our discussion, we begin by defining weak
and strong separability. For all the following considera-
tions, we assume for illustration that we have limited
ourselves to interactions which are two-particle forces
and which go to zero for large particle separations. For a
many-particle system, the force due to many particles is
then the vector sum of two-particle forces. We consider
a group of particles which are divided into two clusters
that are separated by the distance D. We now consider
what happens as D —+~ while the diameter of the
clusters remain bounded.

5'eak separability is the requirement that as D goes
to infinity the ratio of the change in acceleration due to
a given change in the initial conditions in the distant
cluster to the change in acceleration due to a given
change in the initial conditions of the enveloping cluster
goes to zero. We assume that neither change of initial
conditions causes the diameter of the cluster to exceed
some bound. Dealing with the dynamical variables
defined at a single instant, as discussed in this paper, if
we have only two-body forces and these forces add as
vectors, then the requirement of weak separability may
easily be satisfied.

Another stronger separability condition is more com-

monly encountered. This usually states that the total
energy splits into a sum of the energies of each of the
clusters as D goes to infinity. Thus a theory of particle
interaction is said to have the property of strong sepa-
rability if we can define a functional of the initial posi-
tions and velocities (or, for a Hamiltonian approach,
the initial positions and momenta) which, as D goes to
infinity, separates into the sum of two parts. Each of
these parts is to consist of the functional applied to one
of the two clusters.

Difhculties may arise if the functional is required to
have specified transformation properties under I orentz
rotation, and perhaps other properties, like being the

~ A discussion of some of these questions of causality may be
found in the article by P. Havas in Proceedings of the 1964 Inter
national Congress of Logic, Methodology, and Philosophy of Science,
edited by V. Bar-Hillel (North-Holland Publishing Company,
Amsterdam, 1965).

' F. Rohrlich, Classical Changed Particles (Addison Wesley-
Publishing Company, Inc. , Reading, Massachusetts, 1964).

~ P. Havas and J.Plebanski, Bull. Am. Phys. Soc. 5, 433 (1961)."H. Van Dam and E.P. Wigner, Phys. Rev. 138, B1576 (1965).
"Havas and Plebanski also consider generalizations of this

representation, but their generalizations are open to the same
comments.

~ R. Haag and B. Schroer, J. Math. Phys. 3, 248 (1962).
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Hamiltonian. While the search for the functional is
important for a simple discussion of the physical inter-
pretation, we take the approach that the physically
essential requirement is that of weak separability, and
that after one has developed a relativistically invariant
interaction, then one should attempt to display a func-
tional which illustrates the strong separability of the
system.

One final requirement, which is rather obviously
necessary in classical particles, but somewhat harder to
formulate for the quantum-particle theories, is that the
particle velocity never exceeds the velocity of light.
However, in the following development this point will

appear naturally and be resolved in an obvious manner
so its consideration will be delayed to a later section.

In the present discussion, we work at one instant, and
require that the acceleration transform properly. (The
acceleration at a given event on the world line trans-
forms as a four-vector. ) In Sec. II, we give a brief dis-
cussion of the meaning of invariance for the equation of
motion. We shall illustrate the technique of specifying
the equation of motion for the relative coordinate and
velocity in a special frame, and then transforming to the
general frame. In Sec. III, the change in position,
velocity, acceleration, etc. in going from one frame to a
Lorentz-rotated frame shall be determined. In Sec. IV,
the equations of motion invariant under Lorentz rota-
tion are obtained. The results are discussed in Sec. V.

lation, and space rotation in two dimensions to give a
background on the method, and to define our ter-
minology. We shall deal with two particles.

The average, and half the relative coordinates are
defined, respectively, by

X=—(xg+x2)/2,
x= (x~—x2)/2,

V=—(vq+v~)/2, A=—(a~+ a,)/2,
v=—(v~—v~)/2, a—= (a~—am)/2.

(II.1a)

Thus the equations of motion in general have the form

a= x= ft(x, X,v,V),
A—=X= Ft(x, X,v,V).

(II.ib)

Assuming the normal transformation of position under
translation, we obtain a part of the representation of
space translation in space. Thus the change under
transla, tion (h) is

~x=0, ~X=b, ~v=0, ~V=0,
ha=0, 8A=O. (II.2)

Using (II.1) we can determine the change under trans-
lation in the acceleration as given by the equation of
method

II. INVARIANCE OF EQUATIONS OF MOTION

A second-order equation of motion for the position
of a particle is a relation which determines the second
time derivative of the position from a knowledge of the
position and velocity of it and the other particles
(the dynamical variables). Further, it will be assumed
that this acceleration function of positions and velocities
is differentiable with respect to each of its arguments.
It can then be differentiated with respect to time to
obtain, by substitution, all higher order time deviatives
of the position in terms of the dynamical variables, and
thus determine the motion. These sets of coefficients
may or may not determine the entire motion. This
depends upon the domain of analyticity of this expan-
sion in time. We shall here restrict outselves to those
equations of motion for which the expansion is entirely
analytic, and thus we are able to determine the motion
for all time. This restriction is far stronger than neces-
sary, but the generalization shall not be considered in
this publication.

We seek a second-order equation of motion such that
the Lorentz transforms of solutions are also solutions to
the same equation of motion, i.e., the same force func-
tion. We shall use a technique which defines the equation
of motion in one frame, and induces the dependence on
the total velocity so that it has the form of a second-
order equation with the same force function in all other
frames. We shall consider the invariances of space trans-

a+ha= ft(x+hx, X+hX, v+hv, V+8V)
= ft(x, X,v,V)+ f,t(x,X,v,V)hx+ fxt(x, X,v,V)hX

+ f,t(x,X,v,V)hv+ fvt(x, X,v, V) 5V (II..3)

0= fxt(x, X,v, V) .

This implies that f~ is independent of X. In the same
manner, for I"t we get the equation

0= Fxt(x, X,v,V), (II.5)

so that we conclude that for the acceleration to be
invariant under translation, ft and Ft must be inde-
pendent of X.

Although we can easily guess the form for the rota-
tionally invariant equations of motion in two dimen-

sions, we shall obtain it by the expansion techniques
in order to illustrate, for a simple example, the technique
which shall be used for the construction of the Lorentz-
invariant equations of motion. In order to concentrate
on the relative coordinate, we presume that the force
is independent of the velocities and the mean position.

We now impose invariance by requiring that the ac-
celeration transform kinematically. That is, there are
no outside sources to disturb the system, so ha=0.
After we note the values of hx, 8X, hv, and 8V from
from (II.2), the above equations become



x'=f(xy)=f (')+fl(')y+f (x)y'+" = 2 f (x)y"

y=g(x, y)=go(x)+gi(x)y+gs(x)y'+" = Z g.(x)y"
n=P

x —+ x+bx= x Hj, j—~ y+by =j+Hx, (II.Sa)

x~ x+bx=x 8y, —y-+ y+by=y+Hx, (II.Sb)

where we have assumed a small rotation, i.e., 8ggg. For
the change in the acceleration for a small change in
x and y we obtain

X+bx= f(x,y)+ f.(x,y) bx+ f„(x,y) by, II.9
y+ by =g(x,y)+g.(x,y) bx+ g„(x,y) by,

and if we now require that the accelerations rotate
kinematically as in (II.Sb), we obtain the differential
equations wihch f and g must satisfy for the force to be
rotationally invariant. The diRerential equations are

f(*y)=*g. yg, g(x y) =—yf* *f., (II 1—o)

or we may get an equation for f (or equivalently, g)
alone:

f= ysf xsfss—+2xyf—s+yfs+xf (II.11).
Guessing a solution of the form

f(x,y) =~(r')+yV(r') (11»)
where r'=x'+y', one may easily verify that (II.11) is

satisfied for arbitrary functions 0. and y. This implies
that g has the form

so
g(x,y) =yn xy—

r'= {x,jf}=rn+ r&y,

(II.13)

(11.14)

where r,= {y,—x}.(This pair of arbitrary functions may
be resolved on any pair of vectors; the extra degree of
arbitrariness is because the two-dimensional rotation
group is Abelian. )

where we have chosen to expand in y to eRect a series
solution of the equations. Again, the reason for this un-
symmetrical approach is to develop the analogy to the
Lorentz rotation. One might call this 'the method of
considering the equations in a preferred frame' (the
frame in which y vanished) and then rotating out to
get the rotationally invariant second-order equations of
motion. The presumption is that for space rotations the
acceleration rotates like a two vector, or "kinemati-
cally. "A rotation transforms the relative coordinates to

x~ x+bx=x —Hy, y~y+by=y+Hx, (11.7)

and the kinematic transformation of the velocity and
acceleration are then

*-=f(x,y) =xF(x'+y'),

y =g(x,y) =yI'(x'+y'),
(II.17)

while the other solution has the form

x= f(x,y) = —yG(x'+y'),

y=g(x, y) =xG(x'+y') .
(II.1S)

Thus we 6nd that we get the expected result by requir-
ing the acceleration transform kinematically.

We are now prepared to do the same for the Lorentz
rotation, but we mill need a short detour to obtain the
equations equivalent to (11.7) and (II.S).

QI. REPRESENTATION OF LORENTZ ROTATION

In this section, we will obtain the space representa-
tion of Lorentz rotation (for a discussion of the repre-
sentation of relativity mappings in space see Currie").
This may be done by two diferent methods. The most
elementary method to obtain the representation would

be to calculate directly from the Lorentz transforma-
tions of the events composing the world line. A sketch
of this procedure appears in the Appendix. We shall
here calculate directly the transformed position to
terms which are 6rst order in the Lorentz-rotation
parameter, and use the commutation relations of the
kinematic generators to obtain the transformation of
the velocity, acceleration, and higher time derivatives. '2

"D. G. Currie, Ann. Phys. (N. Y.) (to be published).

Now we attempt to solve (II.10) again by a series
technique which will work when we have no guess
available. Substituting (II.10), and setting coefficients
of y to zero~ we have

ge
—— x—f, , g„=f„ I' x(—n+1)f„+I, n&0 (II.15a)

solving for highest f terms

fi —ge—/—x, f„+I (—g——+f„ i)/x(n+1), n&0,
(II.15b)

likewise for f
fe xg, ,

——f„=—g„ I'+x(n+1)g„+I, n&0 (II.16a)

solving for highest g terms

gi fs/x, ——g„+,= (f +g i')/x, n&0. (II.16b)

Thus once we have fixed fe and ge, all the higher order
coe%cients are fixed and we have determined the most
general rotational invariant equation of motion. To
further investigate this, we could put these in a form
so that all coefFicients are functions of the first-order
filllctloIls, l.e.~ functlonals of fe and ge.

We may finally ask what type of equations of motion
correspond to these expressions. The fs solutions is the
famlllar
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We thus proceed to calculate the change in the posi-
tion function when measured in a moving frame. This
we will do to first order in the relative velocity of the
frames. Figure 1 illustrates one component of the
quantity q(ti), which we will calculate. Our input data
are the values of the position function q(t) and all of its
time derivatives at t=0. From these, we seek the value
of the transformed position function at the origin of
time in the new frame, i.e., the time t'=0. We want the
value of the position in the new frame at the same value
of time as used in the old frame. Writing the components
of q as x, y, and s, the Lorentz transformation, with the
relative velocity of the frames in the x direction, gives

Fxo. 1. De6nitions
of the position func-
tion as measured in
different frames.

t=o

—q(t, )

X;X=XX,+(P;. In the same manner, we obtain

x'(0) =y[x(ti)+vt3$,
y'(o) =y(&1),

s'(0) =z(ti) .
(III.1)

X,q(2), q(0) q(3) +2q(1) q(2) +q(2) q(1)

X q(3) .—q(0) .q(4) .+3q(1) .q(3) .

+3q(2),q(2) +q(3) .q(1) .
(III.8)

Now we need only determine the value of t for which t'

vanishes. But for this, we have

)li ——y[ti' —vx'()!3')j=—yvx'(0) .

Putting (III.2) into (III.1), we obtain

x'(0) =y[x(—yvx'(0)) —vyvx'(0) j,
y'(o) =y(—vvx'(0)),

s'(0) =s(—yvx'(0)) .

(III.2)

(III.3)

Now expanding the position function as a power, series
ink,

q(t) =q(0)+q(0)t+23q(t)t2+ (III.4)

we insert this expansion into Eq. (III.3) and solve for
q'(0) in terms of q(0), q(0), etc. , yielding, after dropping
terms in e'

etc. , where the number m in parentheses refers to the mth

derivative of q with respect to time. We now might guess
that the effect of an infinitesimal Lorentz rotation on
the eth derivative of the position function is given by

s n(33)=
X;q "',= g ~

~q",q
"+'-'—8.)b,s (III.9)

,=o &$&

and this expression may easily be verified by induction.
If we consider more than one particle, Eq. (111.6)

takes the form

s=n f23s)
X q(n) r p ~q(s), rq(n+I —s),r $ () . . (UI 10)

s=o ($/

for the rth particle. For two particles, using the collec-
tive coordinates defined in (II.1), and a certain amount
of algebra, we have

x'(0) =x(0)—vx(0) x(0)+
y'(0) =y(o) —vx(0)i(0)+",
s'(0) =z(0) —vx(0)z(0)+

s n=
(III.5) X Q(") = Q ~Q(s) Q("+'—') +q(') q("+'-')

8=0 $) —8„1();4, (III.11a)

Thus if we represent an infinitesimal Lorentz rotation
by the "operator" X which acts in the space we may
summarize (III.5) by

X;q, (0)=q;(0)SCq;(0) .

Now to determine how the velocity transforms, we
consider the infinitesimal Lorentz rotator acting on the
velocity, so

X,q, (0)=X;Xq,(0) =XX;q,(0)+(I';(0)q,(0)
=X(q;(0)Xq;(0))-();;

= q;(0)q;(0)q, (0)+q;(0)q;(0) 8;;, (II—I.7)

XX=XX+xx=XV+xv,
XV=XX+XX+xx+xx—1=X'+V'+xa+v' —1,
XA =XA+3VA+xa+3va, (111.12')
Xx=Xx+xX=Xv+xV,
Xv =Xx+2Xx+xX=Xa+ni+2v U,

Xa=Xa+xX+3Va+3vA . (III.12b)

s=n
X.q(n), P ~Q(s) .q(n+1—s) ..=o $)

+ "Q'"+' ' . (III.11b)

In particular, for one dimension, we have"

~ ~ ~ ~ "For typographical reasons, the third derivative of x and I
where X i the ge erat r of an infinitesimal time transla- with respect to time has been written a and A, respectively, an
tion and we have used the communication relation, the fourth derivative of x as a.
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xi ——fi~(xi, xp, xi,xp),

x2 fp (xi)x2)xl)x2) )

(IV.1)

(IV.2)

or, using the x and X defined in (II.1a), we may write
this as

a=x= fi(x,X,v, V),
A =X=Ft(x,X,v, V),

(IV.3)

where we have used v=—x, V=—X, a=—x, A—=X.
In this and later sections, we considerd one space

dimension. In the manner of Sec. II, invariance under
space translation implies that f and F should be in-

dependent of X. Thus we have

IV. LORENTZ-INVARIANT EQUATION
OF MOTION

Having obtained the transformation of the position,
velocity, and acceleration under Lorentz rotation in the
previous section, we can now apply the methods of
Sec. II to obtain Lorentz-invariant equations of motion.

As before we require that the acceleration transform
kinematically. We require that the function giving the
acceleration be such as to guarantee this. The accelera-
tion may be written

and likewise for A. Putting these into (IV.7), we get

ba/n= Xvf,+Xff„+XFfy+xvF,
+xfP„+xFFv+3Vf+3vF, (IV.9a)

8A/n=XvF, +XfF„+XFFr+xvf
+xff„+xFfv+3vf+3VF, (IV.9b)

which describes the kinematic transformation of the
acceleration. The requirement of invariance consists of
setting the left-hand side of (IV.9) equal to the left-
hand side of (IV.6).We then get the following nonlinear
partial differential equations for f and F:
xVf,+(xF+2vV) f,+(xf+ VV+vv 1)fi-

=xvF,+xfF„+xFFv+3 Vf+3vF, (IV.10a)

xVF,+(xF+2vV)F.+(xf+ UV+vv 1)Fv-
=xvf,+xff„+xFfy+3v f+3VF. (IV.10b)

These equations are equivalent to (II.10) for the rota-
tional case. To obtain the Lorentz-invariant equations
of motion, we need only solve them. In lieu of a direct
solution, we shall try to obtain a power-series solution
of the type suggested in Sec. II. Our parameter will

be V, the velocity of the center of mass. Thus we write

a= f(x,v, U),
A =F(x,v, v).

(IV.4)
f(x)v) V) =fp(x)v)+ fi(x,v) V+fp(x) v) U'+

IV.11
F(x v, U) =Fp(xv)+Fi(x, v) U+Fs(xv) V'+

For an infinitesimal change in the acceleration we have

a+Ra= f(x+bx, v+bv, V+bU)
=f(x,v, V)+f,(x,v, U)bx+ f„(x,v, U)bv

+f,(x,v, V) bV, (IV.5)

where, for a Lorentz transformation, bx, bv, b V are given

by (III.12). This then yields the relation

ba=n(xV+Xv)f (x,v, V)+n(xF+Xf+2vV)f„(x, v, U)

+n(XF+xf+VV+vv 1)fr(x,v, V), —(IV.6a) x~ —x 8~ —v c~ —c
7

X~X, V~ V, A~A,

F(—x, —v, V)=F(x,v, V)

f( x, —v, V)=——f(x,v, V).

(IV.12)
where a= f and A =P have been used several times. Of
course a similar equation holds for A, that is, so

bA =n(xV+Xv)F, (x,v, V)+n(xF+Xf+2vU)F, (x,v, V)

+n(XF+xF+ V V+»—1)Fv(x,v, V) . (IV.6b) (IV.13)and

The requirement of Lorentz invariance is the require-
ment that the acceleration transform kinematically, i.e.,
as given in (III.12). From these, the kinematic trans-
formation of the acceleration is given by

For the reRection invariance, we have

x~ —xq 'v~ —'v) c~ —cq
(IV.14)X~ —X, V —+ —V, A~ —A,

ba=n(Xa+xX+3Ua+3vA),

&A =n(XA+xa+3va+3VA) .

(IV.7a) so

(IV.7b)
F(—x, —v, —V)= —F(x,v, V)

(IV.15)

Now expressing the time derivative of the acceleration
in terms of the variables x, v, and V, we have

f( x, —v, ——V) = f(x,v, U). —

Or, combining these two invariances, we can write

P(x, v, V) =—F(x,v,V)—a= f(x,v, V) =f (x,v, V—)v+ f„(x,v, V)a
df.

+fr(x,v, V)A (IV.S)
(IV.16)and

f(x, v, —U)=+f(x,v, V).

We now mention a few restrictions we shall put upon
the acceleration or force functions. These restrictions
are not necessary and can be relaxed, but are put on to
simplify these calculations. We require that the par-
ticles be identical, and that the force be invariant
under reaction. The latter may be considered the
remnant, in one dimension, of the rotational invariance
in three dimensions, rather than a parity invariance.
Under particle interchange
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These discrete symmetries tell us that fi Fp Fs
vanish, so (IV.11) takes the form

f(*»U)=fo+f U'+f«'+ ",
F(x,e, U) =Fr U+FpU'+F pU'+

(IV.1/)

We proceed with the series solution by substituting
(IV.17) into (IV.10a,b). The coeflicient of Up in
(IV.10a) is identically equal to zero. One-half of the
equations we get by setting coefFicients to zero will be
identities. This is a result of the discrete symmetries
put on the force functions. The coe%cient of V' in
(IV.10b) is

(xfo+es 1)Fi———xofox+xfofo~+3ofo. (IV.18)

Taking fo to be an arbitrary (infinitely differentiable)
function of x and v, this equation determines F~ in
terms of fp, i.e. ,

Fi(x,e) = (x&fo~+xfofo +3&fo)j(xfo+&s 1) . (IV—.19)

In the same manner, the coefficient of U in (IV. 10a)
gives us fs in terms of Fp, i.e.,

fs= s[xFtFt+3-fp+3pFt+xoFtg+xfpFt„xfp, —
—(xFi+2o)fp„j/[xfp+o' —1j, (IV.20)

"D. G. Currie and E. Saletan, J.Math. Phys. (to be published).

where by (IV.19) Fi is a function of fp This proc. edure
may be continued to obtain the higher coefficients. Thus
except for the possible vanishing of the denominator, the
solution may always be determined, although it may
be computationally rather complicated. Because of the
weak separability, fp and all its derivatives go to zero
as s ~.

Now concerning the denominator, this is the pre-
viously mentioned point concerning the velocity of the
particles. For example, if the force were independent of
e, then it could always drive a particle to a velocity
greater than that of light. For this force the denomina-
tor term may vanish, thus illustrating how this trouble
shows itself in the series expression. On the other hand,
if we have a force of the form fp=(1—ps)g(x), 'i then
the denominator term never vanishes, that is, the force
is weakened for a particle moving at a velocity near c,
so the force can never drive a particle to a velocity
greater than that of light. There are other forms for the
force function which will also guarantee that the
denominator term remains finite, but we do not con-
sider them further.

The apparent simplicity of the rotational form
(II.14) comes from being able to sum the series to
determine the general form of the solution. While such a
closed form is a very useful calculational aid, the equa-
tion may be calculated from the series expression, ex-
cept for possible convergence questions.

V. CONCLUSION

Thus we have illustrated an expression for the
Poincare-invariant equations of motion. The general
context is the same as that which had been considered
earlier by Havas and Plebanski and simultaneously
with this work by Van Dam and Wigner. That is, we
seek to display equations of motion which are invariant
under the transformation of the Poincare group. We
leave for later consideration the questions concerning
causality.

The motivation for the present formulation is that it
relates all the dynamical quantities at a single instant
in any frame. It is thus a form which will permit the
investigation of a Hamiltonian description of the motion
That a Hamiltonian be admissible requires that the
equations of motion satisfy a certain set of integrability
conditions. The consideration of the equations of
motion which satisfy these conditions and admit
Hamiltonians, and the construction of these Hamil-
tonians, will be discussed in a later publication.

It is not difficult to expand this formalism to three
dimensions, or to describe more than two particles.
For the n-body problem, we need only require weak
separability, i.e., separability for the accelerations,
rather than for a functional representing the energy.
Relaxing the requirement that the particles are identical
may also be done; however, it will involve a calculation
which is algebraically more involved than the above
discussion.

In Galilean-invariant systems, we found that while
the invariance limited the form of the equations of
motion, there was still a wide class of equations of
motion which were possible. From this wide class, a
particular interaction could be chosen to describe a
particular system. When one changes from the Galilean
relativity group to the Poincare relativity group, one
might initially expect the same situation.

On the other hand, there has been built up a philo-
sophical attitude that things may be very different
from this initial expectation, i.e., that the Poincare
group imposes much more stringent conditions. Tech-
nical difFiculty in 6nding the proper representation for
the display of the equations of motion has permitted
this philosophy to gain strength. However, as we have
seen, there is as wide a class of equations of motion for
the relativistic equations as for the Galilean-invariant
equations of motion. The choice of the proper equations
of motion must come from nature, in the form of addi-
tional requirements, rather than a priori from the
elements of the relativity group. Of course, the outstand-
ing candidate for this additional requirement is at
present manifest causality, but these questions will be
relegated to a later publication.
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APPENDIX

In this section, we will obtain the space representa-
tion of the Lorentz rotation by a direct (in principle)
although algebraically complicated application of the
Lorentz transformation (for a discussion of the repre-
sentation of relativity mappings, see Currie"). Using
Fig. 2, we assume that we are given the values of the
position function and all its time derivatives at the
event mo. From these, we shall determine the values of
the position function and all its time derivatives at the
point m expressed in the Lorentz rotated frame. The
technique is to express the position function, which de-
scribes the world line as a power series in the old frame,
then change to the variables of the new frame.

The time and position of an event as expressed in the
original frame is labeled by t and x. In the new frame,
they are labeled by y and s. The relative velocity of the
frames is n—= U/c. U is the relative frame velocity and

g—= tanh —'(z.

Having defined some of our notation, we now use the
definition of Lorentz rotation

y„=x„coshg+ct„sinhg,

s„=t„schon+ x„sinhg/c,

(A1)

(A2)

x=p

y-ph

t=o

7.'
s=o ~ m

FIG. 2. Location of
events used in deri-
vation of space
representation of Lo-
rentz rotation.

where e is a general event on the world line. Now ex-
pressing the position of the general event n in terms of a
power series using the derivatives evaluated at the
event mo, and further, dropping the subscript mo,
we have"

x„=x+xt„+xt„'/2+at„'/6+ at„'/24+ . . (A3)

Our object now is to determine the eth derivative of
y(s) with respect to s evaluated at the event e. We will
later specialize on the event m which is simultaneous
with the origin of time in the new frame. Thus we first
wish to express the position of the event n in the new
frame, i.e., y„ in terms of s„and the derivatives of x

with respect to t, evaluated at mo. Thus we start with

(A1) and use (A3) and

y„=[x+xt„+xt,'/2+at„'/6+at '/24+ ]cosh'
+ct„sinhrt. (A4)

Now using the inverse of (A2)

t„=s„cosh&—y„sinhrt/c,
we obtain

y„=coshrt {x+x[s„cosh' —y„sinhg/c]
+x2x[s„cosh& y—„sinhp/c]'
+a[s„cosh' —y„sinhrt/c]'/6+

—c[s„cosh'—y„sinhg/c] tanhg) . (A6)

Expanding this in power series in rt=tanh '(u), and
keeping only the first-order terms in p, we have

y~= x+xs„+gx(s„) + —g[xy~+xy„s„
+ ', ay„s~'+-a . —c's.]/c+ . (A7)

This expression has y„on both sides, so we substitute
this expression into itself repeatedly, to obtain

y =x rtxx/c-
+s.[x g(xx/c—+xx/c c)]'+,'—s„[ ]-, (AS)

where we have arranged it in powers of s„and kept only
the first-order terms in e.

Now taking the derivative of y„with respect to s„,
and denoting it with a prime, we have (after neglecting
higher terms in g)

y '=x g(xx+x—x c')/c+—s [ ],
y„"=X g(xa+ 3xx)/—c+s„[
y„"'=a, g(xa+—4xa+3xx)/c+s„[ ].

(A9)

Thus we have the values of the derivatives of y in
the new form for an arbitrary event, labeled m. We are
interested in the event m, which has the property that
s„vanishes. We can use (AS) and (A9) in an obvious
manner to obtain this, by setting s„ to zero. We thus
obtain"

y„=x—rtxx/c,

y„'=x g(xx+xx —c')/c, —
y„"=* rt(xa+3-x—x)/c,
y„"'=a—g(xa+4xa+3xx)/c.

(A10)

Thus we have obtained the representation of the Lorentz
rotation on directly, without the use of theinfinitesi-
mal generator formalism employed in the body of the
paper.

' As c~~, g-+ U/c and y~ —+i+V while y~&") —+x(") for
r W1. which is the proper Galilean limit.


