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Decay Theory of Closely Coupled Unstable States
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A treatment of decay theory is presented which generalizes existing treatments so as to apply to closely
coupled unstable states. The treatment is based upon a Green's function formulation for the transition
amplitude in which the states of interest are selected by suitable projection operators. As an indication of
the practicality of the resulting formulation a number of examples are given involving the stimulated transi-
tion between closely coupled unstable states.

1. INTRODUCTION necessarily complicated. Secondly, radiative transitions
between unstable states are inaccurately treated in that
contributions to the natural lifetime may be inad-
vertently left out. This omission also shows up in the
treatment of resonance fluorescence of coupled levels
under anticrossing conditions. Thirdly, a more practi-
cal, but perhaps a more important, consideration is that
the formalism rapidly becomes unwieldy when other
than isolated levels are concerned.

A method to remove these objections is suggested by
Feshbach's treatment of nuclear reaction theory. ' This
involves the introduction of suitable projection opera-
tors that select out the isolated levels as well as the sets
of coupled levels of interest. It is the purpose of this
note to extend this treatment so that it will apply to
transition probabilities. The derivation given is based
on the Green's function and the determination of its
matrix elements in the unperturbed energy representa-
tion when many levels are strongly coupled by an
interaction energy. The directness and the simplicity
of this approach, however, are obtained at the cost of
the introduction of the matrix elements of the level
shift operator, the properties of which have been de-
scribed in detail by Goldberger and Watson. ' For the
case of a single excited state our derivation is equivalent
to that of Goldberger and Watson and represents a more
direct approach. The advantage of this approach is
realized when several closely coupled states are involved.

As an illustration of the practical utility of this
formulation, we give in the. last section a number of
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~ 'HE quantum theory of radiation is by now a
familiar subject that has been ably presented by

Heitler on the basis of time-dependent perturbation
theory. ' Recently a number of treatments have appeared
that present the subject from a different point of view. "
In particular, that of Goldberger and Watson parallels
the formal treatment of time-independent scattering
theory based on a Green's function formulation. The
power of this approach is seen by noting that this
formulation can be made exact and is easily able to
demonstrate the nonexponential decay properties of
excited states —a subject missing from the perturbation-
theory approach of Heitler. The nonexponential decay
illustrated by the Green's-function technique shows a
power-series dependence on time, the leading term of
which depends on the energy dependence of the density
of final states.

Common to these treatments are a number of draw-
backs. To begin with, the initial and final states are
treated on an unequal footing, thus making the con-
sideration of transitions between unstable levels un-
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applications that represent diferent aspects of stimu-
lated transitions between unstable states.

where
l|b(~)&=e-'«I &,

H=—K+ V,

K
I
a& =E.I a&.

(2)

(3)

The transition amplitude at time t between the states
I a) and

I b) belonging to the spectrum of K is given by

I~.(&)=—(b14(t)&=(b l~ '~'l~&, (4)

which may be expressed in terms of the Green's func-
tion as

1
S&.(~&= ZE e *"(bIG(E)I-o&.

27ri
(5)

The contour c runs from +~ to —~ above the real
axis above the singularities of G(E).

To calculate the transition amplitude and hence the
transition probability we need to know the energy de-
pendence of the Green's function in the representation
appropriate to the unperturbed spectrum. If the levels
a and b are isolated from the remaining spectrum of E,
then the problem is relatively simple. However, if the
levels are not isolated, the evaluation of Ii„(t) is not
simple. To reduce the complexity somewhat and to
make clear the states of the system to be included in the
evaluation of the matrix elements of the Green's func-
tion, we introduce the language of projection operators:
we introduce the relations

P+Q=1, QP=PQ=O, P'=P,

where I' is the projection operator onto a particular set
of levels which we wish to treat on an equal footing.
It takes the form

2. FORMAL DERIVATION

We consider to begin with a system that is initially in
a given state, The system is made unstable by the
presence of a perturbation that induces a transition from
the original state. The probability that at time t the
system has made a transition from one state to another
may be calculated if we can follow the system as it
evolves in time. If originally the system was in the
ath eigenstate of the Hamiltonian E, then through the
perturbation V, at time t it will have evolved according
to the expression (A=1)

and then taking the left projection of this equation onto
first P and then Q:

P(E H)P(PGP—) PHQ(QG—P) =P, (11)
—QHP(PGP)+Q(E —H)Q(QGP) =0. (12)

Here we have introduced the identities

Q'=Q

to clarify the nature of the operators. On the assumption
that the operator Q(E—H)Q possesses an inverse in the
space spanned by Q, we may solve for QGP in terms
of I'GI"

QGP = (E—QHQ)
—'QHP(PGP)

Hence, the substitution of this expression into the first
of the above pair of equations leads to

DE PHP) PHQ(E QHQ) iQHP~PGP P —(1

which may now be inverted to read

PG(E)P= [E PKP PRPj '—P. —(16)

Thus, the second projection operator of interest is
given by

QG(E)P=(E QHQ) 'QHP(E—PKP PRP) '—, (17)—

where the integral operator R, known as the level shift
operator, is given by

R= v+ vQ(E —QHQ)-'Qv.

For the case of a single isolated state, the projection
operator I' is simply

we need to know the two projections of the Green's
function: QG(E)P and PG(L')P. The first projection
gives us the matrix element of G between a state outside
the set of levels and a state inside the set of levels which
we wish to treat on an equal basis. The second projection
operator has matrix elements only between members of
the set of levels in question. To determine the above
projections of the Green's function we start with the
identity

(E—H) G(E)=1.
Two coupled operator equations may be obtained for
the projections QGP and PGP by first multiplying this
identity from the right by I"

(E H)PG(E—)P+ (E H)QG(—E)P=P (10)

P=—Z I ~~&(i~ I, (7) P=
I a&(a I, —

where

Kli )=E;,.Ii~&.

The variables i and n as well as their ranges depend on
the type of problem to be considered.

Using the projection operator language it is clear that

and the above formulation is equivalent to that of
Goldberger and Watson. '

In order to write down the actual matrix element
(b

I
G(E) I a&, it is necessary to specify whether or not the

state Ib) is to be included in the set of closely coupled
states. If it is, then the matrix element in question is



calculated. In general the above matrix element may
be written formally as

&f IG(E) l~&=(f IPGPI~&
= &b I (E—PKP—PRP)-'

I a&. (20) Lcofactor(E —PKP—PRP) jaf
&fIG(E)ja&= . (21)

D«Ã-PKP PR-PjFor the case in which the set of coupled levels is a
6nite and small number, the matrix elements of the For the interesting case of two coupled levels, this
inverse of the operator (E—PKP PRP—) may be easily expression reduces to

()
&ajG(E) ja)=-

LE—E;R„(E)]LE—Et,—Rye(E)]—R,s(E)Ry,(E)

&IIG(E)l &=-
Rg.{E)

LE—E.—R..(E)]jE—E,—R»(E)$—R.&(E)R&.{E)

For a greater number of coupled states the matrix elements of PCI' are considerably more complicated.
If, on the other hand, the state

I b) does not belong to the set of levels belonging to the projection operator P,
then the matrix element of 6 is given by

&f IG(E) l~&=&f IQGPI~)=Z(f I(E—QBQ) 'I l)&I IQ»l~&&~l « PKP PRP—) 'la&— (23)

Here, the states
I I) represent a complete set of states, while

I c) represents the set of levels belonging to P If» we
now make use of the algebraic relationship

{E—Q&Q)-'=(E—QKQ)-'+{E—QKQ)-'QVQ(E —Q&Q)-'

then we see that for those perturbations V that couple only the state
I b) with the members of the closely coupled

set the above expression for the matrix element of QGP simplifies to

&blG(E)la)=(E —E&)-'g,&bj Vlc)&cl(E PKP PRP)—'la). — (24)

In arriving at tins expression we have introduced for the complete set
I I& that set of states belonging to K. If, in

addition to the above form for the perturbation V, we have only two closely coupled levels
I u) and

I c), then the
above matrix element of QGP becomes

E&f I
V

I ~&(E—E"—R-)—
&t

I
V

I &&R-j
&1'I G{E)

I
~&=

(E—Ey) {LE—E,—R„(E)jl E—E.—R„(E)$—R,.(E)R..(E)}
(25)

The form given in (17) for QGP includes the possibility of the interaction of the 6nal state of the system with
the perturber via intermediate states. %lien tins is possible it is sometimes desirable to replace (E QHQ)—
(E—QKQ) '. To do this is an exact fashion, we make use of the relationship

(E-QKQ)- QRP=(E-Q~Q)-'QVP=(E-Q&Q)-'Q»,
which follows from the de6nition for QHP:

QRP=QVP+QVQ(E —QHQ) 'QVP=(E —QKQ)(E —QHQ) 'QVP.

Thus, an alternate form for QGP is

QG(E)P= (E~ QKQ) 'QR(E)P(E PK—P—PRP) '. —

{26)

{27)

Using this form, we see that the expression for the matrix element of G between one member
I +) of a s« of

closely couples states and a state
I b& not a member of such a set is given by

&f'IG(E) Ia)=Z.{E—E~) '&f'IRI~)&~l(E —PKP—PRP) 'I&& (29)

~here the sum is over the set of closely coupled states. If the number of closely coupled states is Neo, then the
above matrix element reduces to

&f'IR
I o&CE—E —R-(E)j—&f I

R
I &&&&IR I'&

&f'IG(E)la&=
(E—E,){LE—E.-R..(E)jl E—E.-R..(E)j—R..{E)R-(E)}
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Here the matrix element of QGI' is given exactly and
no assumption need be made concerning the form for V.
It is now necessary, however, to relate the matrix
elements of R to those for U via the definition (18) of
the level shift operator.

In the evaluation of the contour integral in (5) it is
important to note the analytical properties of the level
shift operator R(E) as a function of complex E. For the
case of a single isolated state with a simple projection
operator P:

I'= [a)(a f,
the analytical properties of E. have been presented at
length by Goldberger and Watson. ' As the complica-
tions introduced by considering other than single iso-
lated states do not change the analytical properties of
the level shift operator, we summarize, brieRy, their
results.

When all the states connected to the initial state by
the perturbation are discrete and have finite norm, then
the singularities of R as a function of E are all discrete
and lie along the real axis. The resulting transition
amplitude is oscillatory in nature and describes a re-
versible situation. In the limit that some of the states
connected to the initial state have a nonfinite norm and
describe the possibility of a nonreversible decay of the
initial state, then the discrete spectra of the level shift
operator merge to form a discrete spectrum super-
imposed onto a continuous spectrum along the real axis.
This condition is realized, for instance, when the dimen-
sions of the box relative to the dimensions of the "atomic
system" contained therein become infinite. When this
occurs the level shift operator is no longer Hermitian
and as a function of complex E is analytic everywhere
save on the real axis where it has a number of discrete
poles superimposed onto a continuum. From the nature
of the singularities the form of the level shift operator
as a function of complex E is determined to be

R..+(E)=D..(E)aiI..(E),
where

ReR„+(E)=D,.(E), ImR, .+(E)=WI..(E) .

Here the + superscript refers, respectively, to the upper
and lower region of the complex E plane. (To make this
statement concerning the form of E. it is necessary to
assume that(a~ VQVia)(~. ) Theinsertion of thisform
for the diagonal matrix elements of E into the expres-
sions for the matrix element of the Green's function
(b G(E) a) serve to show that as a function of E,
(b G(E) a) is analytic everywhere off the real axis.

Along the real axis, I„(E)is different from zero only
along the cut E&E, where E is the lowest energy
value in the continuum. Hence (b

~
G(E)

~
a) is analytic

everywhere in the complex plane save on the cut along
the real axis E&E . To evaluate the contour integral
in (5) by contour analysis it is necessary to continue
analytically the matrix elements of the level shift oper-

ator from the first Riemann sheet through the cut onto
the second sheet. This may be done by defining the
value of the level shift operator on the second sheet in

the vicinity of the cut as

Rzz(emit) =Ez(e+ig),

where the complex energy near the cut has been
written as

E=&&i', g&0.

With this definition the contributions to the transition
amplitude in (5) include the residues at the poles on the
second sheet plus a contribution along a new branch cut.
Further details maybe found in Goldberger and Watson. '

In extending the above discussion to the more general
form for R given by (18), we note that the formalism is
such as to render the o6-diagonal matrix elements of E
as Hermitian and to remove the rapid energy variations
from all matrix elements of E. Hence we may apply
directly the above considerations concerning the ana-
lytical properties of E. for the simple projection operator
to the more general case. In writing down the form for
the various diagonal matrix elements of the level shift
operator we shall refer to Goldberger and Watson for
details where necessary.

3. APPLICATION'S OF FORMULATION

The applications in the following section have been
chosen primarily as simple illustrations of the theory.
Several applications represent different aspects of the
stimulated transition between unstable levels. The
results may be of some interest in spectroscopy for dis-
cussing both beam and swarm experiments. While the
examples chosen are mainly from atomic physics, the
theory developed in the previous section is not so
limited. As an illustration of this we also consider the
possibility of a model possessing a double pole and dis-
cuss brieRy the nature of its decay.

3.1 Stimulated Transitions between
Two Unstable States

As a first illustration we consider the stimulated
transition between two unstable levels. We assume for
simplicity that the two levels are isolated in the sense
that the only stimulated transitions possible are between
the two levels of interest. The amplitude for the transi-
tion is given by (5):

It„(t)= (1/2ni) e 'e'd. E(b
~
G(E)

~
a),

where for a two-level system the matrix element of the
Green's function is given by (22). The perturbation
energy for this illustration is assumed to have two parts:

V= V„+IIz,
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where V„refers to the coupling of the states to the
radiation Geld and B~ refers to the coupling with the
external Geld inducing the transitions between the two
states. With this decomposition the matrix elements of
the level shift operator may be written down directly if
we 6rst note that the projection operator Q is given by

where
o= 2(E.+Eb)

1~2[(A2+B2) l /2+ A ] l
/2

c=(I'.+Fb)/4,
d= 'v2[(—A'+B')'/' A]—'/' sgnB

in this application. Hence, the matrix elements of the
level shift operator on the second Riemann sheet
ImE&0 are given by'

R..=(aI v„(E z gv—„g) —tv Io&-

A = (E,—Eb) '—-„'(F.—I'b) '+4
I
H, b

I

'
B=(E.-E,)(r,—r.) .

Using the above expression for E+ and L', we see that
the transition amplitude takes the following form:

(t) [H /2(b+bd)](e cbt+dt— eibt dt)e tc—t ct —(3—7)
Q Q Qp=D —1ZI'

(32)
The transition probability is given by~so= Ds—2&I's,

R.b=(~IH, lb)=—H...=H., Pb.(t)=
I
Ib.(t) I'

—[IHb
I
2/4(b2+d2)]e 2ct(e2dt+e—2dt e—2ibt e2ibt)

=[IHb, l'/2(b'+d')]e "'(cosh2dt —cos2bt). (38)
In writing these matrix elements we have assumed that
the external perturbation couples the states a and b only
and that the interaction energy with the radiation field
V„has nonvanishing matrix elements between the states
tb or b and the continuum ("ground" states) only. In
addition, we have tacitly recognized that the level shift
operator has no nondiagonal matrix elements involving
V„. Hence, the transition amplitude is given by

In the limit that
I
Hb,

I

' goes to zero,

d=-,'42[(A2+B')'/' A]'/' —t —-,'
I
r.—r,

l
(c. (39)

dE e tEtRbc(E)——1
lb. (t)=—

22ri, [(E—E.—R..)(E—Eb—Rbb) —R.bRb.]
Pr= I'b Pb. (t)d—t

+ha—1
Qgg ~

—iEt

22ri, (E E+)(E E' )— —(33)
rblH, .I

2(b'+d') tt

e "'(cosh2dt —cos2bt)dt. (40)
where on the second Riemann sheet E+ and E are the
two complex roots of

(E E,+ br, )(E —E+'2T—b) I
H—,b I

'= 0— (34—)
For c&d the integral is finite, and we find

or

This inequality is still satisfied for H&, /0; hence, the
above probability is finite for all time.

Usually what is required is the total probability that
a transition has occurred. This may be expressed as

E =-,'(E.+E,)——,'(r.+r,)
+2 [(E,—Eb+ —'iF b

——,'iI'. ) '+4
I H, b I

']'/'.

In writing this expression, we have absorbed the level
shifts D, and Db in the terms E,=E,+D„Eb=Eb+—Db.

—
Here, the contour c lies above the two poles at E+
andE .

If for the moment we ignore the contribution to the
transition amplitude that shows nonexponential decay,
then the transition amplitude is found simply by com-
pleting the contour in the lower half-plane and evalu-
ating the integral at the two singularities given by (34).
We 6nd that Ib, (t) is given by

To exhibit the dependence of Ib, (t) on the levels E, and
E~ we write out explicitly the real and imaginary parts
of Ey.'

Eq=(~+b)+i( c+d), E-=(o b)—+i( c d), (36)— ——

Pr—
4(c' d') (c'+b')—

In terms of the above expressions for 6, c, and d, we
see that

(c'—d')(c'+b') = (—,', )'{[(I',+I'b)'+2A]' —4(A'+B'))
= (—,'e)'{(r.+r b)'+4A (r,+r b)' —4B') .

Hence, in terms of the energy values E, and E&,

(c' d')(c'+b') = (-,')'{—4I'.Fb(E.—Eb)'
+(F,+Fb)'(4IH, bl '+r, rb)) .

Thus, the total probability that such a transition does
occur is given by

I
2Hb.

l

'r b(r.+rb)
P,= . (42)

4I',Fb(E,—Eb)'+(F,+I' )'(I 2H, bl'+I', F )

The identification of this expression with that usually
given is seen by noting that in the unperturbed
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representation
K=HQ+Hrf ) (43)

(a) iVonexponential Decay Associated with

Stimulated Truesi ti ops

The contribution to the transition probability just
found displays an exponential decay and is valid for
times such that (1/tE)«1 provided that I'/E«1 also.
Inasmuch as the transition probability exhibits a reso-
nance phenomenon, it is of some interest to obtain an
estimate of the contribution to the transition probability
that displays a nonexponential decay character. To this
end we now re-examine the problem in detail.

As noted above, the transition amplitude between
the two closely coupled unstable states

~
a) and

~
lf) is

given by

Ib.(t) =
27ri

e 'e'Rb, (E)dE

,, [E—E,—R„(E)7LE—Eb—Rbb(E)7 —R,bRb,
(46)

where the contour runs from +Oe to —~ above the
real axis along which the singularities of R(E) lie. For
purposes of clarity, we repeat our remarks made in
Sec. 2 concerning the analytic properties of R(E). In
doing so we follow closely the approach given by
Goldberger and Watson. '

As a function of complex E the level shift operator is
analytic everywhere in the complex plane save for a cut
along the real axis for E)E plus a number of discrete
poles embedded in the cut. The first constitutes the
spectrum of H belonging to the continuum while the
second are the eigenvalues of the discrete bound states.
(Again, this statement of analyticity depends on the
inequality (a~ VQV~a)(~, which is violated in an un-

renormalized, nonrelativistic quantum electrodynamics.
s &.R. Bennett, Jr., Phys. Rev. 126, 580 i1962).

where Ho denotes the Hamiltonian of the system in the
absence of the rf field, while II,g denotes the Hamil-
tonian of the isolated field. Hence the two energy levels
E, and Eb are given by (tf = 1)

E.—=E.+(n) fe, Eb= Eb+ (n+1)fe, (44)

where the level shifts are included in E„Eb.Hence, in
terms of the frequency of the level separation,

Eb Q7

the total transition probability is given by

(
2H. b )

'I'b(1'.+I'b)
Z,=,(45)

41',I'b(fe. b fe)—'+(I'.+I'b)'(i 2H. bi '+I'.I'b)

which agrees with the expression found by Bennett. '

Ib.(t) =
27' P cl

e ' 'dE Rb (k,)
X-- (47)

LE—E„—R,(E)7LE—Eb—Rb(E) 7—R,bRb,

The contours are indicated in I'ig. 1.
If we equate terms of the form 1 dR, /dE, to un—ity,

then the contribution arising from the contour co is just
that we have previously calculated. By equating terms
of the form 1 dR,/dE, to uni—ty we are in effect ignoring

Em

I

I

I

I

I

I

I

cl
I

I

I

I

I

I

I

I

I

I

c0

I'xo. i. Contour of integration for Eq. (47).

This difFiculty may be removed by introducing a suitable
upper-limit cutoff on any integrals over real E.) To
utilize the method of contour analysis it is necessary to
continue R(E) through the cut from the ffrst Riemann
sheet onto the second. This is accomplished by relating
the matrix elements of the level shift operator on the
two sheets near the cut through the definition

R."(E—ift) =R.'(E+ rt),

where g is an infinitesimal and greater than zero. As
before, the form of the matrix element of the level shift
operator on the first sheet is given by

(R,')+(E)=D.(E)TiI.(E),
where the + denotes, respectively, the upper and lower
half-plane of complex E.

Having introduced the analytical continuation of the
diagonal matrix elements of the level shift operator, we
may now deform the contour by bending it down at
E=E along the erst sheet to E=E —i ~.The contour
to the right of E=E may be deformed in a similar
fashion provided we pass through the cut onto the
second sheet. In doing so we also must pick up any
contributions arising from isolated poles of the integrand
resulting from the analytical continuation of R„(E)and
Rbb(E). The resulting expression for Ib,(t) consists of
two contour integrals, one about the new cut extending
from E to E —i~ as well as the contour about any
singularities of the integrand:
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shifts of the energy levels E, and E& of the order of
D,I',/L', . For a resonance to be resolved, I',/E, must
be much less than unity. Hence, this correction is negli-
gible with respect to D, which in itself is small. (This

statement is made on the assumption that a phenomeno-
logical energy spectrum of Hp has been introduced. )

The remaining contribution to Ib, (t) which gives rise
to the nonexponential decay may be written as

Agee-&"dA
Ii(t) =——

2ni „$E—L,—R„(E)][E—Fb
—Rbb(E)]—R,bRb,

&Prb—ioo g
—iEtII~ dg& + IIp dA

2gZ E~ (E E+I)(F E I) 2irb z; (E E ii) (E——F. ii)

2mi

&tn iao —e iEtH—
L(E F ii) (F E II) (E E i) (E—E i)]

4E
~m (E E+")(E—E ")(E—E+-') (E —&' ')—-

where Bq, is assumed to be independent of the total
energy E and where

Ep p[E=,+Eh+ R,(E)+Rb(E)]
&-', (LE,—Eb+R,(E)—Rb(E)]'+4

i
Hb,

i
') '" (49)

The superscripts on E+ denote the sheet on which the
level shift operator is to be evaluated. " An inspection of
the integral shows that for t large only contributions of
the integrand near E=0 occur. Hence, we proceed with
this in mind. The term in the bracket in the integral
may be written as

t: ]= (E —E)(Rb"(E)—Rb'(L)]
+(Eb E)LR ii(E) R i(E)]+R iiRbii R

exponential contribution to the transition amplitude is

—6Hb, (I'bF, '+I',Eb')
Ii(t)-+

2 (E.,Lb ~Hb, ~')Pt~Ij, PEb'

—3Hp, I'g I',~+ +-
7rJi,f'.'g Ep4/4 E,434

The nonexponential contribution to I3 does not display
any resonance behavior near E,—E& and, while the
principal contribution for I'I!'))1, is in itself of negligible
magnitude. Hence, we may safely ignore its effect on the
total probability for the stimulated transition between
two unstable levels.

The introduction of the form of E, and Rb near the real
axis shows that the major contribution to the numerator
near E=O is Lime p$ ]= 2iE,Eb(E)—2iEbI (E)—,
where we have tacitly ignored the real part of R„E~
in this estimate.

If we expand the integrand in a power series in 1/t by
integration by parts, then the 6rst nonzero contribution
arises from the above limiting form of the numerator.
To proceed further we introduce the following phenomo-
logical form for I(E):

I.(E)= p I'(E/E. )"

with a similar form for Ib(E). (The exponent rt is an
integer for radiative decay processes. ) With this form,
the first term in the expansion of Ip(t) in powers of t

is given by

H,. —i~ -+ [(E.r,/E, .)yE,r./E. -]
I,(t) ——

(
n!ti

(SO)

For v=3, appropriate to radiative decay, the non-

7 To simplify the evaluation of the integral, we choose the
energy scale such that E equal zero.

(b) Energy Variatiort of the Matrix Elements

of the Level Shift Operator

As a final point in our discussion of the transition
probability for the stimulated transition between two
unstable levels, we note that we have tacitly ignored the
variation of the matrix elements of E. as a function of
the total energy K If, in our treatment, we had utilized
the formulation of Goldberger and Watson appropriate
for isolated, unstable levels, the neglect of the energy
dependence of E. would have been catastrophic. Only
by noting the strong energy dependence of both the
diagonal and off-diagonal matrix elements in their
formulation is it possible to obtain the results given in
the 6rst part of the section. We note that to treat the
above problem using their formulation an order of
magnitude more care and algebra are required than in
the use of the generalization presented here. In effect,
then, the largest contribution to the energy variation of
the level shift operator has been removed by our
generalization of Goldberger and Watson's formulation.
What energy variation is left is largely retained in the
diagonal matrix elements of E.; the variation of the
off-diagonal matrix elements of E with respect to the
total energy E is relegated to a higher order effect. To
show the effect of the residual energy variation of the
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D,—dD,/dE, D—'/E ~~ kc/sec,

diagonal matrix elements of the level shift operator, we additional shift is
re-express the transition amplitude with this in mind.
Again, we write the transition amplitude as

Ig, (t)=-
27ri

dE e '-~'Rb,
X .[E—E.—R.(E)][E—E —R~(E)]—R.bRb.

(52)

where we have noted explicitly the energy dependence
of the diagonal matrix elements of R only. If the energy
variation of these elements in the vicinity of the value
they assume at E, or Eb is slight, then we may expand
both R,(E) and R&(E) in a truncated Taylor series
about these values; for instance,

R.(F) R.(E,)+(E E,)dR./—dF..

Hence, the transition amplitude may be rewritten as

Ig.(/) =
27ri

dL e '~'Rbg (Eb)/(1 dR,/dF—.)
X (53)

, (E E, R,') (F—. E—y Rg') —R,g'—R y,
'—

where for E on the second Riemann surface with
Imp&0 the prime has the following significance:

R,'= R,(E,)/(1 —dR, /dE, ), —
R t,

'=—Rg(Et,)/(1 —dR t,/dE b),

R.t,
'= R.g/(1 —dR./dE. ) .

The first apparent effect such a slight energy dependence
then has is to alter the magnitude of the transition
probability. The most interesting effect is the presence
of additional contributions to the level shift as well as
the natural linewidth of the state:

R,'=R,(E,)/(1 dR,/dE,)—
= (Do ,'il', )/(1 dD—,/-dE, +,'id—I',/dE,)-

where

a shift too small to be observable using present
techniques.

3.2 Double Poles

An example of a decay mode that differs in character
from those just treated is associated with the possibility
of a double pole in the spectrum of the Green's function.
Whenever this occurs the decay is no longer of the
previous form but contains a term depending linearly
on time modulated by the exponential decay. The
presence of this type of decay may be interpreted as an
isolated case included in the previous treatment or, as
we prefer to do here, as a result of accidental degeneracy
in the chosen model.

To illustrate this particular decay mode we consider
a three-level system —two closely coupled excited states,

~
a) and

~
b), and a ground state. The decay mode to be

observed depends upon the preparation of the initial
state of the system which we choose here as the higher,

~
a). The decay of the higher state will deviate from an

exponential behavior if

(1) transitions between the two excited states ~a)
and ~b) are allowed;

(2) the values of the energies involved are suitably
chosen.

To verify these statements we write the amplitude
for the probability that at time t the system, originally
in state

~
u), is still in that state:

1
I„(/)=

27ri

dE e 's'(E —Eg—Rg')(1 —dR,/dE ) '
X (54)

, (E Eg Rg')(E E—, R—') R,g—'Rb, '— —

where we have used the notation introduced in the
previous section. Further, if we write

R,'=—D,'——,'il, ', Rb'=—Db' —~ ir b',

and

then the transition amplitude may be expressed as

dE e 's'(F Es+2iI't,)(1 dR—,/dE, ) '—1
I„(/)=

2' Z
I',(1 dD /dE, )+D,dI', /dE, —

r.'=-
(1 dD, /dE, ) '+~~ (d I',/dE, )'—

7

(55)
(E E)(E F)— —

where

[D,(1 dD, /dE, ) 'I',dI',/dE—,]--a
(1 dD./dE. )'+,'(dI', /dE)—'-

with a similar expression for Rb. Provided that we know
both the level shift as well as the linewidth as a function
of the energy, the calculation of these corrections is
straightforward.

As an illustration of the magnitude of these correc-
tions, when applied to the 2S&~2 state of hydrogen the

E~—= -,'E.+Ea——,'i(I'.'+ I' t,')

~p([E,—Eg+-', i(i'q' —I',')]'+4R, &'Rp, '}'~'. (56)

Here we have absorbed the real shifts in the definition

E,=E,+D,', etc.



A double root in the integrand and hence a deviation
from a purely exponential decay occurs for those values
of the parameters of the problem that satisfy

(E, E—b)' ,'—(1—',' 1—'b')'+Re(4R. b'Rb, ') =0,'
(57)

(E,—Eb) (1"b' —I',')+ Im(4R, b'R b.') =0.

P;= g —
I
io.&&in I,

»= & lij&&li I,

(61)

Whenever these conditions are satis6ed, then the proba-
bility amplitude that the system is still in the state

I a}
at time t is given by

J..(i)=L1—ii(Es—Eb+-,'il'b') j
X (1—dR,/dE. ) ' exp( —iEst), (58)

Es= s(E.+Eb)—b(1'.'+1'b')

I.,(t) {1 ,'it—[E—. Eb—+,'i(1'-b' 1'.—')j)
&&expI ——,'i(E,+E )tg expL —-'(1",'+1' ')tj. (59)

Provided R,~NO, the model chosen will exhibit devia-
tions from a purely exponential decay. We note that
this deviation occurs for small t and is of an essentially
different character from the nonexponential decay valid
for large t discussed earlier.

A model of this type has recently been discussed
as a possible example of an elementary particle. ' In
the example the following parameters were chosen:
I','=D, '=0 and R b=o, . For 0. real, the second condi-
tion can be satisfied if a degeneracy exists:

Under these conditions the probability that the system
is still in the initial state Ia& at time i is given by

P-(&)-(1+-'1' '&)' p(—-'1' '&)

Within the context of the Schrodinger equation as
usually formulated, then, nonexponential decays of the
above type can be expected as a result of accidental
degeneracies. Nonexponential decays can also be ex-
pected if the energy spectrum of the total Hamiltonian
has intrinsic degeneracies. '

3.3 Transitions between Two Members of
Degenerate States

As a perturbation on the 6rst example treated, we
consider the stimulated transition between two de-
generate states. The physical situation giving rise to this
case might be a 6ne-structure transition between two
states of an atomic system in the absence of the com-
plete resolution of hyperfine structure.

The projection operators for the two degenerate levels

s J. S. Bell sod C. J. Goehel, Phys. Rev. 138, B1198 (1965).' M. L. Goldherger and K. M. Watson, Phys. Rev. 136, 81472
(1964).

where the states in question are eigenstates of E:
Klieg)

=E;
I in&; n=1, g;,

Kli~)=~ Ii~&
(62)

The two degenerate levels i and j may be assumed to
be in relative isolation from the rest of the atomic
spectrum even in the presence of a perturbation inducing
transitions between the two levels. This may be realized
by introducing a unitary transformation to remove all
virtual transitions. '0 The result of this isolation pro-
cedure, however, is to modify the perturbation energy
in the space spanned by the two levels in question. The
major effect of the decoupling procedure is to introduce
diagonal matrix elements of the perturbation energy
that give rise to transition frequencies between the two
levels that are diferent from the usual Bohr frequencies.
With this in mind, we assume that the perturbation
energy V has nonzero matrix elements in the space
spanned by I

in) and
I jy& only.

The transition amplitude for an induced transition
between the degenerate states

I ia& and
I jp& depends on

the matrix element of the Green's function between
these states. We may write it as

&~i
I
&(E)

I js &

&ail (E —Q;HQ;) 'Q H—P (P Gp )Ij@&
. (63).

With the above choice of states as eigenstates of E,
Q~HP~ =Q~VP'

To simplify this result further, we make use of the degree
of freedom made available to us by the degeneracies of
the two levels. We choose the degenerate sets

I in& and
I jp& to simplify the above matrix element. Thus, if we
choose the degenerate sets to diagonalize the two
Green's functions, we may achieve the desired simpli6-
cation: i.e., we choose the set

I jp& such that

&i ~ I
R Ii~'& =R;.8.,', (64)

P,6"P;=P;(E Q;HQg) 'P;— —
= (E&.—P;KP; P,R'P~)—(65)

+J.-M. %'inter, Ann. Phys. 4, 745 (1959).

P;RP;=P;VP +P VQ (E Q,,HQ, ) ~Q, VP, —-
and the set

I
io.

& such that (E—Q~HQ, ) ' is dia, gonal in
I i,a) sPace. The matrix elements of (E—Q;HQ;)

—~ may
be calculated by repeating our original decomposition
of the Green's function using Q;HQ; instead of H.
We 6nd
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where

~'=Q;VQ;+(Q, vQ;)Q;LE —Q'(Q;&Q;)Q;3 Q;(Q, VQ;).

Hence, P,G'P,'. may be diagonalized by choosing the
set

I in) to diagonalize E':

&«IE'Iin&= &«I v
I in)b .'= v—;...6..' (6&)By virtue of the assumed properties of U, the only

nonzero matrix elements of E.' are given by

&nile'Iin'&=&«I vliu').
With this choice in mind, we also see that the diagonal

(66) matrix element of R is given by

&i I I
~ Ii I &=».-=v, -+2 &j~ I

v li~&&i~ I
~ &'&'I io'&&io'I V Ii I &

=v, ..+El&j.lvl' &I'/(E-E,-v;,.-), (6g)

where we have written the matrix elements of P;O'P; as

&iulP, G'8;I in') = (E—E;—V, ...)- b..'.
By collecting the above results, we see that the matrix element of the Green's function for the induced transition

between the degenerate states
I in) and

I jy) is given by

&«IG(E) I j~&= 2 &«I (E—QP'Q~) 'li~'&&~'il vlj~'&&jl 'l(E E' I'E—I' )—'Ij~&

&«I VI j~)

(E—E;—v;...)c~—E;—v;,„„—z, l &j&I vliP&l'/(E —E,—v;,„)j
In general, the diagonal matrix elements of U; will depend upon n. However, in the anticipation that the diagonal
matrix elements will be small compared to the off-diagonal matrix elements we rewrite the above expression as

where

&~il G(E) I j~&=
(E—E'-)(E—E;,.)-Zal&j'I VI'f &I'-~-.(E)

(70)

and we have introduced the notation
E E. p

E; =E~+V;—
In the absence of the term 6 „(E),the contribution of the above matrix element to the transition amplitude

occurs at E=E+, where
E+—= l(E',-+E,.)+lL(«, -—E,.)'+4 2 1&i ~ I

v
I 4& I

'j'"
VA'th this value of E~, we may estimate the magnitude of 6 „

(v;,»—v;...) I &j&I vlip&I2a.„(E,) =2 P
a ((E . E'-)+2(v'- —v*»—)~L(E'-—E',.)'+42 I&5 I

vliv&l'j"')
(72)

As a particular illustration of the theory we consider
the transitions of an atomic system stimulated by the
presence of an external electromagnetic field. If the
language of second quantization is used to describe the
external field and if an emission process is studied, then
the energies of the initial and the final states are given by

E,=W;+(n+1)has, E;=W;+nhou,

where W;,, are the energy levels of the atomic system in
the absence of the external rf field and e'Acr is the energy
of the electromagnetic field with e' photons of frequency
co present. Here, for purposes of this illustration we have
introduced A. If magnetic dipole transitions only are
allowed, then the matrix element of interaction is

given by"

i(e&x&G—) &«IM„ljl )
X [h(n+1)/2raeov]'~' (73)

Here, G(r) is the sca,lar amplitude of the mode of the
external field in the ca,vity of volume U. It is so normal-
ized that

IG(r) I'd. = V.

The factor &«I M
I jp& is the magnetic dipole moment

"M. Mizushima, Phys. Rev. 133, A414 (1964).
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of the isolated atom for the two states of interest, e)

denotes the direction of polarization of the rf magnetic
field, and eo is the permittivity of free space in mks units.

The unitary transformation required to isolate the
initial and final states from the remainder of the atomic
spectra introduces shifts of the following amounts
(Refs. 10 and 11):

0 —= V, „„—V;
= l~o&' 2~'1&j~ I Ml v) I

'
XI (W;—W —4))-~+(W —W +h~)-~]

—2»&'»'I (~i I
M

I v) I

'

X5(W;—ll —& ) '+ (W —W,+ ig~)
—'] . (74)

Here, the prime on the sum indicates that these energy
corrections differ from the usual results of Rayleigh
perturbation theory by the omission of both the initial
and final states in both summations, In writing this
result we have made the following identification:

~poH'=Q(abc'/2coU)
I egXqGI', e»1 (75)

where II and po are the magnetic-field strength and
permeability in mks units, respectively.

In the absence of the correction Ago. , the transition
probability for the induced emission of a photon of
frequency co is given by

P,,(t)=(4/g;)P L ] 'I(nil Vl jp)l'sin'(L ]'~'N/2), (76)

where

L ]=(I-'-'', -—F-,.)'+4 &~l&jul 1'li&) I',

and g, is the degeneracy of the initial state. As a func-
tion of the external rf frequency the transition proba-
bility may be maximized by the choice

E, —E;,„=lV;—W; —fzo) —0 =0
ol

A.co= O';—W;—0

For many precision measurements, 0 « IW;—W, l.
Urider these conditions, the correction

[~~I /Zr I(i~l 1'IiP) I']

is at most of order
I
0

I
'"/

I W, —W ~ I
'", where Wq (with

l/i or j) is the energy level closest to either W; or

W, included in the sum defining 0 . Hence, under these
conditions, we may safely ignore Ape.

The frequency shifts in the magnetic dipole transi-
tional between the hyperfine levels of 'P3i& states of
Cs'" have been measured by Faist, et al."and compared
with a theory of the lineshape similar to that presented

"A. Faist, E. Geneux, and S. Koide, J. Phys. Soc. Japan 19,
2299 (1964).

here. They calculated the average frequency shift

Z.„, I
(i~

I
s~,

I j,) I
2(v. ..—v;,„„)0=— (77)

and found that the ratio 0/ I
W,—W, I

was of the order
4X10 'B' where IX is the magnitude of the external rf
magnetic field in oersteds. Hence, for fields in oersteds
of strength 1(H&5 we may safely ignore the correction
d, pn and use the simple theory.

3.4 Rf Quenching of a Metastable Level

As a final example, we treat the problem of the radi-
ative decay of a metastable level induced by a strong
electromagnetic field. The stimulation processes will

markedly change the decay rate if near the metastable
level an unstable level exists that may be connected
with the metastable level by a dipole transition. Thus,
initially we assume that the atomic system is in a meta-
stable state and, because of the interaction of the system
with an rf field, the system makes a transition to an
unstable level that quickly radiates to the ground state.
If we then measure the number of emitted photons as a
function of the frequency of the rf field, then a relative
maximum number of photons will be counted if the
frequency of the rf field just equals the Bohr frequency
for the two excited levels in question.

Our energy spectrum as formulated consists of two
excited states with different lifetimes plus a ground
state. Actually, the transition in the presence of a strong
rf field may be made either by absorbing or emitting a
single photon; depending on the circumstances, one of
these processes will be virtual while the other will be
real. Hence, we should really consider the problem of an
atomic system initially in one of several closely coupled
excited states —in that one that has a relatively long
lifetime. The rf field then induces a decay via either of
the nearby unstable states. The states are assumed to
be in relative isolation from the remaining states of the
atomic system.

For simplicity, we divide the discussion into two
parts. For intensities of the external rf field sufficiently
low, we may ignore all transitions save the resonant
absorption between the initial metastable state and the
intermediate unstable state. Even for this case com-
plexities occur. By using the language of quantized fields
we must recognize that two exit channels exist for the
strongly coupled states: one from the metastable state
and one from the unstable state. As the number of rf
photons differ in each of these two channels, the ground
state themselves for these two decay processes differ.

As the intensity of the external rf field increases,
additional excited states play an important role and
additional decay channels become available. For sim-
plicity, in this case we shall treat only the induced
one-photon absorption or emission transition.
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(a) Moderately Intense External Fields

The states and the associated energies of the un-
perturbed system are given by

@~W.; n)=(W.+nb ) ~W.; n)=E. .
~
W. ; n),

R )W„'n—1)=PV,+(n —1)b j)W„n—1)
=—Eo,~ i(Wo, n —1), (78)

It
(
W„n'; I .)=(W,+n'A~+ A .) )

W„n'; k.)
—=Eo, (

Wo', n'; k.),
where E denotes that part of the Hamiltonian that
describes the system in the absence of the atom-rf 6eld
interaction. Here n denotes the number of rf photons
present, while k, denotes the wave number of the photon
emitted in the decay process. The presence of the inter-
action between the external rf field and the atomic
system strongly couples the two states ~W„n) and

~
Wo, rz 1), whi—ch we represent as

~
a) and

~
b), re-

spectively. The matrix element of the interaction energy
between these states is given by

(W„ni Vi Wo., n —1)
=(W.; n~ II,

~
W„n—1)=—II.b. (79)

The transition amplitude for the decay of the state
~
a) in the presence of the external rf field is

Io,(t)= e 'e'(Wo'n'k fG(E)fa)dE
2xz c

where the matrix elements of the Green's function are
given by (22) if we replace E, by E„and Eo by E&,„ i.
The matrix elements of the level shift operator are given
by (32). The remaining matrix elements of R between
the ground states and the excited states represent the
coupling to the radiation field giving rise to the decay
and will be retained as is in the subsequent calculation.

Hence, the transition amplitude for the stimulated
decay of an atomic system initially in one of two closely
coupled states is given by

1 dE(Wo; n; k, ~R~ a)(E E—„,+,'zT-,)e
Io,(t) =

2zri . (E—E, „)(E—E+)(E—E )

where

dE(Wo, n —1;kq
~

R
~
a)Ho.e 'e'-

(82)
2zrz, (E—Eo „ i)(E—E+)(E—E )

E,,„=E,,„+D,.—

E~= z (&a.+E,o. i) , ,'z(r—.—+r,)
&zL(E,,—Eo,„z+-'zi' —-'zT,)z+4J II,of

zjitz (83)

and we have absorbed the real part of the diagonal
matrix of E. in the definition

e-' (W, n 1; k,
~

G—( E)
~

a) dE, (80)
2'j We assume that both the matrix elements

where the two terms represent the two possible modes
of decay: one, directly to ground, and the second, in-
directly to ground via state

~
b). (In this statement and

in what follows we again set hz=1.) We may re-express
the above in terms of matrix elements of the level shift
operator as

Io.(t) = e "'(E Eo.) —'(Wo, , n; k. IR'I a)g«dE
2' Z

(Wo., n, k, (R~a), (W„n

are independent of the total energy E such that we may
evaluate them at E=EO, and E,=ED,„j,respectively.
(The variation with energy may be included in a more
precise calculation. ) With this in mind, then, the transi-
tion amplitude for times such that I',t, I'~t are not too
large and for a system in which

e ie t(E Eo i)
—i—+

27ri

)&(Wo n —1;k,~R~b)go.dE, (81)

I' s/Ea, n«1; »/Eo, ~-i&&1,

~w

(E, Eo i+zzl'o—)e ' '"' (E+—Eoo i+-'ii'o)e ' +' (E=Eo +-'zi'o)e 'e-'
I,.(t)=(W„n; k. ~R~a) — — +

(Eo..-E+)(Eo,.-E ) (E+-Eo,.)(E+-I-' ) (E -Eo,.)(E.-E )

g
—iE+tg

—&EO,zs—I& g-iE-5
—(W, ; n 1; ki,

~

R
~
b)II,.— +

For I' t, I"g]))0, only the first term in each bracket is appreciable. Hence, if we restrict ourselves to the non-
vanishing contribution for large values of t, then the transition probability per unit energy range of the emitted
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photon in the induced decay of the rnetastable state
I a) is given by

1 r.l (Eo,.—Eb,. i)'+-,'r b'j

2 II (E, „—E.„)(E,,„—E,„,)—IH, I'—-„'r,r ]'+-,'I r.(Eo,„—E, )+I' (Eo, —E,,„j'
p1 rt, l H. bl

'
(s5)

(2s L(Eo,„g—E„„)(Eo,„ i—Eb,„ i)—IH, bl' —-„'r.rbj'+-,'Lr. (Eo „,—Eb „,)+rb(Eo, „ i—I,,„)j'

In writing this expression we have noted that the two

decay photons are independent, and hence, the two

decay channels are independent. In doing so we have
utilized the relationship"

expression:
/~p, n —~a,n—=&~—p,

EO,o Eb, n—I=~a OOO Nbg+OO q

+p, n—t—Eb, n-y= +y —+O,

Ea,n =OOb
—OOO+OObo —OO.

des(aI~III o'»'lr. &(II o'&" irblElb&

= I a~ab~nn'~krrkg' .

In the absence of the interaction, the 6rst term in the
expression for the transition probability, which we refer

(S6) to as Po, ,z, reduces to

(ss)
The first term in the above expression for the stimulated

transition probability describes the modification of the
direct decay of the state Ia) by the presence of the
external rf field. The second term describes the indirect

decay of the state
I a) available by the presence of the

interaction energy H, &=—H&. Similar expressions have

been given by Hack and Hamermesh. "To see this more

clearly, we introduce the following frequencies in terms

of the energy differences involved in the above

a I.orentz-shape line with a width I" . By assumption
F,« I'&, hence, we may ignore this contribution for
I H~l))r, . (The presence of a strong interaction

I
H~l) I'b

serves only to shift the resonance and broaden the line
somewhat; in addition, it substantially decreases the
probability at resonance by the ratio r, 'jrb'. )

The major contribution to the induced transition
probability for I' «F& is given by the second term in
the above expression, which we refer to as Pp z where

rb IH~ I'j2~
Ppg, z

I (oob —ooo)(~b —ooo+&b ~)—I%I —br rb] +b[r (Mb —&o)+rb(oob —~+oob —oo)]
(s9)

At rf resonance, co=co~., this expression simplifies to

roly I'/2~
Po.,r ~es=-

L(- --)'-IH I'-!r.r»'+-:(.--.) (r.+r )
' (90)

which, as a function of the frequency co), of the emitted
photon, has extrema at

,= „(,—,) =IH,
I

—(r. +r, )/s. (91)

For intensities of the external field such that the
matrix element coupling the states Ia& and

I
b) is less

than the decay rate F&, then a single line exists and is
located at the natural line center. The maximum transi-
tion probability for this case is given by

P„„ I' /2 IH, I'; r,((IH
I
&r (92)

"M. E. Rose and R. L. Carovillano, Phys. Rev. 122, 1185
(1961).

'4M. N. Hack and M. Hamermesh, Nuovo Cimento 19, 546
(1961).

with a half-width given by

~-4IH~I'/rb

which is narrower than the natural line. For somewhat
larger intensities, IH~I) I'b, the line splits and has a
relative minimum at ~),=~o. The maxima are located at

Cod coo~
I
HJ

I (1—rbo/S
I Hg I

') '~', (93)
with a probability

P ~ .*—(2/ rb)(1—I'b. /16IH
I ) (94)

somewhat larger than the probability for the natural
line. The width of this line is

6-r b/v2,

which is coinparable to the natural line.
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For values of the time t that do not satisfy the in-

equality (I',+I'b)t))0, we must treat the time depend-
ence of the transition probability directly. In the
previous case we examined the transition probability at
rf resonance (10=oob,) as a function of the frequency of
the decay photon. In general, it is easier experimentally
to count the emitted photons instead of scanning them
with a monochromatic 6lter. Hence, we should deal with
the rf frequency dependence of the total transition where

&Oaoai(t) = d~.FO. ,D(t)+ d~b&Oa, r(t), (9&)
p 0

probability found from the transition probability per
unit energy range of the emitted photon by summing
over the frequency range of the emitted photon. As
there are two diGerent types of photons emitted, one
for each decay channel, this must be taken into account.
Thus we have

I a (Eo,a Eba 1+2—21 b) (E+—Eb „1+22Tb) (E —Eb „1+22Tb)
POa D(t)=— e ' '"'+- e

—'&+'

E+)(Eo,a E—) (E'+—Fo )(E+—F. ) (5: Eo „)(E—F. )—
e—&EO, tb-l t~b e—iE+t

&o.,r(t) =—
l
E/1., l

' ——+
(Eo,a—1 E+)(Eo,a—1—E ) (Ep Fo „1)(E—+—F ) (Jt E'

o
—1)(F F )

e
—iE—t

In writing these transition probabilities we have made use of Eq. (g4). gi'e may replace ~ to I',
J p, „~by noting that for A=1,

a =~+P, ~ ~ At) p,
=N~~ p n—I ~

Finally, the lower limits on the integrals may be extended to —~ by noting that the antiresonances so include
contribute very little to the integral. The integrals may then be evaluated by contour integration. To simplify the
resulting expressions, we introduce the following notation.

F+=(a+b) 2(c d), —E =—(.—b) —2(c+d), (98)

a=2(Ea a+Eh a 1) y
b=—O~~[(+ +II ) +A], C=a(l' +I'b), d=42V2[(+2+2@)1/2 g]1to Sgnjp

(E.—Eb., 1-)'+4, -I&1., 1' b(I'. -Ib), -~=-(E...-Eb . .)(I b
—1.).

In terms of this notation, we find

and

I a{cf(a—~b, a-1) +I 0'/4+b'+c' —d']+2bd(a —I,„,)}
Foa, n(t)dFo, a

4(b'+ c') (c'—d')

{CUa Eb, a—1) +(c I b/2) +b +d']+2dfb(a —Eb „,)—d(c —I'b/2)]}—e '" cosh2dt
4(b'+ d') (c'—d')

{dL(a—Eb,.—1)'+(c—I' /2)'+b'+d'7+2c[b(a —E „)—d(c—I /2)]}
e—'" sinh2&~

(b2+d2) (c2 d2)

{2bfb(c—I' /2)+d(a —Eb „,)]+c[(a Eb „,) +(c I,/2) b d ]}I Q e
—2ct cos

4(b'+ d') (b'+ c')

{2c[b(c—I'b/2)+d(a Eb, a 1)] bf—(a ~—b, a 1)2+(c I'b/2—)'—b' ——d']}r„ e "'sin2bt,
4(b2+.do) (bo+ co)

I'0 l-H,
l

c I b l H,
l

2;2 1

F, o(a)rtd, EO1a[ccosh2dt+d sinh2dt]
(b +c )(c d ) 4(bo+d2)(c2 —d )

rbl&112e "'
+ — [ccos2bt —b sin2bt]. (100)

4(b'+d') (b'+ c')

In terms of consistency we note that each of the two contributions to the total transition probability vanis
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at t=0:

Pp, ,22(t =0)dX!p,„=0, Pp, , r(t=0)dEp, 2=0, (101)

hence, the total transition probability vanishes at t=0. Furthermore, if we introduce the definitions for a, b, c,
and d, we see that the time-independent contributions to the total transition probability are given by

4F, lH, l (F.+F,)
4(b2+e2)(e2 —d2) (F.yF,)2(F.F&+4lH, l2)+4F.Fp(E.,„—Ep „2)'

aIld

I'.(c[(a—Ep, „2)2+ F22/4+b2+c2 —d2]+2bd(a —E2 „,)}
4(b'+ c2) (c2—d')

4F,F2(E, ,„—E2,„2)'+(F,+F2)[F,Fp(F,+Fp)+4F,
l
H2

l
']

(F,+F2)'(F,F2+4
l
H

l
')+4F,F2(E,,„—Ep,„)'

which sum to unity. Hence, in the limit of large time the total transition probability approaches unity. That is,
if one waits long enough the system, originally in state la), will eventually be found in the ground state with a
decay photon.

Of some interest from a practical point of view is the decay rate. Using the above expressions for the total
transition probability we find that the decay rate is

dPz (t) d
Ppa, rd&z+ Pp, ,

nd—p2, =
dt dt dt

FplH2l'e-"'
[cosh2dt —cos2bt]

2(b'+d')

+ ([(a—Eq „2)'-'+(c—Fq/2)2+b2+d2] cosh2dt+[2b(a —Eq „2)—2d(c —F2/2) j sinh2dt
2(b'+d')

—[(a—Eb „2)'+(c—I'2/2)' —b' —d'j cos2bt —[2b(c—Fq/2)+2d(a —Ep „2)g sin2bt}. (102)

The initial decay rate is given simply by

(dP (t)/«) I
-o=F. (103)

the contribution from the induced decay of state
l a) via

state
l b) varies as t' for small t The decay. rate via state

lb) for t~O,

d F, lH, l

pe-2 ~

Pp, , rda&q
— [cosh2dt ——c—os2bt j, (104)

dt 2(b'+d')

becomes

Ioa, ldx
dt

F, lH, l2.-2 ~

sin bt )

(b) Strong rf Fields

b=-', L4IH21' —l(F.—F )'j'"
2.= 2(F.+F,).

(105)

has a simple interpretation. It is simply the rate of
decay of state b to ground, F&, times the probability
that after a time t the system has made the transition
from la) to lb) For Fb))F, th. is is the major contribu-
tion to the decay rate of the system, hence we take a
brief look at this rate. If we introduce the definitions of
b and d, we find

2 (b2+d2) 2 (g 2+ 2I2) 1/2

=2[(E...—&2,.-2)'+-.'(F.—F2)'

+4 l H2 l
'j' —2

l
H2 l

'(F.—F,)'

which becomes small at rf resonance,

Eg ~—Eg ~ y=GD —Mgg=0.

At higher intensities of the external inducing field it
is possible to cause a transition from the metastable
state via stimulated emission as well as by absorption.
Not only does the stimulated emission process couple
more states, but it also introduces new decay channels.
Virtual processes exist that couple not only with the
initial state but with the final state as well. To illustrate
this coupling process, we redefine the states as

In terms of this notation, we assume as initial conditions
that the state of the system is represented by

lit=0&= lo„),

Under this condition, d =0, and the above decay rate that is, initially the system is in the metastable state
l a)
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lb

IWo, n-o ko)

Ib n-i&
r

Io

r

r,
IWo n (;ko)

IWo „2,k )

Ib n+i &

o,n+I & ko)
IWo, n+2&k )

FIG. 2. Energy-level diagram for the
relevant states involved in the rf-induced
decay of a metastable state. Absorption
of real rf photons is denoted by horizontal
arrows. Virtual absorption or emission
of a rf photon is denoted by a diagonal
arrow. Decay photons are denoted by
vertical arrows.

1o.(~) =
27ri

dEe '~'P(E—Eo „) '

X(w, „,k. lE, lb„,)(b. Igloo. ), (lo6)

where the sum over n' includes the three decay channels

lb„2), lb. 1), and lb.+1).
The level-shift operator in the space spanned by the

coupled states is unchanged in form from that given
before. The projection operator Q, however, is given by

&=El~- &&~- I+bulb-)(b. I,
n' n'

where the sum over m' includes just the coupled states.

with e rf photons of frequency ~. The specific states
closely coupled by the rf interaction are the following:

I~.. 2), Ib„,&; l~„), lb. ,&; lo.+2&, lb.+,&.

This coupling is schematized in Fig. 2.
The presence of the additional states as well as the

additional exit channels requires a.modi6cation of the
initial formulation. For simplicity, we limit oursevles to
the induced process and ignore the decay through the
direct exit channels. With this in mind, a study of the
above energy-level diagram leads to the following ex-
pression for the transition amplitude of the rf-induced
decay of the metastable state la):

In the space spanned by the coupled states the nonzero
matrix elements of the level-shift operator are given by

&b. I&I'&=&b. , l~, l..&=-~ .,

&b-+1IEI ~ &= &b.+11&1I&.&=&+-
(b.—IEI~.- )=&b.—I& l~-- &=—II+..—,

(bn+1I E IOn+2) (b +1 I
+1I12n+2)=8—,n+, 2. ~

Here, only one-photon processes have been included.
The subscript (—) refers to an absorption process, while
the (+) refers to a stimulated emission process. In the
limit of the number of photons e being large compared
to one, all these matrix elements have the same magni-
tude. The remaining nonzero matrix elements of 8 take
a familiar form for ImE(0 on the second Riemann
sheet.

(an.
I Rl un )—=Eo„,.„,=D,—21',/2,

(b; IRlb;)=—E „,, „,=D —2I'b/2,

where we have assumed that the individual matrix
elements were insensitive to the differences between the
number of rf photons in the states considered.

From the form of these matrix elements we see that
on the second Riemann sheet for ImE(0 the array for
the matrix elements of g ', the inverse Green's function,
in the space spanned by the closely coupled states is
given by

b
a~
b

~22+1

an+2

&n 3

E Ek 2+22o/2——H, „2*
0
0
0
0

an-2
-H, n ~

E—E,„g+il b/2—H+, „g
0
0
0

0
0—H, „

Z —E., „+sr./2—H+, „
0

~22-I

0
—H+, n 2*

E—Eo,„ i +2To/2

0
0

~22+1

0
0
0

E—Eg, ~+I+irf, /2

an+2
0
0
0
0—H, „+g

E—E,, „+,g+gr, /2

The states of this array consist of pairs coupled by an absorption process that are in turn coupled to one another
via stimulated emission processes. In writing this array we have absorbed the level shift of each state through
the definition E;=D;+E;.

The matrix elements of the Green's functions that appear in the expression for the transition amplitude may
be calculated from the above array by means of the relation

(b„.
I g I

an) = (cofactor g-') «, bn /Det,

wbcI'c Bet is the determinant formed from the above array. We find the following cofactors of interest in this
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calculation.

(cofac«r)...b. z
———(H,. z)(H+,. z*)(H-,.)[(E—lb..+z+zFb/2)(E —E.. +z+zF./2) —IH-. +zl ]

(cofactor), „b„,= —(H „)[(E—Eb „+iFb/2)(E —E,, z+iF,/2) —~H,
X[(E—E-,

,
+'F /2)(E —E.,-++zF./2) —IH-, -+ I'],

(cofactor), „,b„+z ——(H+, „)~H, , z~'(E—Eb, z+iI'b/2)(E —E,,„+z+iF,/2) —(H+, „)(E—E,, +z+iF,/2)
X(E—Eb, ,+iF /2)[(E —Eb, +iamb/2)(E —E,,„,+zF,/2) —~H, „

(cofactor), „,,„=—
( H, z (

'(E E—b„,,+iF /2) [(E E—b„+,+ziF b/2)(E E—, „+,z+z F/2) —
~

H
+(E Eb, —+zF —/2) [(E Eb, —+zF /2)(E E,,„—,+iF,/2) i H, „

X[(E Eb,—n+z+iF b/2)(E Ea,—„+z+ZT,/2) i
H-—,n+z ['7.

The determinant of the above array for the elements of g
' may be calculated using the above cofactors. If we

expand the determinant in terms of the a„row, we find

Det(E) =+H-, „*(cofactor),„bn-z+(E—E,„+iF,/2)(cofactor), „, „+H+,„*(cofactor)an, bn+z.

After a certain amount of algebra to render the fat from this expression, we find

Bet= [n—2][n][n+2]—
~
H+ „z

~

'(E—E,„+iF,/2)(E —Eb „z+iI'b/2) [n+2]
—

i H+, „i'(E—E,,„+iF,/2)(E —E,„+iF/2) [n—2]
+ )H+ „~'~H+ „~'(E—E, „+iI',/2)(E —E „,+'I' /2),

where we have introduced the abbreviation

[n']=—[(E—Eb „z+ZFb/2)(E —E, „.+zT,/2) —~H

To proceed further we limit our attention to that component of the transition amplitude that is not damped
in time. Hence, if we make use of the relationship:

2 Q dpi'(b„~R, ~W, „;k.&(Wo,„.;k ~E„~b„&=Fbr„„.S., „, (107)

then we 6nd that the probability for the rf-induced transition from a metastable state is given by

Fb
~o =—fl(f.—Ir(E=Eo,.—) lo-&Iz+ I(f.—la(E=Eo..—) l~.&l'+ I(f-+ lg(E=Eo,.+ ) I~.&l')

2'

@=@0,n;1

Fb (cofactor). „ b„-~ '

2n Det(E) Det(E) &=&O, zb-3

(cofactor). „ b„ , ' (COfact01)an, bn+I

Det(E) E=&O, zb+I

(108)

An examination of the cofactors involved suSces to show the asymmetry of the decay of the metastable state
~
a&.

To simplify these expressions, we introduce the following definitions

Eb—E~=CObz ~ EP—Eb= CO&
—MP,

where co, is the frequency of the decay photon in radians and ~p
—=orbp. In terms of these frequencies, we find that

the various terms in the expression for the transition probability may be written as

(cof«tor)...b„ z
'

Det(D)

(cofactor), „,b„-z '

Det(E)

=+
~ (H,„)~

'~ (n 1, n —2—) ~
'[(n 1, n+2) —

~

' —:
i (n 1, n —2)(n——1, n) (n —1, n+2)

g—go zb —)H+ „~'(n—1, —2)(,—,+,—3 +'I',/2)(, —,+'I' /2)

—~H+, „z)'(n—1, n+2)(~, ~b+aub, ~—+iF,/2)(co u&b+2~+iF—b/2)

+ IH+, - I
'I H+.--z I

'(~ —~b+~b —3"+zF./2)(~ —~o+2~+zFb/2)
I
',

i(H—,—z)(H+, z)(H—,n)(n —3, n+2) ~' —: ((n 3, n —2)(n —3,—n)(n —3, n+2)
&-&O, zb-S —IH+,.-zl'(n —3, n+2)(~ —~o+~b,—3M+zF /2)(~. —~,+iFb/2)

—
~
H+, „( (n —3, n —2)(~,—ub+~b —5u+iF /2) (&a —cob —2&o+iF b/2)

+IH+..I'iH+..—I'( .—o+ .—5 + F./2)( .— +»/2) )',



816 LYM A i( MOM'ER

(COfaCt01). cc b„+,

( ) E=Eo. +c

=
I (H+,.) IH+,.— I

'(M. —Mp+«+iI'b/2)(M. —M +M .—M+ii'. /2)

—(II+ „)(n+1,n 2)—(co, cop—+cob, co+—ii', /2)(co, cop—+2co+iI'b/2)
~

' —:
[ (n+1, n —2)(n+1, n)(n+1, n+2)

( H+, cc p[ (M —Mp+Mb +oM+ir /2)(co —cop+4co+i Fb/2) (n+ 1 n+2)

(coc, M—o+cobc, M—+iI /2)(M —Mp+2M+$1 b/2)(n+1, n —2)

Here
+ IH+, I IH+. —p I

'(M Mp+Mb —M+ii', /2)(M, —cop+4co+il'b/2) [

(n', n")=—[M.—Mp+ (n' —n"+1)M+ii'b/2] [M,—Mp+Mb, +(n' —n")M+ ii',/2] —
)
H

To locate the maxima in the transition probability as
functions of or,—~p, we assume

substitution of
M, =Mp+iH i+c)

Location of resonance

co, =coo+ [H
co =coo+2coo,+ [H
co =coo—2coo a[H
co =coo—4cooo+ I II

Magnitude of I'0,

Po, (2/ccI'b)Lt+S(IH-I'/coo ——')j
Po.=(2/ r )( H-I'/4 b')
Po, = (2/oculo)( H ~'/4cob ) (Vo/4coo )
Po, =(2/ ro)(~H ~'/4 o,')(ro/8 o,)'

Other resonances exist at M, =Mp+nMb, & ~H ~' with
even smaller magnitudes of I'p, .

The perturbation of the strong resonance at M =Mp

&
~

H
~

may be estimated by determining the zero of
the real part of the denominator of g~ ~ „, that is
Det(Ep „1),in the limit I'b —o 0. If we assume that

which is valid in the limit of intense rf fields, then the

(1) r.«1'b& ~H, ~;

(2) that we may safely ignore the off-diagonal
coupling terms

~
H+ „~ that occur in the denominators.

The resonant contributions then all arise from the first
term in each of the denominators involving the product
of three terms of the form (n', n"). To justify this ap-
proach, a subsequent calculation to include the remain-

ing terms of the denominator would show that the
locations of the relative maxima are shifted by terms of
the order of magnitude of

I H+.,„,
)
'/2co „.

The major contribution to the transition probability
comes, as one might expect, from the term involving the
decay channel via the state ~b. 1). The smallest con-
tribution arises from the term that decays via the state

~
fc„p). Without going into the details of the algebra we

list the location of the resonances as well as the value

of the transition probability at these resonances.

into the equation

Real[Det(Ep, 1)j=0
yields the following equation for 8:

SP+2~H ~S—[H [o/4Mb. o=o

where we have ignored terms of order 8/Mb, compared
to one. Hence, the main resonance of the transition
probability occurs at

M. =M + IH- I (1+IH-
I
'/»b. ')

The shift here arises from the coupling between the
states arising from stimulated emission and takes the
expected Bloch-Siegert form. "

Finally, to take a specific example, if the two states
in question are the 2S&~& and 283/2 states in hydrogen,
then as pointed out by von Roos," for external beam
intensities of 7.2 W/cm' the interaction energy

~
H

~

is about 1/10 the 2Sr~p —2Po~p separation Mbo,o Hence.,
the intensities of the satellites are less than 1/100 that
of the two main lines. The frequency split of the main
line, 2~H ~, is about equal to three times the natural
linewidth of the 2P 1S transition —(Lyman ccc line).
However, the broad band tuning requirements placed
on the rf source are so great that the observation is most
likely precluded.

ACKNOWLEDGMENTS

The author wishes to thank the staff of the Joint
Institute for Laboratory Astrophysics for their support
and warm hospitality during the course of this work and
especially Professor Larry Spruch for his insistence on
simplicity.

'~ F. Bloch and A. Siegert, Phys. Rev. 57, 522 (1940).' 0. von Roos, Phys. Rev. 137, A358 (1965).


