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interaction gives about 400 MeV for the optical-
potential well depth, or about 8 times the empirical
value. However, it might be noted that only the mono-

pole part of the interaction contributes, aiid we have

already seen that this predicts an excitation cross section
for the 0+ level at 1.75 MeV which is an order of magni-

tude larger than that observed. It remains to be seen

whether these gross discrepancies are due to the in-

adequacy of the model potential for the monopole part
of the interaction, to the neglect of exchange effects,
or to some other cause.

Some of these questions may be answered by a similar

analysis of proton scattering data from other nuclei

whose wave functions are probably well described by
the shell model, such as those of the 1f7~2 shell. "
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The application of the shell model to the Zr(p, p') reaction is described. The nuclear matrix elements,
and particularly the radial form factors, are discussed. Interactions of Gaussian and Yukawa form between
projectile and target nucleons are used. They are assumed to be central, but spin and isospin dependence is
included. The shell-model orbitals are calculated for a potential of the Woods-Saxon shape. The effects of
parameter variations and of corrections such as may be due to nonlocality of the potentials are studied in
some detail. It is shown how the data for the ' Zr(p, p') reaction favor a Yukawa interaction with a range of
about 1 F.

I. INTRODUCTION

~HE preceding paper' described the results of
measurements on the "Zr(p, p') reaction at 18.8

MeV, and compared them with theoretical predictions
based on the nuclear-shell model. In the present paper
we examine in more detail some aspects of this model,
in particular the radial form factors which arise from
the nuclear matrix elements. Various features, such as
the effects of including nonlocality corrections, are
explored so that a better assessment can be made of
the fits to experimental data and the significance of
the parameters so obtained.

In order to apply the shell model, we need to assume

an interaction v;„between the projectile p and each

target nucleon L At high energies (say, 100 MeU or
greater) it is reasonable to invoke the impulse approxi-
mation, ' in which v;„ is replaced by the scattering am-
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plitude 3;„ for two free nucleons. However, at the
lower energies with which we are concerned here, the
corrections to this simple prescription are likely to be
so large it is more profitable, at least initially, to regard
v,„as an effective interaction for which we may try
various phenomenological models. The parameters of
the model interaction are then to be determined by
fitting to experimental data. Before this can be done
we must have some knowledge of the wave functions
for the target nucleus which is to be excited.

"Zr is quite appropriate for this purpose since it
possesses a set of excited states which appear to be
due to relatively pure (g9~2)' and (g9~2p~~2) configura-
tions for the last two protons. ' The first of these con-
figurations has states of spin 0+, 2+, 4+, 6+, and 8+
whose excitation selects out the corresponding multi-
poles of the effective interaction and provides a de-
tailed probe of its structure.

The information contained in the experimental data
is of two kinds. On the one hand we have the cross-
section magnitudes, and in particular the relative mag-

(N. Y.) 8, 551 (1959);R. M. Haybron and H. McManus, Phys.
Rev. 136, B1730 (1964).'B. F. Bayman, A, S. Reiner, and R. K. Sheline, Phys. Rev.
115, 1627 (1959); I. Talmi and T. Unna, Nucl. Phys. 19, 225
(1960).
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nitudes for sets of states such as the one just men-
tioned. These provide information about the multipole
decomposition of the interaction (and hence, for ex-
ample, its range and possibly its shape) as well as its
over-all strength. On the other hand we have the
angular distributions for each transition. The qualita-
tive shapes of these are known to be determined
largely by the multipolarity (angular-momentum trans-
fer) and by the elastic distortions (described by the
optical-model potential). Poor quality or incomplete
data will then tell us little else. However, measure-
ments with the kind of accuracy which is readily ob-
tainable today could often distinguish between the
predictions of various forms of the model —for example,
different configuration assignments.

The effective interaction which should appear in our
calculations is probably very complicated and akin to
the reaction matrix effective interaction which appears
in the work of Brueckner4 and others. ' ' We could
reasonably expect it to be nonlocal, and dependent
upon the relative angular momentum of the interacting
pair. Further, it may well depend upon the positions
of the two nucleons within the nucleus as well as their
relative separation; the effective interaction is different
when both are deeply imbedded in the nucleus from
what it is when both are outside the bulk of the nu-
cleus. 4' These differences may also depend upon the
orbit occupied by the target nucleon. 4 We mention
these things so as to emphasize the possible deficiencies
of the simple local interaction we use which depends
only upon the separation of the two interacting nu-
cleons. We also neglect the spin-orbit and tensor inter-
actions which are known to be present in the interac-
tion between free nucleons. Simplicity is the main
justification for this procedure, which is close1y analo-
gous to that followed in shell-model calculations of
bound states. A more general interaction would con-
tain more parameters than could be determined reason-
ably at this time.

We also assume that we can neglect exchange con-
tributions to the inelastic scattering in which the
projectile is captured and a target nucleon is ejected
(except insofar as the effects of these are included in
the effective interaction used). These exchange terms
involve more complicated overlap integrals for the
nuclear wave functions, and there is some justi6cation
for their neglect from calculations on the 2SSi(m, P)
reaction. '

II. THE INTERACTION

The distorted-wave amplitude' for inelastic scatter-

.4See, for example, K. A. Brueckner, A. M. Lockett, and M.
Rotenberg, Phys. Rev. 121, 255 (1961).

~
¹ C. Francis, D. T. Goldman, and C. R. Lubitz, Ann. Phys.

(N. Y.) 29, 232 (1964);I.M. Green and S. A. Moszkowski, Phys.
Rev. 139, B790 (1965).

6 A. Agodi and G. SchiRrer, Nucl. Phys. 50, 337 (1964).
~ See, for example, G. R. Satchler, Nucl. Phys. SS, 1 (1964);

are use the notation of this reference.

ing' from an initial state li) to a final state
l f) includes

as a factor the nuclear matrix element (fl Vli) The
same factor appears in the coupling terms when the
coupled-equations technique' is used. In the present
model V=+; v,„, where i refers to a target nucleon.
For the nucleon-nucleon interaction we take the
central potential

v;„=—(Vp+ Vie; e„)g(r,„),
where

Vs ——Vs.+Vs'~; ~v,

and r;„ is the distance between the two nucleons, r;„= lr;—r„l. We make the usual multipole expansion"
of g(r;„) in the coordinates r, and rv,

a(r~v)=«Z g~(r', rv)Y~~(8A')Y~" (8A.)* (3)

Each term in this expansion can give rise to the transfer
of (orbital) angular momentum L to the nucleus, and
corresponds to a parity change of (—)~. In addition,
the second term of the potential (1) can give an addi-
tional transfer of S=1 unit through what we shall
call spin Qip. The total angular-momentum transfer J
is then the vector sum of these,

J= i.+S,
where S=O (so J=L) for the first term of the inter-
action (1), and S=1 (so J=L, L+1) for the second
term. This multipole expansion may be expressed by
using the tensors"

Tr,sg, & (8$,0')

=+is i~YJ~(8y)Ss,„~(e)(LSM, IJ, M
l Jp) —(4)

if we choose SOD=1 and SD,=0.). Then, of course,
Tr,or„ir PYI,~. With —E—q. (3) the interaction (1) may
then be written

X+r,s&,„(8,$;~g)+z», „(8,p„o„). (5)

It follows that the nuclear matrix element (f l
V li) may

be expressed~' in terms of the reduced matrix elements"
of the tensors (4),

(rills' gi(r', r.)~~s.(8.e'o') ill'),

where J;, Iy are the spins of the initial and final states.
Of course, we have the selection rule

'R. H. Bassel, G. R. Satchler, R. M. Drisko, and E. Rost,
Phys. Rev. 128, 2693 (1962).' B.Buck, Phys. Rev. 130, 712 (1963).

'0 D. M. Brink and G. R. Satchler, Amgulet Momentum (Oxford
University Press, New York, 1962). We use the Wigner-Eckart
theorem in the form

&IM I ~;„]I~&=&iJm~ II'm'&&I
I ir, I II&.
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IL(r„)= uo(r, )ui(r')gz(r', r&, )r '« (9)

The uo(r) are the radial parts of the single-particle
wave functions involved in the transition; the subscript
k stands for the set of quantum numbers ef„ li„j&.The
IL, depends upon these quantum numbers, but we omit

the labels for simplicity.
If the nuclear wave functions involve mixed con-

figurations, with more than one contributing, the ele-

ment (6) is simply a sum of terms (7) weighted by the

corresponding mixing coefficients. Most of the present

paper is concerned with transitions which can be ex-

pressed as in Eq. (7). Further, for an even target like
"Zr with zero spin and even parity, I;=0, and the value

of J is restricted to J=If. "Normal" parity states,
with spin I and parity (—)~ can then only be excited
with a transfer of L=J.States with non-normal parity,

(—) +', must be excited with L=I&1; this requires

spin flip. A spin-independent (8=0) interaction will

not excite these non-normal parity states.
So far we have neglected to discuss the consequences

of the isospin dependence of the interaction. The second

term of the interaction (2) also results in matrix elements

of the form (6) except that each term of the operator
is multiplied by ~;. However, in the present work we do

not need such isovector operators; the isoscalar form

(6) is sufficient provided we take the appropriate expec-
tation value of the operator (2). If only protons are

excited in the target this becomes Vq= Vg &Vgp, with

"D. M. Brink and G. R. Satchler, Nuovo pimento 4, 547
, (1956);A. de-Shalit and I. Talmi, Nuclear Shell Theory (Academic
Press Inc. , New York, 1963).

'2In the notation of Ref. 7, if the radial form factor is chosen
to be PI,g J(r) =II.(r) then the spectroscopic coeKcient is just

Ar, g J= —47r U g2"(Ml.bgP+NI. J~+1).

Note also that the gl, defined in this reference is 47r times that
used here.

Given specific nuclear wave functions these matrix ele-

ments may be evaluated by standard techniques. ""
They remain functions of the radial coordinate r~.
Since the operator appearing in the element (6) is a
single-particle operator, it only connects configurations
which diRer in the state of at most one nucleon. If
only one configuration in both initial and final states
contributes to the transition, the element (6) factors
into a radial part and a spin-angle part.

(IyllZ gal'r. szlIlI~&= (disso+&rz4i)Iz, (r&) (7)

where the multipole coeKcients"

~i=(I~IIX' ~'F.(e'e~)III.), (ga)
and

&»= (IfIll' 2'r»(e'4'o')III & (8b)

are properties of the nuclear wave functions only, and
are indepednent of the assumed interaction. The choice
of interaction aGects only the radial form factor, which

is just

the upper sign for a proton projectile, the lower sign
for a neutron projectile. Similarly, states obtained by
only exciting target neutrons have Vz= Vz W Vzp. It
would be interesting in such cases to compare the results
of neutron and proton scattering; in principle, one could
then determine V~ and Vzp separately. The only other
case dealt with here concerns hole-particle excitations
of the doubly-closed-shell configuration in which the g9/2
shell is filled for neutrons, empty for protons. Neutrons
and protons participate equally in hole-particle excita-
tions which do not involve the gg/2 orbit, in "T=O"
and "T= 1"combinations; the T=0 states are expected
to be lower in energy. Only the isoscalar interaction
contributes to exciting T=0, so V8= V&, and only the
isovector, with Vq = Vqp, contributes to the T= j.
transitions.

III. THE NUCLEAR MATRIX ELEMENTS

However complicated the nuclear wave functions, the
nuclear matrix element (6) can be expressed in terms of
the multipole coeKcients or matrix elements (8) taken
between the various configurations involved. The
evaluation of such elements has been discussed in detail
elsewhere"" and we shall merely quote the results for
the cases of interest here. As already remarked, the
operators only connect configurations which dif'fer in
the state of at most one nucleon, hence the results wi11

contain as a factor the single-particle matrix element
for the transition from the orbit (lr j~) to the orbit (lo jo)
Lonly the radial factor (9) depends on the principal
quantum numbers uo],

(fojol I

7'I sr I Il&j&)=2~&&+I (—)~'~—~lo

(2j&+1)(2L+1) '" fj, j, J
s r,sJI, , (10)

4' 0
'

where aLOL, = 1, and for S= i

oL1L L(4—ji) (2jr+1)—(~2 j2) (2jo+1)]/
LL (L+1)]'i',

SL1I f
—

I L+ (&i—ji) (2ji+1)+(12 j2) (2j2+1)]/
IL(2L+1)J'o (11)

o~i~i =P+1—(4—ji) (2ji+ 1)
—(lo—jo) (2jo+1)]/I (L+1)(2L+1)]'~o.

The following selection rules apply to these matrix
elements,

lti —gaol
&L&f1+~2 I ji—jol &I&j&+jo.

Parity conservation demands that L+f&+4 be even.
The single-particle wave functions are defined as

I
f j~m& =p z u.&, (r) 'Y&"-"(8&)x;z (o ) (l -', m —7, X

Ijm)
(12)

Two identical nucleons in a j' configuration only
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have normal parity states, so that we must have L=J
for transitions of the type (j')r o to (j')r z. However,
since ji= jo here, the first of Eqs. (11) shows that Er,r,

vanishes for this transition; there can be no spin Qip,
For S=0 transitions the standard reduction formulas" "
give

excitations of interest in "Zr are given in Table IV of
the preceding paper. Because of the ground-state mix-
ture (14), the elements for excitations which leave the
protons in the pi/o shell are multiplied by a, while those
for Anal states in which two protons occupy the g9~2

orbit are multiplied by b.
Mi, = 2(2K+1) '/'(l jll Tzoi lllj).

The "Zr ground state is a mixture

(13)
IV. NONLOCALITY

I
0+)= &

I pi/o' 0)+b
I
go/o' 0) (14)

so the MJ. for transitions to the excited states of the
go/oo proton configuration are those given by Eq. (13)
times the coefficient b. The numerical values are given
in Table IV of the preceding paper. ' The excited 0+ state
at 1.75 MeV is an exception because it is almost cer-
tainly a mixture complementary to the ground state
(14), namely

I
0+, 1.75 MeV) = el gg/o', 0&—b

I Pi/" 0&

For the excitation of this state we must have J =J=0,
so that spin Rip is forbidden here also. We soon find

(0+,1.75IIZ' go2'oooll0+, GS&
= (~) '"~bvo(go/o') —f o(pi/o')] (15)

Other excited states may be formed by elevating
one of the pi/o protons to the go/o orbit. These transi-
tions are of the form (j') r=o to (jj') r z, and for these
we obtain

((jj')

Illa';

2'is J II(j')0)= [2(2j'+1)/(2 7+1)(2j+1)]'/'
X (7'j 'IITz. sr[(lj ) (16)

Both components of the ground state (14) contribute to
the excitation of the (pi/ogo/o) configuration. However,
since"

(pi/olI lTr s~l I go/o&
= (—)' '5'"(go/oil T»~II pi/o&,

it is easy to see that the net result is to multiply the
matrix element for the (pi/o)' to (pi/ogo/o) transition
by the factor [a+ (—) 5'"b].

Kxcitations of the hole-particle type" are formed by
raising a nucleon from a filled shell into an unoccupied
orbit. The final state can be represented as

I (jo 'ji,)J&,
in an obvious notation. If only one type of nucleon is
involved (such as in the excitation of a go/o neutron in
"Zr, leaving the protons in the pi/o orbit), the matrix
element becomes"

((j.-'j,)~IIX'T-.II0)= (-) -'-
XL(2j,+1)/(2~+1)]'/o&j&IITz sell ja& (17)

If both neutrons and protons can participate (such as
in the excitation in "Zr of a nucleon from the filled

pi/o and lower shells), the hole-particle pair may
be in a T=O or 7=1 state. The corresponding matrix
elements are as in Eq. (17), times the factor
(—)r+'[2/(2T+1)]'/o. Numerical values of the matrix
elements ML, and SL,g for a number of hole-particle

We have good reasons to believe that the optical-
model and shell-model potential wells are nonlocal. It
is known that scattering from a nonlocal well can be
reproduced by an equivalent local potential, whose
parameters will vary with the bombarding energy; at
least part of the observed energy dependence of the
empirical (local) optical potential is due to this non-
locality. The nonlocality, however, has another impor-
tant effect on the wave function in the nuclear interior;
the wave function for a nonlocal potential is reduced
inside the nucleus compared to that for a local potential
which gives the same scattering. "This reduction can be
well represented by a darriping factor obtained from the
local energy approximation, "

G(r) =C[1—(/iP'/2h') U(r)] '/'. (18)

Here P is the nonlocality range, /i the reduced mass of
. the particle, and U(r) is the equivalent local potential.
The constant C is unity for scattering wave functions.
The same reduction occurs for sheIl-model bound-state
wave functions; if a radial function calculated in a
local potential U(r) is u(r), then N (r) for the same bind-

ing energy in the "equivalent" nonlocal potential is
given by u(r) = G(r)u(r). In this case, the constant C is
obtained by demanding the new wave function remains
nor'malized,

u(r)'r'dr = 1.

Since u(r) is reduced in the interior, we must have C) 1

so that the tail of u(r) is increased relative to that of
u(r). The energy dependence of the empirical optical
potential for nucleons corresponds to P=0.85 F, and
this value was used in all the present calculations. This
gives an upper limit to nonlocality effects, insofar as
some of the observed energy dependence may be in-

trinsic and not due to nonlocality.

V. THE RADIAL FORM FACTORS

Two finite-range forms were used for the radial de-
pendence g(r;„) of the effective interaction (1).The first
is a Gaussian,

g(r) =exp( yr')—
'3 F. G. Percy, in Proceedings of the Conference on Direct Inter-

actions and Egclear Reaction. Mechanisms, Padua, 1962, edited
by E. Clementel and C. Villi (Gordon and Breach Science Pub-
lishers, Inc. , New York, 1963); N. Austern, Phys. Rev. 137,
3752 (1965)."F.G. Percy and D. Saxon, Phys. Letters 10, 107 {1964)..
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g(r) =exp( —nr)/nr. (20)

These two are chosen because they yield analytic expres-
sions for the multipole expansion (3) (see the Appendix).
Calculations were also made for a zero-range potential
with

Vsg(r) =A s5(r) . (21)

To compare interaction strengths for potentials of
different ranges and different shapes it is convenient to
use the volume integral of the potential,

A s= Vs g(r)dr. (22)

This form has been used in a previous application of the
shell model to proton scattering. "The second form is
that of Yukawa,

Serber exchange mixture. Then the values y=0.4 F ',
Vo= 24 MeU, or n =0.8 F-', Vo= 19 MeV are indicated,
and correspond to AD=500 MeV F '. Further, a Serber
mixture corresponds to strengths in the ratios

Voe: ~op'I/'x~'~ip= ~:—1:—1:—1,
which gives, for example,

(V +V s)= —(Vp +Vps). (24)

The single-particle radial wave functions u„(r) which
appear in the expression (9) for the radial form factors
Ir(r) were computed" using a Saxon well of radius
ra= 1.20 F, diGuseness @=0.7 F, and a spin-orbit coup-
ling of 25 times the Thomas term (similar to the param-
eters of the real part of the optical potential' for
"Zr+P). The Coulomb potential from a uniform charge

For zero range, the A8 are just the coefficients appearing
in Eq. (21), while for the other forms we have

A s= Vs X (~/y)'": Gauss

X (4w/n'): Yukawa. (23)

For orientation, we might note the parameter values
for these interactions which fit low-energy nucleon-
nucleon scattering data. These depend upon the angular-
momentum states, but, for example, the S=O part of
the interaction (1) corresponds to 3/16 of the sum of the
singlet and triplet even interactions if we assume a
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FIG. 1. Radial form factors for a g9/2 proton in ~zr. The solid
curves result from a Yukawa interaction of range 1 F. The dotted
"collective" curve is proportional to the derivative of the real
part of the optical potential (Ref. 1) and is arbitrarily normalized.

'« H. 0. Funsten, N. R. Roberson, and E. Rost, Phys. Rev.
j.34, 33.17 (1964).

FIG. 2. Variation in position of the peaks of the various IL,(r)
with the range a ' or y '/2 of the interaction.

of radius 1.25A'~' F was included. The well depth was
adjusted to give a binding energy of 5.68 MeV for the
1gp~p proton, 6.60 MeV for the 2p~qp proton; these re-
quired 61.9 and 59.2 MeV, respectively. The nonlocality
correction of Eq. (18) was applied, assuming P= 0.85 P.
The constant C is 1.168 for the 1g9~~ and 1.165 for the
2p~~p, in the nuclear interior both functions are reduced
by about 5% compared to the local potential values,
but this corresponds to a damping of over 20% relative
to the magnitude of the wave-function tail. Since Iz(r)
depends upon two of these radial functions, nonlocality
leads to a substantial reduction in the importance of
the contributions to Iz(r) from the nuclear interior.

The Iz(r) are sensitive to the range of the interaction.
With the zero-range form (21), the gz and hence the Iz

"A code due to B.Buck was used for this.
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are independent of I.,
Iz(r) =N2(r)N~(r)/4s". zero range. (25)

As the range increases, the low-multipole form factors
become larger than those for the high multipoles, while
the high multipoles tend to peak at larger radii. An
example is shown in Fig. 1 for transitions between 1g9/2'

proton states (so that N~ ——u2), comparing results for a
zero-range interaction with those for a Yukawa of range
1 F. The decrease in peak height with increasing I, is
very evident, but the variation in peak position with L,

is not very marked. This latter property is characteristic
of the Yukawa shape, but the Gaussian is quite different
in this respect. Figure 2 emphasizes this, again for a
ago~~ proton. Except for the monopole, the Yukawa II.
peak positions vary little with range, while those for a
Gaussian spread out considerably. Of course, the peaks
become broader in both cases as the range increases.

Some examples of IJ. for other transitions are shown
in Fig. 3 for a Yukawa with n= 1 F.These indicate that
a variety of shapes are possible, including changes in
sign, which depend upon the single-particle wave func-
tions involved. These Ir, (and those for the other con-
figurations discussed in the preceding paper') were

TAaLE I. Well depths V and binding energies 8 for a proton
bound in ~Zr used in the calculations. Other potential parameters
as described in the text.

Orbit 1g2/2 2P1/2 2P1/2 2P8/2 1'/2 1f7/2 3S1/2 2d2/2

J3 (Mev) 5.68 6.60 7.75 9.65 9.46 14.80 2.15 0.35
V (MeV) 61.9 59.2 61.0 61.0 61.0 61.0 61.0 61.0

calculated assuming a proton moving in the same
potential well as before, with the depth axed at 61 MeV
for orbits other than the 2p, ~2 or 1g,~, , the corresponding
binding energies are listed in Table I. Using this well
depth for the 2p~~q (which gives a binding energy of 7.7
McV) instead of thc 59.2 McV required to give s,

binding of 6.6 MeV was found to have ah~ost neligible
effect.

It might be thought that the Iz (r) for a neutron could
differ appreciably from those for a proton between the
same two orbits because of the large difference in binding
energies. For example, in the 2pq~m to 2dq~s transition,
the neutron single-particle states are bound by about 6
MeV more than those for the proton. If the binding
energies are taken as 12.55 MeV (2p~~2) and 7.20 MeV
(2d5~2), the well depths required are 50.4 and 53.8 MeV,
respectively. Nonetheless, the corresponding Ir, (r) are
almost identical. This results because the single-particle
wave functions are themselves almost identical (except
in the extreme tails) .The deeper potential for the proton
(due to the symmetry potential) and the Coulomb
barrier just compensate the effects of the smaller binding
energy. Of course, at large radii the two wave functions
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g
9j& &

l6
l4
l2

l0
8
6
4
2
0
6

2

0

0 f 2 5 6 7 8 9 l0
/. (F)

FIG. $. Radial form factors for some other configurations in 907r.

take on different asymptotic forms, but these are small
in magnitude and contribute little to the II. integrals.

Increasing the radius of the shell-model potential
well to 1.252'~' F "expands" the wave functions slightly
and has a similar effect on the resulting I~(r) form
factors. Including the nonlocality correction (18) has
much the same effect.

A more interesting comparison is between the use of
harmonic oscBlator wave functions and those for a Saxon
well. The bulk of the more realistic function ean be
reproduced fairly accurately by an oscillator function
with an appropriate choice of constant. For example,
both the 1ggp and 2p~~2 functions used here agree quite
closely with oscillator functions if (A/Mw)'I'=2. 1 F,
although, of course, the taBs are different. The peak. of
the Ig oscillator function is a little broader than that
for the Saxon well. The accuracy of the agreement is
reduced as the number of nodes increases. The positions
of nodes and antinodes can usually be made to agree,
but the amplitude of the oseillations at small radii is
relatively larger for the oscillator than it is for the
Rat-bottomed Saxon well. When these oscillator func-
tions are used to construct the Iz (r), we 6nd rather small

differences from those obtained with the Saxon-well
eigenfunctions, even in the tails, when ranges y=0.293
F ' or 0,= 1 F—' are employed. It appears that the 6nite
range of the interaction determines the over-all shapes
of the II, and the wave-function tails have rather little
effect. However, the peaks of the Il, for ig2 are somewhat
broader for the oscillator when the Gaussian interaction
is used. The e8ect is small, but can have important
consequences for the high-multipole cross sections (the
I.=8 cross section is increased by a factor of nearly 2
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in the present case). Possibly a slightly smaller value of
(h//lIAo) would improve the agreement with the Saxon-
well results. The cross sections for the Yukawa inter-
action agree to within a few percent for all multipoles.

If we are studying transitions in nuclei close to closed
shells where the single-particle energies are known, it
would seem to be advisable to use the "realistic" wave
functions. The results just quoted are reassuring in
that we probably should not make gross errors if we
used slightly incorrect wave functions, particularly with
the Yukawa interaction. For example, the states of the
g9/2' configuration in "Zr cover an energy range of 3.6
MeV, but we use the same wave functions (correspond-
ing to the separation energy from the ground state) for
all the excited states. However, it is also clear that care
must be taken if oscillator wave functions are used.

Finally it is of interest to compare the shell-model
form factors discussed here with that given by the col-
lective model. For first-order transitions the latter is
just the derivative of the optical potential, and is com-
plex. The real part is included in Fig. 1; it is symmetri-
cal, peaks at 5.38 F and has a half-width of 2.4 F. The
Ir, (r) for a g9/2 proton, also shown in this figure, are
considerably broader (I& has a half-width of 3.1 F),
peak at about 1 F smaller radii, and have longer tails.
Other transitions in which the orbit changes have IL
very difFerent in shape from the collective interaction
(see Fig. 3, for example).

where

d~/des= p V8'~/, sg(8),
LSJ

(26)

&r,sz(8) = (2I+1)(Mr.'&so+&/. z'88')a/. (8) (27)'
Two approximations are implicit in these equations.
When spin-orbit coupling is included in the distorted
waves, there can be interference between difFerent
values of S and J when more than one is allowed. If
spin-orbit coupling is omitted, these interferences
vanish. Explicit calculations" show that they are also
negligible when spin-orbit efFects are included, so we
omit them from Eq. (26). Further, we have found that
the ."single particle" cross section Or, (8) is independent
of S and I to within a few per cent, so in Eq. (27) we
assume it depends only on L. (We call ar, a "single par-.
ticle" cross section because it depends only on the radial
parts of the two single-particle orbits involved in the
transition. The remaining nuclear-structure information
is contained in the matrix elements 3fr, or Ãr, j.)

For the calculations reported here, the optical poten-
tial A of the preceding paper was used. Calculations
with the -"best-fit" potential showed very similar results

'7 R. M. Haybron (private communication).

VI. CROSS SECTIONS

In the distorted-wave approximation, the theoretical
differential cross sections have the form'

except for an over-all reduction in cross section of
about 10%. Nonlocal damping of the distorted waves
was included in the approximation (18); this results
in a reduction of the integrand of the transition ampli-
tude by a factor 0.69 in the nuclear interior when
P=0.85 is chosen. The effects on the cross sections are
large. With a Yukawa of range 0.=1 F ', the g9~2',
L=2—8 and g9/mpr/2, L=5 cross sections are reduced
uniformly to about 2/3 their values when nonlocality is

ignored, with essentially no change in angular distribu-
tion. However, the relative cross sections for difFerent

multipoles are strongly affected by the distorted-wave
nonlocality corrections if a Gaussian with the roughly
equivalent range of p=0.293 F—' is used. The L=2
cross section for the g9/2' transitions is reduced by a factor
0.62 by nonlocality, while the J=8 cross section is re-
duced only by about 10%. This difference between
Gauss and Yukawa can be traced to the difFerence in

positions of the peaks of the corresponding Iz, (r) form
factors (see Fig. 2). The Ir, for the Yukawa all peak at
approximately the same radius and hence tend to be
afFected in the same way, while the Gaussian IL for
large I. peak at larger radii where the nonlocality cor-
rection is much smaller. Analogous difFerences in be-
havior could be expected under changes in optical-
potential parameters; for example, an increase in the
absorptive potential would dampen Yukawa cross sec-
tions for all J while the Gauss cross sections for low I.
would be most afFected.

When fitting the experimental data for exciting the

gg/Q and g9/2p&/2 states, ' the range of the interaction was
varied until both the angular distributions and the
relative cross sections for the various multipoles were
reproduced satisfactorily. Figures 4 and 5 show the
efFects of range variation for the Yukawa form. To
facilitate comparison, the "reduced" cross sections 0-

plotted are normalized using Eq. (23), so that

2 ~
g9/22do

A8'OX10 'X
dM g9/%pl/2

gives the predicted cross section in (mb/sr) if As is in

units of MeV F '. Of course, only S=O is allowed for

gg/s ~ The g9/up&/2 normalization assumes a ground-state
mixture a=0.8, b=-0.6. The 5 level may be excited
both with (S=1) and without (S=O) spin fhp. The
normalization in Fig. 5 assumes only 5=0. Provided
the two parts of the interaction have the same range, the
angular distribution is very insensitive to the presence
of spin Qip. It would seem that measurements of polari;
zation, or p'-y angular correlations, are required to iden-

tify spin Qip unambiguously.
These figures illustrate two features. First, the

strength of the high-multipole cross sections compared
to the low multipoles is very sensitive to the range of
the interaction. Secondly, the longer the range, the
more structure appears in the angular distributions.
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These features are due to the greater radial spread of
the Ir.(r) as the range increases. The lack of structure
for zero rainge (n= ~), as well as the much too slow
decrease in cross section with increasing I., rules out the
zero-range interaction. For example, the ratio of 1.=6
to I =2 cross sections is about 7 times larger than ob-
served experimentally. A reasonable compromise be-
tween agreement in shape and relative magnitudes is
obtained with a range of about n= 1 F '. A comparison
of experiment and theory with this range was shown in
the preceding paper. ' It required

~
Vo~ 205 MeV,

corresponding to
~
Ao

~

=2580 MeV F'. The fit to the 5
angular-distribution shape was not good; indeed, no
choice of n with a Yukawa reproduced this shape cor-
rectly. The addition of spin fop does not help, because
the S=O and S=i angular distributions are almost
identical and the interference between is negligible. "

The only interaction found in the present work to
give a good 6t to the 5 angular distribution was a
Gaussian with y=0.5 F '. Unfortunately this gives a
poor account of the other angular distributions, although
the relative cross sections predicted are in fair agreement
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sections predicted for excitation of the ggg2pj~g states with a
Yukawa interaction.
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with experiment. Figure 6 compares some predicted
cross sections for the gt~t' and gt~tpr~t states using the
Yukawa with n = 1 F—' and she Gaussian with y= 0.293
and 0.5 F '. The curves for various interaction shapes
and ranges show a close qualitative similarity to each
other, but the differences are enough for a reasonably
accurate experiment to distinguish between them.

We have already discussed the effects on the cross
section of the nonlocal damping of the distorted waves.
The effects of the nonlocal corrections to the single-
particle bound states are of particular interest because
we have little direct evidence about the nonlocality of
the shell-model potential. Evidence from (p, 2p) reac-
tions on the energies of deeply bound orbits indicates
the shell-model potential is energy dependent to about
the same extent as the optical potential. Nonetheless
we do not know how much of this is due to nonlocality.
Further, the behavior of the least rightly bound orbits
(with which we are concerned here) appears to be con-
trary to this energy dependence. '

FIG. 4. Variation with range of the "reduced" diRerential cross
sections predicted for excitation of the g9~2' states with a Yukawa
interaction. Coulomb excitation is included for the J.=2 curves
except where noted.

"G. E. Brown, J. H. Gunn, and P. Gould, Nucl. Phys. 46,
598 {1963); G. R. Satchler, unpublished. This work indicates
that, if the other parameters of the well are kept 6xed, the more
strongly bound orbits require a more shallow well.
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Pro. 7. Predicted cross sections for excitation of the 0+ level
at 1.75 MeV using a Yukawa interaction of range n =1 F. The
numbers on the curves refer to cutoB radii. The experimental
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Fro. 6. Comparison of the "reduced" differential cross sections
for Gaussian interactions of two different ranges with those for
a Yukawa of range ~ '=1 F.

With a Gaussian interaction, y=0.293 F ', the low
multipoles are little affected by the nonlocal correction
to the bound-state wave functions. The cross section for
L=2 and gg~r2 divers at most by 1 or 2%, whereas the
L=S cross section is increased almost uniformly by
about 25% by the nonlocal correction. The Yukawa
predictions, however, are affected less, the cross section
being changed by only a few percent for all multipoles.
This behavior can be understood when we remember
that nonlocality increases the magnitude of the single-
particle wave-function tail (by 1.168 for the g9~2 orbit)
and hence also the Ir, (r) in the surface region which
usually contributes most to the reaction. As Fig. 2
shows, the II, for a Yukawa tend to peak at about the
same radius, so all L are affected rather similarly,
whereas the Gaussian Ii for large L peak at larger radii
and are increased more by the nonlocality than those for
small L.

A special case is provided by the 0+ state at 1.75 MeV.
As already described in Sec. III, its wave function is
probably the complement of that for the ground state
and the nuclear matrix element (15) for its excitation
is proportional to the difI'erence between the Io for
g9~22 and p~~22. Figure 3 shows this radial form factor
for a Yukawa with n= 1 F ', and Fig. 7 shows the pre-
dicted cross section for the strength Vo ——205 MeV which
fits the other g9~2' states. The experimental data are
only upper limits, but we see that the predictions are
an order of magnitude larger. (Coulomb-excitation

contributions are very small and do not affect this
result. ) This result seems fairly general, occurring for
both Gauss and Yukawa for all the ranges studied, and
is not altered by reasonable changes in the single-
particle wave-function parameters. The largest contribu-
tion to the amplitude comes from the large peak in
Io(g')-Io(p') near r=0 (see Fig. 3). If the radial inte-
grations in the distorted-wave amplitude are cut off
so that contributions from r&2 F or r(3 F are elirni-
nated, the cross sections are greatly reduced (Fig. 7).
Multipoles with L&0 received little contribution from
this central region; the cutoff at 3 F only slightly affects
the L=2 cross section. However, the justification for
such a cutoff is obscure. It is possible that the true
effective interaction is much weaker within nuclear
matter. ' On the other hand the discrepancy may arise
because the true monopole strength is inadequately
represented by our simple interaction. It may be neces-
sary, for example, to include a repulsive core in the
interaction, although no serious attempts have been
made to obtain 6ts to the data in this way because it
introduces at least one new parameter. "More complete
measurements on the 0+ excitation could be helpful in
resolving some of these questions.

Finally, let us compare the present shell model with
the collective model. It was shown in the preceding

"See, for example, P. Coester and E. Yen, Nuovo Cimento
30, 674 (1963). Calculations were made for the effective inter-
action suggested by these authors. It gives cross sections of the
right order of magnitude (within a factor of 3 or so) but neither
the angular distributions nor the relative cross sections for the
ggyP states are reproduced. These discrepancies are due to the
very short range of this interaction.
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paper' that the real part of the collective-model interac-
tion (whose radial shape is shown in Fig. 1) gave a good
fit to the measured I =2 transition to the 2+ state of
the gg/2' configuration. An equally good fit was obtained
with the shell model using n= 1.0 F ', yet Fig. 1 shows
these are obtained with very different radial form fac-
tors. This illustrates one of the diSculties of interpreting
the data. It may be easy, within the constraints imposed
by a given model, to determine the parameters which
give a good fit to the data, but this does not rule out the
possibility of a quite di6erent model giving equally good
fits. Indeed the collective model fits the other g9~2' and

g9/QPg/2 transitions as well as, if not better than, the
shell model in the form used here. On the other hand,
the deformation parameters so obtained are not related
in any simple way and do not provide the consistency
check on the various multipole strengths that the more
detailed shell model gives.

One of the most interesting features of the collective
model is that the interaction it gives is complex, and
the experimental data (at least for the strong transitions
which have received most analysis) demand that the
imaginary part be included. It remains to be seen
whether it will be necessary to introduce a complex
effective interaction with the shell model, or whether
this is only required for the so-called collective transi-
tions. It is worth remembering that the impulse ap-
proximation gives a complex interaction operator.
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APPENDIX

The multipole expansion (3) has simple analytical
form's for a number of cases. For very long range,
g(r;„)=constant, only the monopole go(r;,r„) survives
and it has the same constant value. In the limit of zero

range, g(r;„)=5(r;„),we have"

g (r, ,r„)=S(r; r—)/4~r„'

independent of 1.. The Gaussian,

g(r'.)=exp( —sr'~'),

yields the multipole terms

gz(r;, r„)=expt y(rP+—r„')](m/2ix)'/'i Jz+g/g(ix),

where x=2pr;r„. These may be generated from the
recurrence relation

gz+, gr (——2L+—3)x 'A+, .-
The expansion coefficients for the Yukawa form,

g(r'.)= (~r'.) ' exp( —~r'~),

may also be expressed in terms of Bessel functions"

gL(r', r,) =at '(r r&) &Kz+i/2(ar, )Iz+i/2(e/r~), if r'& r~
=n '(r,r~) &K~g/2(or~)I~g/2(erg), if r,(r~.

These also satisfy recurrence relations,

Kz+g/g(x) =Kz+y/2(x)+ (2L/3)x K~3/g(x),

Iz~g/2(x) =I~g/g(x) —(2L+3)x 'I~a/2(x) .
Numerical values of the Gaussian g~ and of the I were
obtained by using a power series expansion for x&0.15.
Downward recursion was used for 0.15(x(10, and
upward recursion for x&10. Upward recursion was
used for the E for all x.

The Coulomb interaction g(r;~)=r;~ ' was needed
for Coulomb excitation calculations. This has the well-
known expansion

gr, (r;,r„)= (2L+1) 'r„z/r, +', if r;&r„,
= (2L+1) 'r;z/r~ +', if r„&r;.

Examination of the behavior with small values of the
arguments of the gz, for finite-range interactions shows
the corresponding Iz(r„) are proportional to r~z for
small r„. The zero-range case is an exception; for this
the Ir, (r„) go like r~'&+" near the origin.

I' G. Petiau, Ia Theoric des Fonctions de Besset (Centre National
de la Recherche Scienti6que, Paris, 1955).


