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Projection Operators in the Unified Reaction Theory*
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A simple form of the projection operators applicable for general rearrangement and exchange processes
with full recoil effect is constructed for the unified reaction theory of Feshbach. Channels of different cluster
configurations are not orthogonal and the overlap of their wave functions is important. Multidimensional
generalization of the wave functions and corresponding wave equations takes this effect into account in a
simple way without the complication of solving the integral equations with overlap kernels. Introduction of
the projection operators makes it possible to reduce the multiparticle scattering problem in a natural way
to that of multiclusters and the dispersive part which involves intermediate states of the compound system.
The formalism is compared with the Faddeev equations for the case of three-particle two-cluster reactions,
and also with other theories.

I. INTRODUCTION

HE unified reaction theory of Feshbach' requires
explicit forms of the projection operators for

different channels. By proper choices of these operators
it has been possible formally to identify various reaction
theories' and also to give a systematic discussion of the
compound and the direct reactions from a unified point
of view. Once the two-body interaction is assumed, then
the theoretical basis for the effective interactions be-
tween two clusters can be given and their energy de-
pendence and nonlocal properties can be studied in
detail. Absence of the interaction radius, which appears
in the other theories, makes it especially useful in de-
fining resonance parameters rather unambiguously. It
may also be an attractive starting point for the develop-
ment of approximation methods when the interaction
between particles is explicitly given. Several applica-
tions of the theory to specific reactions have already
been done. '

Recently the formalism has also been applied to derive
bounds on the reactance matrix. ~ ' When all the open
channels at a fixed total energy have been projected out,
then the resulting Hamiltonian has the spectrum
bounded from below and discrete in the energy region
below the threshold for new channels, very much like
that in the bound-state problems. Therefore, the various
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methods to bound the ground-state energies in the
bound-state problems apply with trivial modifications.
It was assumed however that necessary forms of the
projection operators can be given.

Explicit derivation of the projection operators is often
very difficult, however, especially when rearrangement
and exchange' collisions are involved with full recoil
effect. Feshbach' and Mittleman' obtained the specific
forms of operators for some simple problems, but even
in these cases they involve one or more sets of eigen-
functions generated by the strength-eigenvalue problems
associated with certain overlap kernels. It is not likely
therefore that such methods can be readily applied in
practice to more complicated scattering systems. On the
other hand, the problem is more of a geonsetrica/ rather
than a dynamical one in the sense that the short-range
behavior of the projection operators is not uniquely
defined, and thus can be modified at one's convenience
as long as the asymptotic behavior of the total wave
function remains unchanged.

We formulate the necessary operators and wave func-
tions in Sec. II and show that all the essential require-
ments are satisfied. The result is then compared with
other formulations, but their equivalence has not been
shown explicitly. Our main result is the form of P given
by Eq. (11), and the subsequent generalizations of
relevant quantities Eqs. (14), (16), and (20), (21).

II. PROJECTION OPERATORS AND MATRIX
EQUATIONS

We start with two essential remarks. Firstly, for
problems involving rearrangement collisions it has been
known for some time that a basis set in one channel is
not orthogoeal to sets of other channels and that- their
overlap is important. ~ Furthermore, this affects the
nonuniqueness of solutions of the usual I.ippmann-
Schwinger equations and it was suggested" that a multi-
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P '=P,
Da

pA 2 pA —+PA

and
P,"=

[ A.i)(A.i [
.

The bound-state functions
~

A i) for the cluster A are
defined by

hA. [A.i)=PA. .[
A.i), .

and D is the number of AD channels contained in the
nth AI channel. The total Hamiltonian H can be de-
composed in the nth channel in the form

with
H=H +V,

II =h" +h~ +T,
where h is the internal Hamiltonian and T is the
kinetic energy of two clusters, and

LP,H ]=0.
The total number of open channels C for a given total
energy E is

C=Q D,
a=]

where I is the total number of AI channels.
' L. D. Faddeev, Zh. Fksperim. i Teor. Fiz. 39, 1459 {1960)

)English transl. : Soviet. Phys. —JETP 12, 1014 (1961)j.' S. Weinberg, Phys. Rev. 133, B232 {1964).

component form of the wave function should improve the
situation. This point has been incorporated into the
three-particle scattering by Faddeev' and for the
general case of many-particle scattering by Weinberg. "
Secondly, as already stressed by Feshbach, choice of the
projection operators is rather arbitrary so long as they
meet certain standard properties and also give correct
projections asymptotically. That is, the form of the
operators within the interaction region may be adjusted
at one's convenience.

For simplicity we consider only those channels with
two clusters, and define the asymptotically independent
(AI) channels as those which possess distinct channel
Hamiltonians and the asymptotically dependent (AD)
channels which do not. Rearrangement channels belong
to AI, while inelastic channels without the change of
cluster composition belong to the AD channels. Ex-
change channels involving identical particles are AI but
reducible (AIR) in the sense that they do not require
additional independent solutions. For formal discussion
we will treat the AIR channels as AI channels, keeping
the above simplification in mind in the actual application.

Two clusters in nth AI channel are denoted by A and
8, and their internal Hamiltonians by hA and hB .
The projection operator of nth channel is then given by

P pA pB pB pA

The main source of difficulty in deriving the pro-
jection operators of AI channels is that

[P„PsjWO, for aWP. (10)

The remarks we made earlier suggest a natural way to
avoid this problem. We construct the operator in the
multicomponent form

P1
P2

P'3

pg

with
=I—P,

P'=P Q'=Q, and PQ=O.

Construction of such operators is trivial once the states
~A i) are separately known.

The wave function and the corresponding wave equa-
tion must also be generalized. We define

with

O' =P 4.;+ P %.,—=P 0 +Q %.. (15)

The boundary conditions for 0'; are given by

+., ~(~A.i)
~
B.i)) (a.;a.;+P u. ,'S....;.8.,),

I .fa

1 ~ 1

11. 1

(16)

which has a well-defined inverse because of the di6erent
boundary conditions for each AI channel. The form
(16) is very much like the operator used by Mottleson"
to deal with exchanges. Finally, we have

and the Feshbach formalism can be carried out exactly
the same way with the operators P and Q.

"B.R. Mottleson, in the Les Houches lecture notes on The
M' any-body Problem, edited by C. DeWitt (John Wiley k Sons,
Inc. , New York, 1958), p. 283.

where i'~& D and n'~& I. 9 i and 0 i are the incoming
and outgoing waves, respectively, while a i are the
specified initial constant amplitudes, and S is the scat-
tering matrix. 0;, with i)D, goes to zero asymptoti-
cally faster than the inverse of the distance between the
centers of mass of clusters A and 8 . We also define
I)&I matrix operator
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with
1+(2+C)—& 1+(2+C)

~ (1+2)+C,
(19)[M,P)=0,

we have explicitly

Separating out the part of (H —E) which commutes identical particles are involved, we consider the AI
with P as channels first. For simplicity of discussion we neglect

(H—E.) =M+V, (18) the target recoil and consider the two-channel process
(I=2)

and
Vg

H—EV=

H —E

H2 —E

H —E
V2

H—E

0

HJ —E

~ ~ o H

(20)

(21)

where the core C has no internal structure and is of
infinite mass, and the particles 1 and 2 are distinguish-
able. The positron-hydrogen scattering with the elastic
and the pickup channels is an example, and Mittleman'
obtained the explicit form for P for this case, following
the prescription of Feshbach. '

The operator P is required to satisfy

P%'= tf'p(r2)up(r1)+ Pp(r)vp(R)

P'=P, Q= I—P, with PQ=O.

The interaction V is by construction explicitly energy- and of course
dependent. We also note that the P component alone
gives

P(H —E)P2F~=0 (22)

which is what one obtains by the resonating-group-
structure method. "For the complete problem, we have,
without approximation,

PLH —E+VQ(Q(E —H)Q)
—'QV)P%'=0,

where V is given by Eq. (21).
It has been shown4 that the exact solution of (22)

gives upper bound on the inverse reactance matrix.
Furthermore, the variational treatment of the Q com-
ponent, which takes into account the effect of closed
channels in which clusters are virtually excited, would
monotonically improve the bound without destroying
the rigor of boundedness.

The Q component contains the many-particle feature
of the original problem, and thus a rigorous treatment
of this part requires the method such as that of Faddeev
and Weinberg. This is difficult to carry out for most of
the physically interesting problems. On the other hand,
one often has a detailed knowledge of the structure of
the intermediate compound system, and thus it may be
possible to develop a reasonably good and simple ap-
proximation method. In this way, the nuclear-structure
problem is incorporated into the reaction theory in a
very natural way.

Ke also stress the fact that the operators given by
(20) and (21) may be a more suitable starting point for
formulating the perturbation theory because of the nice
asymptotic properties as well as their symmetry, even
apart from the simple possibility of introducing pro-
jection operators as discussed above.

III. REARRANGEMENT AND EXCHANGE
COLLISIONS

Since exchange scattering is a special case—AIR—of
the general rearrangement collisions —AI—and in which

"J.A. Wheeler, Phys. Rev. 52, 1107 (1937).

The functions $0 and p2 are the ground-state wave func-
tions of the hydrogen atom and positronium, respec-
tively. The orthonormal sets {u„}and {v„},which are
not necessarily complete, can be generated from the
homogeneous coupled equations

u„+l1„K1v„dr2——0,

v, +X„E~u„dr=0,

where u„(r1)and v„(R)are the strength eigenfunctions
satisfving the decaying boundary conditions asymp-
totically, and the overlap kernels Ej and E2 are given by

The operator P is then given by

f 11+I 12+~21+~22 y (23)
where

u„(r1)u„*(r1')-
&11= ~ko(r2)) &(r1—r1')+2 Q2(r2') l,X„'—1

+21
~
@2(r)&2 2'.(~)u.*(r1')9o(r2') i,

n

and similarly for P» and P». Ke note that the second
term in P~~ and in P2~ and the entire expressions for
P» and P2~ are of short-range character compared to
the 8-function term, and that these terms are necessary
mainly to cancel the overlap effects of P, and P& such
that P'=P is satisfied.

From the result of Sec. II, we have
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and

0 Pg
(24)

An attempt was made earlier by Corinaldesi" to
construct a symmetric theory of e H scattering. With

H = T1+Ts+ U1+ Vs+ U12,

The fact that P~P2/P2P~ has no effect on the wave
function since we have now

he writes

T1+T2+ Vs E— 0
(27)

Tl+ T2+ U1

and thus
A(rs)~0(rr)Pe=

—4 0(r)00(E)—

&C= 2(V1+ Vs+ V12) 11'
+ca

-+C2-

(28)

The equations for P%' and for P%'~ obtained by the
two methods are identical, as they should be.

Now we turn to exchange scattering, in which parti-
cles 1 and 2 are identical. Simple physical examples are
the single-channel elastic e H scattering and n-d scatter-
ing. Feshbach' has given P in the form

Vl+ U12 H —E

H EV2—+V12
(29)

Obviously M& is identical with M in form, while Vz is
different from V given in Sec. II, i.e.,

where

P= (8/V2) {(P11+P12))(8/V2) ) (25)

Pll
~
$0(rs) )(4 o(r1') j

P21 Z (~ —1) '
~
ss.(rs)00(rs))(ss. (r2 )4'0(rl ) ~,

n, Xrsgl

and 0', is the antisymmetrization operator in the case
of fermions. Again we observe that P» and P2i are the
short-range terms. According to Sec. II we have

V& is quite symmetric in particles 1 and 2, and energy-
independent, but the essential complication is carried
in this case by the wave function.

Still another formulation is possible, which is due to
Faddeev, ' for the special case of three-particle scatter-
ing. We consider the two cluster reactions in which one
of the three mutually distinct particles is scattered by
the other pair in their bound state. Total energy is
restricted so that only elastic and rearrangement scat-
terings are possible. The total Hamiltonian II is given by

H= T1+Ts+ Ts+ V12+ V12+ Vss,

P= with P2= XggPi,
0 P2

(26)

where X» is the exchange operator. The P equation is
especially simple and is given by

and the transition operator t

0
4= hs+tss

43
where

is given by

43
0 ties Go t2

t23 0 t3

P1(H—E)(1+X12)P1%'1 =0.

In case of e H scattering with the proton being fixed, a
much simpler form' P=P1+Ps —P1P2 suffices, since
r, and rs are then independent and LP, ,P2] =0.

Go ——(E—Ho+is) '

j= V'1'+ U sG0$ j'i', j='1, 2, and 3 (iA j) .

For the present purpose, we rewrite the equations for
the wave functions in the form

V23

Ho+ V12—E
U»

Ho+ Vss E-
Ui3

U23 %p)
Qp2 =0,

H0+ U12 E +Ps

with the asymptotic boundary conditions on 4'p; given by

4'r, ~P,(r,s)(a; expLik; r,+iK,s R,s]+b,X,(r;,R;2)),

with i, j, k = 1, 2, 3 in cyclic order, and where &; are the outgoing scattered waves, and

(Tss+ Vss — E)p (r12222) =0, etc.
"E.Corinaldesi, Nuovo pimento 24, 92 and 757 (1962); 27, 1484 (1963). His wave functions have different character in that

+« for example is a linear combination of the solutions of the ordinary Schrodinger equations with proper symmetry and ex-
changes. We do not discuss further its connection here.
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As before we separate the wave equations into two parts:

Hp+ Vss E — 0
MF = 0 Hp+ V18—E

0 0

0
0

Ho+ V12—E
, (31)

and
W

0 V23 V23
Vp= Vg3 0 V(3

V&2 0

Again, these are compared with M and V of Sec. II.
From the assumptions on the model, we have three AI
channels, with the total number of open channels C=3.
Thus we have

V18+ V12 H—E H —E
V= H EV1—2+ V28 H E, —(33)

H EH——E V18+ V28

and
(34)

The projection operators P and Q are

Pg 0 0
P=O I, 0

0 0 I'3
and Q= 1—P,

with
J"= lf'(r 3))(0'(r'') I.

(35)

ol)

f 1(H0+ V28 E)+3+1 +~IV23(f 2P2 +f 8+3 )
=—&1(V12+V38)f'1%F

+3(H0+ V12+ V18) (~2+2 +~8+8 ) ' (3 )

Thus, the two formulations give the same scattering
amplitudes if the right-hand side of (37) vanishes. This
difference is again of short-range character, and shows
that in the region where different AI channel inter-

Introduction of these operators into the Faddeev equa-
tions gives in the static approximation (Q%'=0),

I'1(H0+ V28 E)~1+F1-
+I1V28(~2+F2 +I 3PFs ) 01 (36)

while the matrix equations of Sec. II give

Es(H —E)P3%'1 +71(H—E)(P2%'2 +Ps+3 )=0

actions are present the wave functions can be adjusted
to suit specific purposes.

IV. DISCUSSION

We have essentially divided the entire available con-
figuration space into two regions such that the I' oper-
ator projects onto states which become asymptotically
the eigenstates of M=(H —E)„Fp outside the ranges
of AI channel interactions but still within the AD
channel interactions. The complexity of the results
derived by Feshbach and by Mittleman arises mainly
from the effort to satisfy the requirement P'=P, and
here this is trivially avoided by rearranging the short-
range parts of the wave function %' among its com-
ponents 0' .

The formulation of Faddeev and Weinberg stresses
the individual-particle aspect of the problem, which is
essential in the construction of mathematically con-
sistent theory of many-particle scattering. On the other
hand, for the purpose of constructing a reasonably
accurate and simple approximation method for the
reactions which involve only a few clusters in the initial
and Anal states, the present formulation may be much
easier to work with. The multiparticle formalism re-
quires matrix equations of dimension 273,'(E 1), —where-

is the total number of particles, while the matrix
equations of Sec. II requires I dimensions, where usually
I«-,'N(cV —1). When the projection operators are intro-
duced, the P component can be treated as an I-"particle"
problem while the many-particle feature of the original
problem is contained in the Q component.

Details of the cluster decomposition of the multiparti-
cle system into multiclusters, approximation methods to
solve the resulting matrix equations, and the application
of the formalism to low- and high-energy reactions will

be given elsewhere.
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