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The asymmetric-rotator model based on the non-axially-symmetric Hartree-Fock field is applied to
Mg24, to S3', and to their odd-even neighbors. Relations between the earlier particle-hole treatment and the
asymmetric-rotator. model for the K=2 band of Mg'4 are investigated.

degrees of freedom added in the self-consistency
problem in order to allow deviations from axial sym-
metry can be related to the particle-hole vibrational
treatment. Such relations between the described asym-
metric rotator and former particle-hole calculations'
for the K=2 band in Mg'4 are derived explicitly. In
Sec. IV the odd-even nuclei are treated by coupling
the odd nucleon to an asymmetric even-even core. The
rotation-particle coupling (RPC) interaction is diag-
onalized for Mg" and P".

I. INTRODUCTION

'HE application of the asymmetric-rotator model
described in this paper is strongly connected with

the single-particle field deduced from the variational
principle. The energy levels corresponding to rotation
of the nucleus are investigated by considering the rotat-
ing core as being the self-consistent field of that nucleus.

From a solution of the Hartree-Fock (H-F) equations'
in an extended frame (in the way summarized in Sec.
II), it is expected that certain nuclei will attain a H-F
ground state which is not axially symmetric. In the s-d

shell, two regions of lack of axial symmetry have been
recently found, ' one around Mg" and the other around
S".The amount of asymmetry, expressed in terms of
the parameter y of the irrotational-Qow model, ' is
about 30 in Mg'4 and 35' in S".Such deviations from
axial symmetry are big enough to affect the rotational
spectrum of the core, and the states of total angular
momentum 2, 3, 4 which are characteristic of the
asymmetric rotator come down in energy. Indications
that the nuclei in the region of Mg" indeed possess
asymmetric intrinsic structure may be found in the
experimental spectrum of Mg'4, and in the measured4
electromagnetic (in particular E2) transition probabili-
ties between bands with DE=2, in Mg" and in AP'.
These probabilities are much larger than those expected
from 6K=1 Coriolis mixing, when the odd nucleon is
coupled to an axially symmetric Mg'4 core.

It is the purpose of this paper to base the investigation
of the rotational spectra of the nuclei in regions of
asymmetry on the appropriate self-consistent field. In
Sec. III the even-even asymmetric rotator is con-
structed out of the nonaxially-symmetric single-particle
energies and wave functions, by using the cranking
model. This rotator is then used in analyzing the
spectrum of Mg". It is also shown that the extra

II. NON-AXIALLY-SYMMETRIC ORBITALS

The intrinsic single-particle structure of the nucleus
is derived from the many-body Hamiltonian by solving
the self-consistent Hartree-Fock equations'

&~If IP&=&~I&IP&+Z~&~~II'~l»&, (1)

(2)

The summation in the first equation runs over all the
occupied states. The solution of these equations is
achieved by the iterative method. To allow convergance
of the successive iterations to possible non-axially-
symmetric solutions, the trial single-particle wave
functions of the occupied state

I X) are chosen as

ll)=E~;.'Ii &, (3)

where the
I jm) are the shell-model states, and the

variational parameters C, ~ vanish unless m ——,
' is even.

In the s-d shell, to which the sum is restricted, the
states d5]2 dy/2 d1]2 sy(2 d 3]2 d 3~P

' aPPear.
This hm= 2 restriction is found to be equivalent to the
assumption that the system has an ellipsoidal shape,
with x, y, s being the major axes. Owing to the fourfold-
degeneracy assumption, each occupied state is filled by
two protons and two neutrons with spins up and down.
Thus the summation on X in Eq. (1) runs over two
occupied states in Mg'4 and over four occupied states
in S".The single-body part in the Hamiltonian is of
the form
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Ter.E I. Single-particle self-consistent Hamiltonian for Mg" and S' . For each nucleus, the lowest nonaxially-symmetric and axially-
symmetric cases are presented. The single-particle energies are given in MeV, and are followed by the components of the single-particle
wave functions in the representation (in this order): d5/2 d 3/2 lg 3/2 dJ/Q dJ/2 sg/2' .

Mg'4 Non ax.

Ax.

—20.607
0.118
0.268
0.167
0.816—0.118
0 454

—19.499
0
0
0—0.850
0.250—0.465

—17.656—0.103—0.758—0.149—0.004—0.522
0.346

—15.106
0
0.974
0.226
0
0
0

—10.243—0.819
0.304
0.062—0.390—0.126
0.255

—12.060
0
0
0
0.465
0.771—0.436

—9.004—0.544—0.418—0.053
0.379
0.431—0.445

—10.166
1.000
0
0
0
0
0

—6.173—0.094
0.260—0.262
0.189—0.681—0.597

—6.187
0
0
0—0.250
0.586
0.771

—3.400—0.002
0.139—0.935—0.046
0.220
0.235

—4.069
0—0.226
0.974
0
0
0

$32 Non ax.

Ax.

—24.729
0.947
0.036—0.001
0.075—0.014—0.310

—22.729
0
0
0—0.699
0.302
0.648

—23.648
0.230—0.581
0.095—0.598—0.053
0.491

—22.684
1.000
0
0
0
0
0

21.179
0.168
0.674—0.152—0.228
0.420
0,516

—20.547
0
0
0
0.610—0.221
0.761

—18.693
0.068—0.077
0.796
0.447
0.264
0.295

—18.721
0—0.831
0.556
0
0
0

—12.024
0.098—0.348—0.575
0.599
0.146
0.399

—13.361
0
0.556
0.831
0
0
0

—8.785
0.091
0.283
0.067
0.163—0.854
0.388

—11.120
0
0
0—0.373—0.928
0.030

and the two-body interaction is taken to be the Rosen-
feld~ mixture having the form

V= VoVree "'/(r/a), (5)

where a=1.37&(10 " cm, and Vyg have the following
eigenvalue s:

Vp() = 1.8
p Vp] — 1.0 ) V].p= —0.6 ) V11=0.333

By starting the iteration with diGerent initial values
for the variational parameters C; ", various relative
minima in the energy surface are obtained, some of
which belong to axially symmetric solutions (e.g. ,
single-particle states of deiinite j.), and the remainder
to non-axially-symmetric solutions. For more details
the reader is referred to Ref. 2.

For an oscillator radial function of range 1.65)&10 "
cm and the values Vp= 50 MeV, O.i. ,——2.8 MeV, O. g2 0,
the lowest self-consistent solutions for Mg'4 and S"are
not axially symmetric. These solutions, together with
the adjacent axially symmetric solutions, are given in
Table I.The calculated rotational spectra will be based
on these asymmetric solutions.

III. EVEN-EVEN NUCLEI

The even-even nucleus is described as a non-axially-
symmetric rotator with an ellipsoidal shape. When the
principal axes of the nucleus are taken as the body-fixed

7 L. Rosenfeld, Nuclear Forces (North-Holland Publishing
Company, Amsterdam, 1958), p. 233.

coordinate system, the Harniltonian has the form

A'
H= Q

a=i 2g

The principal moments of inertia are obtained from
the single-particle energies and wave functions, using
the Inglis cranking formula'

I( l~-I»l'
s.=2 p (7)

e,—e~

where X stands for occupied and a for unoccupied states.
In the Davydov-Filipov asymmetric-rotator model' the
three moments of inertia depend on two parameters, P
and y, through

a.=48k' sin'(y ——3~n), (g)

while in the present treatment they are independent
and are directly connected to the intrinsic structure of
the nucleus. The energy levels of the Hamiltonian (6)
are obtained by diagonalizing it in the representation

prM x~ fDr~ rr+ ( \)r+zDr~ x) (9)

In the particular case of Mg'4 the cranking formula
(7) gave, for the non-axially-symmetric single-particle
field of Table I, the values

8~=2.119 MeV ', 82=2.400 MeV ', 83=0.92 MeV '.
8 D. R. Inglis, Phys. Rev. 96, 1059 (1954).' A, S. Davydov and G. F. Filippov, Nucl. Phys. 8, 237 (1958).
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The calculated rotational bands of Mg'4 based on these
moments of inertia are given in Fig. 1 and are compared
with the experimental spectrum. For this special case
where two of the moments of inertia are roughly equal
and the third is much smaller, the spectrum gets a
simple interpretation if we look at the Hamiltonian (6)
written in the form

H= 'g(A, +Ao)I'+-'(A, —Ao) (I '+I ')
+LAo —-', (A,+A2)]Ioo, (10)

FIG. 1. A comparison
between the calculated
and the experimental
spectrum of Mg~.
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where the A 's are defined as 1/2d . The rotational
spectrum is characterized by the E=O ground-state
rotational band, and an excited E= 2 band, both having
the same moment of inertia, 8, defined by 1/8= 1/28i
+1/2do, s,nd the 7=2, %=2 state lies at an energy
k'/8+2k'/do above the ground state. When we try
to analyze the experimental spectrum of Mg" in this
manner, we obtain, approximately, 8= 2.2 and 83=0.55
MeV '. The corresponding theoretical values are
8=2.25 and 83=0.93 MeV '. The agreement in 8 is

pleasing, especially when we note the failure of the
axially symmetric self-consistent intrinsic field to
produce it.'

The spectrum of S" does not display a rotational
nature, and probably involves vibrational degrees of
freedom.

A vibrational treatment, namely the one-particle
one-hole theory, has also been applied' to the K=2
band in Mg'4. It is interesting to investigate relations
between the two models, and particularly between the
intrinsic state of the asymmetric core and the particle-
hole state in the Tamm-Dancoff' approximation.

Let us denote by ) 0 the occupied, and by o.o the
unoccupied single-particle states of the axially sym-

metric H-F representation. The intrinsic E=O ground
state is therefore

Co=IIi, ai, '~0).

The E= 2 excited-state band is of the form

0- 0
(y= 0) EX P.

from which we can project the K=O and the K=2
components. Writing the projected states, formally, as
P~~C, and P~=%, we immediately see that we can
expand both states in terms of particle-hole excitations
from Co'.

and

&0@'0+2 otooxoaoo axPO
crphp

+ 2 o'..., , ),g o a.,'a.,'ai, ai,c'o+, (16)
o'po'p

o

Xp,hp'

Il oxoa o aioC'0
opXp

+ 2 Iloooo'xoio'aoo' aoo axo'axoc'o+' ' ( )
opop',
Xp,Xp'

To check whether this is a useful expansion, we first
compute the coefficients 8 (Table II) for the axially
symmetric and nonaxially-symmetric solutions of
Mg'4 appearing in Table I. From it we get the diagonal
elements of the density matrix of the state C, in the
representation of Co, which are

@2 E Aooioaoo axPO
op) p

(12)
p11=0.955, p22= 0.685 ) p33= 0.316 )

p44= 0.025, p55
——0.007, pgg =0.011.

with k„—k),p
——2; that is, C~ is a linear combination of

states obtained by exciting one particle out of the
state Co.

In the present treatment, both bands are embodied
in a single determinantal asymmetric intrinsic state

The domination of p11 and p22 in the trace of p means
that P~='4 is essentially Co, and that P~=% may be
approximated by a (normalized) state of the form

px='O'= Q C„ia„o~aioC p.
)pop

We can expand
C =II), a),t

~
0).

We can now calculate the overlap of C2 and P ='C,

E ~xxoaxo +E Iliooaoo
Xp op

with (k&,—k„) and (ki—ki, ) assuming only even values.
Substituting into (13), we have

~=II(Z &. . o'+Z Il .. ..') I0) (1S)
o'p

"See for example, Ref. 1.

Q(Xp, op)
1(k =$) 2(k =a) 3(k =$') 4(k =~) 5(k =$") 6(k =g')

—0.934 0.299
—0,288 —0.772

0.091 —0.118
—0.555 —0.103

0.077 0.102
—0.038 0.026

TABLE II.The coeKcients {8}.The states are labeled according
to their ordering in Table I. For the axially-symmetric case, the
k's of each state are also given.
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standard manner, " to be expressed in terms of I,
the total angular momentum of the nucleus, and j,
the odd nucleon's angular momentum. It is then
diagonalized in the representation

+'n, lr, ~ D'~, lrX'+ ( &)'—+ D'~, IX'-, (2&)
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I"xo. 2. The calculated rotational spectra of Mg'5 and P"
achieved by rotation-particle-coupling diagonalization. The
experimental spectra are also shown.

which 1n th, e above approximation is simply

(4'2I~ ='~)= 2 ~.o~oc"~'
(r0&0

Inserting numerical values, we obtain for the overlap

(C,
~

S~=2C)=0.94.

IV. ODD-EVEN NUCLEI

The odd-even nucleus is treated as an even-even
asymmetric core with a single nucleon moving in the
asymmetric H-F field coupled to it. The Hamiltonian is

II= Q R '+H„y
n=l 2 pc~

(20)

where E. are the components of the angular momentum
of the core. The moments of inertia 8 are again deter-
mined by the cranking formula (/) for the same
self-consistent asymmetric field which is used in coupling
the extra nucleon. Since R are not constants of the
motion, the Hamiltonian (20) is transformed in the

This large value is significant, since it demonstrates
the close relationship between the two seemingly diverse
models. The E= 2 band, whose intrinsic state was of a
vibrational nature in the limited axially symmetric
treatment, attains a pure rotational character when
this symmetry limitation is removed.

where X& is any of the non-axially-symmetric states,
available to the odd nucleon and x& its time-reversed
state. The invariance of the intrinsic state under
rotation of + radians through any of the principal
axes implies" that the various k-components in X,~

di6er from K by an even number.
The only nuclei in the s-d shell to which this simple

asymmetric treatment may be applied at all are Mg"
and P" (and their mirror nuclei). Before proceeding
with the presentation of the results, one remark is
pertinent. The parameters of the force used in solving
the self-consistancy problem were chosen arbitrarily,
bearing only a general resemblance to a force that one
might expect to be physically proper. The force and
the single-particle fields derived from it were, however,
used here for a qualitative description. Better fits can
be achieved by extensive variations of the parameters.
Figure 2 shows the rotational spectra obtained in the
way described.

As expected, the agreement between the calculated
spectra and the experiment is better in the case of
Mg", since the region of S" does not display a pure
rotational nature. While the agreement in the k=~
ground-state band of Mg" is pleasing, the states that
can be related to the k= ~ band are not in good shape.
In particular the spacing between the 2 level and the
hrst —,

' level is too big. This deviation may come also
from the fact that the decoupling parameter of the
k =-, band is very sensitive to variations in the single-
particle wave functions.

In conclusion we may say that the self-consistency
approach, where deviation from axial symmetry is
allowed, provides a more natural and uni6ed basis for
understanding the rotational spectra in the s-d shell.
The description based on the appropriate H-F intrin-
sic structure seems to be in qualitative agreement in
the asymmetry regions as mell. It is desirable, however,
to extend these methods to include the vibrational de-
grees of freedom, which play an important role, espe-
cially in the second half of the shell.
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