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Inelastic Alpha Scattering and Associated Gamma Radiation. II
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The rotational excitation of a deformed nucleus by inelastic alpha scattering gives rise to a gamma-
radiation pattern whose orientation, as the alpha angle is varied, sometimes displays a remarkable reverse
rotation determined by the relative phase of the excited rotational states. This arises from the motion of
beats occuring where the incoming and outgoing waves overlap at the surface of the nucleus, as has been
qualitatively explained in previous communications. The nuclear excitation and subsequent radiation are
here discussed somewhat more thoroughly, again in the two-dimensional model, with the aim of exploring
the essentials of the mechanism and not hiding them in computation.

''N a strongly absorbing nucleus, a simple surface
~ - interaction provides a good approximation and some
of the elusive and even questionable features of more
complicated reaction calculations are absent. Cor-
respondingly, more striking phenomena sometimes
appear and are amenable to simple and direct explana-
tion that should provide a detailed understanding basic
to the appreciation of related, more complex phenomena.

When one varies the scattering angle of alphas ex-
citing a 0 —+ 2 transition in a deformed and strongly
absorbing nucleus, the four-lobed angular pattern of the
subsequent gammas is sometimes observed' ' to rotate
rapidly in the reverse direction in a very striking fashion.
Some analyses' have come close to reproducing this be-
havior without making very clear the reason for its
striking nature. However, it was shown in a preliminary
letter4 that the "beats" of the product of the incoming
and outgoing alpha-particle waves, which enter the
transition matrix element at the nuclear surface, exhibit
just such a reverse rotation in a simple manner; and in a
second paper' it was shown how the relative phase of
the excited 2+ states is determined by the coincidence
in phase of these waves in such a way that the reverse
rotation of the "beats" can be passed on to the gamma
radiation. Those papers present the main physical idea
in a simpliied manner and may serve as an introduction
to the. present treatment which discusses and improves
the approximations employed.

25(—1
Se'= P (—)~S[r—R(y+2~ j/X)], (2)

with X=2 for the usual elliptical deformation. X=3 de-
scribes an octupole, etc. With %=2, for example, this
describes two positive bulges near the major axis
(located by g) of the ellipse and negative (inward)
bulges near the minor axis. There the analysis was made
by integrating properly over f. For the sake of physical
insight one may further approximate the effect of each of
these bulges by a single interaction at the point where
the axis intersects the circle, as indicated in Fig. 1.The
points on the major axis interact with the scattered par-
ticle through a positive 8-function interaction and those
on the minor axis, representing a lack. of nuclear matter
as compared with the circle, through a negative 6

function. In order that they may radiate, these points
are also endowed with positive and negative electric
charges. For a more general deformation with X bulges,
the interaction with the scattered particle is then repre-
sented by a sum over 2X points:

MATMX ELEMENTS

The two-dimensional nucleus was described in Ref. 2
as being deformed from a circular shape, thus

r(P $)= ro+rq cosX—($—Q),
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FIG. 1. Discrete points approximating the elliptical distortion
in the interaction with the alpha.
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L. van Hove (North-Holland Publishing Company, Amsterdam,
1966).
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where R(4) is the position of the interaction point (on
the circle at angle p), r is the position of the scattered
particle, and X' (which should properly contain also a
negative strength factor V) is an effective interaction in
the distorted-wave Born approximation.

Consider the contribution of the first term 8[r—R(4)]
to the matrix element J'dr fr*BC'P,. Here Pf )fN f f—or
example, the product of an outgoing particle wave gy(r)
and an excited nuclear wave function Nr(4). In the ex-
treme 8-function approximation, the only relevant
values of the particle waves $[R(4)] are those at the
surface and keeping these finite requires that the nucleus
be not quite black. The nature of a distorted wave on
the surface of an almost black nucleus is suggested by
an investigation of Austern' which indicates that the
phase varies with distance around the edge from about
20' to 150' with very nearly the normal periodicity of
the undistorted wave (as pictured in Fig. 4 below).
Thus in region A at the top of Fig. 1 (for example), we
assume that

f'[~(e)]=~'(e) «p[—ikro(@—l )]. (3)

The amplitude of the product of $, and $r in such a
region is expected to decrease as one goes into the
shadow region on either side, and this is represented
simply by introducing a Gaussian factor for A;Ay in
each of the products:

PA —2 ~f)A —A Af exp[—ikfo(p —pA+ 2$ )]
&& exp[ik'r, (P—P~ ——,'p )]

e
—ssS4~e—s&(4—4 ~)e—P(4—4~) (4)

P —We+pi S/IioresD (P—0'jp) e
—P' ( ti—P&) &

with $=(k+k')ro, D=(k —k')r„P~ ———,'m. +-',g (thus Pg
is the middle of the bright sector), and p/i

——p~ —ir. Here
W is a weighting factor somewhat less than unity, repre-
senting the expectation that the product is somewhat
less in and near the shadow sector (region 8) than in
the bright sector.

The nucleus is treated as a two-dimensional rotor with
wave functions u=e' &. The initial state is the m=0
ground state u, = 1, and we let m denote the final-state
quantum number: u~=u =e' &. The integration over
the region 8 then makes the following contribution to
the matrix element:

(m [X[i)s

dPe '"&Ps($ Q//)—
= II/e~'l @ ~4~' /fy' exp[i(D r/z)y' P'y"]— —

= (ir/P) k~ g/(kv mAB)—
6 N. Austern, Ann. Phys. (N. Y.) 15, 299 {1961).See also I. E.

McCarthy and D. L. Pursey, Proceedings of the International
Conference on Nuclear Stature, Kingston, Canada, 1960, edited by
D. A. Bromley and E. W. Vogt (The University of Toronto Press,
Toronto, 1960).

where p'=p p/—/, y=s&~=(k+k')re, and

—14(/P/Pi) 1/2s (D m—)2/4—//' (6)

Here the integration" [which is related to the familiar
integral J'„"e ~'dr=(n/p)'/'] is extended between
the limits ~~ on the presumption that the Gaussian
tails cut it o8 sufFiciently rapidly. In the corresponding
contribution from region A, the signs of both D and S
are reversed, and m is replaced by

i/„= exp[—(D+//i)'/4p], (7)

which lacks the factor W and has P in place of P'.
By lumping a bulge into a point interaction, we have

here obtained the same result with a single integration
that Ref. 5 derives with a double integration. There the
first integration over the distortion of Eq. (1) simply
projects out its single Fourier component and selects
only the two degenerate excited states m= &2. In con-
trast, a point interaction would be described by an
infinite set of Fourier components and there is a matrix
element for any m. This single-point treatment is pre-
sented here because the two approaches seem to supple-
ment one another in clarifying the nature of the exci-
tation process. The single-point interaction has some
similarity to the case of a single orbiting particle.

The sum

(rN ~BC~i)=(/ri~ae~i)g+(//i~K~i)s (8)

over the two regions is the matrix element for the case of
a single interacting point, with angular coordinate P, on
the nuclear surface. If another interacting point, also
positive, is added at p+ir (directly opposite the first
one), its contribution is calculated from Eq. (5) but
with g —+ p+s.. Since the other angles are relative, this
appears only in the factor e ' & and has the effect of
multiplying the matrix element by e' . Thus the con-
tribution of the second point just cancels the contribu-
tion of the first if m is odd and doubles it if m is even.
If the elliptical deformation is approximated more
closely by introducing negative 8-function interactions
at the positions p+-,'ir and p+-,'ir as represented by the
open circles in Fig 1, the total matrix element is again
doubled for the cases of greatest interest with m= ~2 or
indeed for any m=4)V+2, but vanishes if m=4/V, with
g an integer. Thus the coeKcients v and zv contain as
a common factor the number of interacting points, but
only their ratios are important so Eqs. (6) and (7)
suffice. With either two or four interacting points, the
rotor is invariant to rotation by x and the requirement
that the wave function be similarly invariant yields the
familiar limitation to states of even m.

NUCLEAR EXCITATION

Perhaps the simplest formulation of scattering theory,
although it gives insufhcient attention to the question

7 D. Bierens de Haan, Nogeelles tables d'integrales deJI, nies
(Hafner Publishing Company, New York, 1957), p. 262, Kqs. (3)
and (4).
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of convergence, is the simple time-dependent perturba-
tion theory; and the same discussion of the phases of
matrix elements will apply in other formulations. In the
present case, one seeks a wave function

with

P = &0/&+, (7=5 /5+,
Sp =PI.v—I,+%15)—L, & Sy =8—I,'Rl, &'vl, N—z, ~

(17)

u-.(&)t= 2 (2 (/)u-(4). (10)

Here $,(r) is B'"i' except where it is distorted near the
nucleus, and similarly for fr For.small /, P(/) is an ap-
proximate solution of the time-dependent wave equa-
tion containing Ko+3C' if

(2„(t)= (u„$f
~

K'
~
uo&, )e'("*' "/) o.

For those values of kf within the narrowing band'
satisfying the relation ((0&—(0,)/((2)r, the associated
excitation of the nucleus is described by

uexe(4)

= Q (222~ac'~2)B™- p (e-™&r(r)~x'~(;(r))e™
m=+L m=+L

—( or/p)l /2 p (v 0
—i)/2+w Big/2)Bim(0 &8)—

m=+L

—(or/P)(/2B i y/2 Q (V +W —Big)eimg'
m=+L

with g'=(t) (t)B Here—we h.ave made use of Eqs. (5)—(8}.
The orientation of the gamma pattern will be seen to
depend on the relative phase of the two terms m= ~L.
To formulate this, set

v„+w„e'&=C e™, (12)

C ={v '+2v w cosy+w 2))/2. (positive)

Ke then have

—
(or/p) I/2Bi()'+0L+2 —L) /2

X {CLBiL(0' 40')+C LB (L(0' 00') }
— (13)— —

with
4'0 4'0 O'B = (1/2L) ((1 L—8L) .

p(t) =uop;(r)e'""+u xe(it))ter(r)B'"&' (9)

with simultaneous excitation of the two degenerate
rotational states

Thus the result has the same simple form' as has Eq.
(17) of Ref. 2, although the latter was derived (with
L=2) a little more simply by setting w 2 ——0 from the
outset. As was there remarked, v I. and ml, , having
(D—L)' in the negative exponent of Eqs. (6) and (7),
are larger than eL, and m L,, respectively, which have
(D+L)' in the exponent. This is a remnant of the con-
servation of momentum as the particle loses forward
momentum to the nuclear excitation locally in region A
or 8.The smallest of the four is m I. because it also con-
tains the factor W(P/P')'/2(1.

The similarity between the previous result and this
result which takes m I. into account means that the
mechanism illustrated in Fig. 6 of Ref. 5 is also applica-
ble for the solution of Eq. (16).That is, &0 either varies
in a narrow range or continues to increase and exhibits
the reverse rotation, depending on whether P is greater
than unity. The factor q makes curve D for the tan —'
have a smaller slope than curve C where they cross zero
together, thus tending to make curve D more S-shaped.
While available observations apply to L=2, one sees
that similar results are in principle possible with L= 3
or L=4 if the nucleus has an appropriate deformation.

The shape of the curve for (t 0 in Eq. (16) is more sensi-
tively dependent on the value of the parameter p, as is
illustrated for L,= 2 by the curves for four values of p in
Fig. 2, each of these curves being similar to Fig. 6 of
Ref. 5. Since q is expected to be somewhat less than
unity, (t is taken to be 0.9 in all these graphs. As p in-
creases towards unity, the curve for A =p+cosy be-
comes zero at points farther out towards the edge of the
region plotted, so that the range in which the arctan-
gent varies from —-', x to —,'m is forced further out towards
the edges and hence this function becomes steeper near
the edges, leaving it Ratter near the middle. When p
becomes greater than unity, A is nowhere zero so the
tangent is never infinite and the arctangent remains be-
tween —~x and ~or, with no secular increase.

THE RADIATION PATTERNThis phase angle pp' may be determined by use of Eq.
(12) with 222= L and L:— From Eq. (13), the probability distribution of the

nuclear axis p is given byBi(oL 0 L) B(2L—&o'— (v +W Bio)

X(v L+w Le '&)/CLC L. (1-4)- v cc CL2+C L2+CLC LLBi2L(0—io)+B—(2L(0—o)o)]

= o +2CLC L/(1 2sin2L(((i —&0)]-
Bsin2L((t —(t 0), —

Hence,

sin2L@p' (v LwL vLw L) siny— (18)
' Note added in proof. This form has been obtained also by B.J.

Verhaar and L. D. Tolsma, Phys. Letters 17, 53 (j.965). In place
of the gradual Gaussian termination used here to evaluate v
and m, these authors introduce a sharp (but symmetric) cutoff.
To derive this form it is indeed not necessary to evaluate v and
m explicitly, but merely to make them real by weighting each
integration symmetrically about its midpoint. The relative magni-
tudes may then be surmised qualitatively from the remark about
vestigial conservation of local momentum.

1 qsinp )tan-'
p+cosy1

' (16)@p=@a-
2L

8 L. I. whiff, Qgantnm Mechanics (McGraw-Hill Book Com-
pany, Inc. , New York, 1949), Fig. 27.

(1~)
cos2L0(io vLv L+wLw L+(v LwL+v—Lw L) cos—'r— —
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FIG. 2. Determination of the shape of the
reverse rotation curve by the factors of
Eq. (16) for several values of p. The curve
labels are as follows: 5=sing. A is the
denominator, A =p+cosy. 8 is its recip-
rocal and passes through in6nity suc-
cessively in opposite directions, 8= j jA.
C is obtained by multiplying 8 and 5, and
passes through inanity always in the
same direction (except when p&1 as in
the last graph). D=tan 'C and con-
tinually increases. It is plotted modulo
2m., so as to keep it between —x and m,
corresponding to the way the experi-
mental points are plotted in Ref. 2 and
Fig. 6.

in which A' and 8 are positive and

n, =CI,'+C r.
' —— Q (v '+w„'+2v„w, „cosy). (19)

The symmetry of the pattern of emitted p rad~at~on is,

y Pa (kr)

of course, determined by the symmetry of the charge
distribution; but there remains the question of a possible
phase difference between the two patterns. This is e-
termined semiclassically by the fact that a varying cur-
rent element radiates preponderantly in a direction nor-
mal to itself. The energy Aux' radiated in the direction
of the wave vector x is proportional to the square of
the matrix element of the product e'"' multiplied by the
component of the gradient normal to x. That is,

d7 Sp O'" *Vgglexc

~ ~.3.Th h of the angular pattern of the gamma radar. ation
relative to the probability distribution of the major axisxis of the
elliptical nucleus in the excited state I= .

For a charge at a point R($) moving around a circle
(as do the points representing bulges on the surface o
the deformed nucleus) the normal component of the
gradient operator is

(»)
0 ~ ~

where Q~ gives the direction x in which the y radiation is
observed. The various multipole orders of the radiation

e

correspond to terms in the expansion

e'"'= P.(ix r)"/I!=P„Pier cos(p —P,)]"/n!, 22

in which v=0 gives the dipole term, I= 1 the quadru-
pole, etc. With u,„, given by Eq. (13), the matrix ele-

'0 Reference 8, Sec. 36.
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ment thus contains integrals of the type 2.0— —2000

I.B T —1800

diti[ei (P—it y) +e i (g Pv )]—n—+1

)( [C&ei L (Q—$0) C &e i L($—«) ]—

=27riL(CLe' &&~«& Cre —'~&&~ «'i)

with m+1 = L. (23)

With e+1WL the integral vanishes, since only in the
case of the two end terms of the binomial expansion
with n+1=L does the product of the exponentials
equal unity. The radiation pattern is then given by the
absolute square of this amplitude; that is,

0 ((fly) ~ CI +C I 2CzC r—, cos2L(&7—4 0)

=A+Bsi n' L(p —Po) (24)
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where 8=4C CLz, is the same as in Eq. (18) and
A = (Cz Cz)'=A—' 4CzC z —is less than A' but still
positive. Thus the radiation pattern has a greater
maximum/minimum ratio than has the probability
distribution. The differentiation in Eq. (23) changes the
sign of the term in C z, and thus of the term in 8, so
the radiation pattern in Eq. (24) has its maxima and
minima interchanged from those of the probability dis-
tribution of the nuclear symmetry axis, Eq. (18), as is
very familiar in the case of dipole radiation (L= 1) with
the radiation normal to the dipole distribution. The
phase relation between the two patterns for L=2 is
shown in Fig. 3.

OPTICAL-MODEL WAVE FUNCTIONS

While Fig. 2 gives po as a function of y for given p
and q, it is desirable for the sake of comparison with ex-
periment to display it as a function of P with p and q
also functions of @ for some reasonably simple treat-
ment of the wave functions. Austern's treatment, al-
ready mentioned, of an almost black three-dimensional
nucleus, however, suggests features that may be essen-
tial. His results (from his Fig. 5) are given by the broken
lines in Fig. 4 and are approximated by the solid
straight-line segments that simplify the description.
As a reasonable basis for an exploratory two-dimensional
calculation, we assume accordingly that the distorted
wave $; or $f at the surface has constant phase within
Sm. of the axis of the wave on the "bright" side, and that
beyond this the phase varies linearly around the surface
with the wave number k or k' that it has in free space.

These regions of constant phase, represented by the
short horizontal segment from 157—,

"to 180' in Fig. 4, of
either t; or $r are indicated by the cross-hatched re-
gions in Fig. 5. In this 6.gure, the regions A and 8 are
characterized by a product wave $;$f with the small

FIG. 4. Variation of the amplitude and phase of a wave incident
on an almost-black nucleus as suggested by Austern (broken lines)
and as here approximated by straight lines.
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FIG. 5. (a) The overlap of the shadow amplitudes, idealized
from Fig. 4, at:various angles. (b) The cross-hatched regions where
the contribution is small Lshown also in (c)1 and the Gaussian
approximations to the product A;Af. (d) The linear dependence
assumed for the factor expressing the weakness of the shadow
region.

wave number k' —k, as envisaged in the integrations (5)
yielding ~ and m . Here the substantial contributions
to the integral arise from the slow variation of phase. In
the cross-hatched regions the wave number is k or k';
and in the adjacent regions, between these and the
edges of region 8, the wave number has the even larger
value k+k'. In these regions the variation of phase is so
rapid that the contributions are small and may be ne-
glected. In order to suppress these contributions and
still leave the simplicity of the Gaussian form in P& and
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Ps, we determine P and P' in Eq. (4) to make these
amplitudes in A and 8 reduce at the edges of these re-
gions to a fraction Z of their maxima as indicated in
Fig. 5(b) with Z=1/e. Thus, P= —4(lnZ)/(P —xan-)',

and P'= —4(lnZ)/(P —vr)' is somewhat smaller since
region 8 is somewhat wider than region A.

In Fig. 5(a), the amplitude A; is represented by a
line extending horizontally out to 60' on either side of m

and then sloping gently beyond, as suggested by the
simplification introduced in Fig. 4, and the diagram for
Af is similar. While the Gaussian in region 8 is a poor
fit to the product A;Af because of the need to cut off
at the edge of the region, the factor W (the amplitude
at the center of the region relative to that in region A)
should be determined by this product at the center of
the region (or by a corresponding matching of integrals).
For the case drawn in Fig. 5(a), for example, this prod-
uct is very nearly unity (0.96) in the middle of region
A and is about 0.75 in the middle of region 8, so that
W=0.75/0. 96=0.78. It is clear that W thus starts at
unity where @ =0 and decreases steadily with increas-
ing p . We approximate this situation by assuming a
linear decrease of W [as shown in Fig. 5(d)] from unity
at @ =0 to 8"at @ = ~x and beyond, and we treat 8"
as a parameter describing this shadow effect.

In exploring the general features that may give rise
to the observed rotation of the gamma-ray pattern, it is
of interest to determine to what extent such a simplified
description of the black-nucleus wave functions may
account for the observations. The simplifications make
it possible to give analytic expressions for P, P', and W
that may be used to determine how p specifies the
quantities p and q which govern the shape of the curves
of &0 in the way shown in I'"ig. 2 and the accompanying
discussion. The experimental example selected for com-
parison is Mg'4 and the wave numbers k and k' em-

ployed are those for this case. (The results are not very
sensitive to small changes in these. ) We thus take
Et,b ——22.5 MeV, E, =(6/7)E~, b ——19.28 MeV=37. 7
mc', so that

k= (2', )'"=[2(24/7)37.7]"'
X (1840'"/137)mc'/e'= 5.03 mc'/e';

k'/k= [(19.28—1.37)/19.28]'"=0.9638

(the excitation energy of the L=2 state being 1.37
MeV); and (k+k')/k = 1.964, (k—k')/k =0.362.

In order to avoid arbitrary parameters wherever
possible, ro should ideally be determined from the elastic
scattering and then used in the calculation of the gamma
orientation. While very useful for the sake of a qualita-
tive understanding, however, the two-dimensional dif-
fraction does not give a quantitative fit to the scat-
tering data and thus leaves some latitude in the
appropriate choice of ro. The elastic scattering shows
minima at 39', 57', 77', and 99' for E=2, 3, 4,
and 5, respectively, from which the simple two-
dimensional diffraction formula 2kro sin-, P =m.A' yields

I.O
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Fzo. 6. The experimental results showing the reverse rotation
for Mg~ at E =22.5 MeV, from Ref. 2, as compared with theo-
retical curves for favcrable values of the parameters. The variation
of some of the subsidiary functions is also shown.

ro/(e'/mc')=1. 87, 1.96, 2.10, and 2.05, respectively,
with appreciable variation. A modified formula treat-
ing the nucleus as a black circle in two dimensions,
ro 27rlV——/k(g +2 sin-,'P ) yields instead 1.83, 1.90, 1.91,
and 1.90 with less variation. The corresponding values
for the three-dimensional diffraction model, obtained by
setting J~(2kro sin-,'P )=0, are 2.08, 2.11, 2.12, and 2.14,
with still less variation. These values are somewhat
larger than for two dimensions because the contribu-
tion to diffraction from near the extren1ities of K.r are
less important for a circle than for a line or rectangle.
These radii in three dimensions may be interpreted as
distances of contact of two spheres, (24'~'+4'")ao,
with ao= 1.33 F=0.47''/mc' which is about the usually
accepted figure. The value of ro employed in the follow-

ing, ro ——1.83e'/mc', is consistent with the latitude sug-
gested by the two-dimensional fit to the scattering, but
is chosen a few percent on the low side of the suggested
value 1.9 e'/mc' to improve slightly the fit to the gamma-
ray data. The consequent values 5=5.03X1.83)& 1.964
=18.1 and a=5.03&(1.83&(0.0362=0.333 are used in
the equations [(6) and (7)] for y, v, and w, along with
the values of P and P' determined as functions of P by
the arbitrary parameters Z and 8". The values of v

and w and the subsequent quantities 5+, So, p, and q
of Eq. (17) are plotted as functions of P in Fig. 6, for
the typical parameters Z=1/e and W'=0.8. It is seen
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that at larger angles p, with the narrowing ranges of
integration 3 and 8, there is only a slight tendency for
conservation of angular momentum and that m 2 is
no longer negligibly small (as it was assumed to be in
Ref. 5), so that q is appreciably less than unity.

These values of the parameters in Eq. (16) determine
the variation of the gamma orientation angle Po which
is plotted in the same figure. As is consistent with Fig.
2, the curve continues to go out of the top and return
from the bottom of the figure only as long as p(1; and
near the successive points where the curve crosses the
line ps it becomes flatter as p approa, ches 1. In Fig. 2,
the parameter q was taken to be 0.9, and in Fig. 6 the
decreasing q at the larger values of g further flattens
the curve for po as it crosses @~, as is clear from the con-
struction of Fig. 2.

COMPARISON WITH EXPERIMENT

The experimental points the Indiana group obtained
for Mg'4 at E = 22.5 MeV are also shown in Fig. 6. It is
seen that the theory qualitatively reproduces the two
striking sweeps from the bottom to the top of the graph
between 50' and 90'—one example of the phenomenon
this study was designed to elucidate. However, in conse-
quence of choosing the parameters to make this rapid
reverse rotation cease for p )90' (as suggested by the
experimental points there), the theoretical curves are
much more S-shaped (flatter near pe) than the experi-
mental ones. The principal discrepancy is at forward
angles: The formulation of the theory provides no clue
as to why the reverse rotation is lacking there while it
exists in the range 50' to 90'.

DISCUSSION OF PARAMETERS

A mathematician is quoted as saying, "If you give
me two parameters, I will describe an elephant. If you
give me a third parameter I will make him wiggle his
trunk. " In this simplified formulation of the gamma-
rotation problem, we have left the two parameters Z
and W' completely free and have made a slight adjust-
ment of a third ro and have achieved only partial agree-
ment with the salient feature. Both here and in the con-
sideration of other experiments it is of interest to in-
vestigate the sensitivity of the results to variation of the
parameters.

The value ro/(e'/mc') = 1.83 was chosen by adjusting
it downward slightly to make the curve for $0 pass out
of the top of the graph at 90', where there is an experi-
mental point; with the original value 1.9 taken directly
from scattering, it goes off at 85'.

The value W'=0.8 is higher than would be expected
from the treatment of Figs. 4 and 5 or from off-hand

judgement of the intensity on the shaded side of an
opaque nucleus. The linearization of the amplitude of
the wave function for three dimensions in Fig. 4 sug-
gests a lower limit of 0.4 at O'. In Fig. 5(a) this has been

raised to 0.7 for two dimensions, and even this higher
value suggests W'=0.56 [so as to make W(45') =0.78j.

The influence of altering W', Z, and (for the sake of
experiments on other nuclei) D is shown in the examples
of Fig. 7. Reducing 8"' keeps region 8 from competing
strongly enough with region A to give the reverse rota-
tion at large p . Increasing Z broadens the regions A
and 8 but has rather little effect. Increasing D increases
the discrimination between momentum transfers —thus
decreasing m 2, increasing q and making @0 a little less
Bat where it crosses p~.

Thus, in order to make the "elephant's trunk wiggle"
at large enough angles, we have had to increase the
contribution from the shadowed side of the nucleus by
means of an artifically large W. It may be that in actual
nuclei this region does contribute more than our black-
nucleus model would suggest because actual nuclei are
not completely opaque and transmission through the
edge of the nucleus permits a higher intensity to reach
this region. A differential of this effect, a cutoff of this
penetration as p becomes larger than about 90', might
account for a rapid change, between 80' and 100', of the
Qatness of the curve for @0 where it crosses @~. But our
inability to get rid of the wiggle at forward angles while
preserving it at moderate angles reminds us that the
model does not take into account all possible effects. In
particular, the irregular change of phase near the
"focus" at 0' in Fig. 4 (or of an even more intense focus
in a partially transparent nucleus) and the effect this
may have as it approaches the cross-hatched region of
calm of the other wave in Fig. 5, may have a profound
inhuence at forward angles but appears to be somewhat
more awkward to formulate analytically than the effects
that have been approximated in this discussion.

Perhaps the most questionable feature of the model is
thus the sharp edge of the completely absorbing nucleus.
An interference pattern is so general a phenomenon that
use of optical-model codes for the interpretation of for-
ward alpha scattering characteristically yields several
acceptable sets of optical-model parameters. In an inter-
pretation of the reverse rotation of the p-ray pattern
by means of the DWBA (distorted-wave Born approxi-
mation), Eidson et al." find that one out of about six
such sets of parameters also reproduces the dramatic
cycles about as in Fig. 6. (The other choices of param-
eters give practically no reverse rotation at all. ) With so
much choice having been exercised, it is not clear
whether the agreement is real or fortuitous. The fact
that the potential is shallow (20 MeV real) is not dis-

turbing since it should in some sense represent an at-
traction between alphas within which nucleon forces
are already largely saturated. The fact that it is rather
transparent to alphas (3 MeV imaginary) departs
markedly from the simple concept that a black nucleus

"W. W. Eidson (private communication).
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'FIG. 7. Examples to illustrate how t e s ape o e curvesh h ftl for orientation of the gamma pattern depends on the parameters.

is responsible for the elastic-inelastic phase rule, but
may correspond to reality.

If our simple model is indeed at fault in being too
sharply opaque, it still aptly illustrates how in principle
the reverse motion of the beats of the external waves
can be responsible for a rapid reverse rotation of the
y-ray pattern. It also helps one appreciate that the
phase determination is rather fragile so that the re-
verse rotation may appear in one experimental cir-
cumstance and not m another.
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