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(see Fig. 5) are unresolved, and He' particles could in-
crease the yield of apparent a~ events. At backward
angles curves B and E are sufficiently close to allow an
overlap of the long tail with u~, and this may be ex-
pected to contribute in an increasing amount to appar-
ent o,2 events. It is not clear whether the reaction C"-
(Li',n3, 4)N" (curve C of Fig. 5) would have contami-
nated the 1.7-MeV o,~ data.

rapidly with energy, corresponding to the increased
penetration of the Coulomb barrier. Behavior of the
angular distributions between 40' and 120' changes
very little with beam energy, which is consistent with
a direct reaction with a high Q value (since the momen-
tum transfer changes slowly). Some fluctuations are seen
at the back angles.
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The spectra and angular distribution for a cascade of gamma rays from nuclear states with high spin
have been calculated. Calculations based on the single-particle and liquid-drop model are presented. It is
shown how the angular distribution can be used to determine the appropriate model for the states under
consideration.

I. INTRODUCTION
' 'N this paper a calculation of the spectrum and angu-
s ~ lar distribution for a cascade of gamma rays from
nuclear states with high spin is presented.

Most of the deductions about nuclear structure are
made by studying nuclear energy levels and nuclear
decays. For each nucleus the main rigorously good
quantum numbers are the energy E, the total angular
momentum J, and the parity x. In the low-energy
region the relation between E, J, and x is extremely
helpful in understanding nuclear structure. A similar
relation for the higher energy region will undoubtedly
augment our understanding of this structure. In particu-
lar one has to be aware that the well-defined low-lying
states constitute only a small fraction of nuclear states.
Until recently only a fraction of the higher lying states
had been investigated in neutron bombardment. Those
states have limited values of angular momenta. A more
complete and systematic study includes a variation of
energy and angular momentum over a wide range.
In the higher energy region parity loses its importance
since half the states have positive and half have negative
parity. Therefore, in this region it is sufhcient to in-
vestigate the energies and angular momenta of those
states and the relation between the two. Since the states
under consideration are dense and have short lifetimes,
it is possible only to measure transition rates between
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such states. The transition rates have to be compared
with calculated average values of o6-diagonal matrix
elements.

The best suited decay for such a study is the electro-
magnetic one, since for this type of decay the form of the
interaction between the electromagnetic field and the
nucleus is well known. The off-diagonal elements can be
calculated using explicitly model-dependent formulas
for decay rates. From comparison between theory and
experiment, the appropriate nuclear model can be
inferred. Since successive steps in a gamma-ray cascade
cannot be distinguished experimentally, the spectrum
and angular distribution for a cascade of gamma rays
must be calculated.

Nuclear states with high spin may be prepared in
heavy-ion bombardment. The direction of the spin of
the compourid system is close to a plane perpendicular
to the direction of the heavy-ion beam. Therefore the
anisotropy in the angular distribution of the emitted
radiation from such states is expected. Both the spec-
trum and the angular distribution of the emitted gamma
rays give valuable information.

The present calculation is based on the statistical
model. The transition probability is expressed as a
product of a square of the appropriate nuclear matrix
element and the density of final states.

The angular distribution for gamma rays for a single
transition from nuclei with high spin was calculated by
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Strutinskii, ' Babikov, ' and Sperber. "However, the
emission of a few successive gamma rays is not infre-
quent. ' "Therefore distributions of cascades of gamma
rays have to be studied. Previously Strutinskii"' "and
Troubetzkoy" discussed cascades of gamma rays. In
those two calculations no mechanism for the decay is
assumed. The nuclear matrix element is introduced as
a constant parameter. Also, spin-dependent parameters
are neglected, and consequently angular distributions
are not calculated.

In this paper a generalization of the work mentioned
in Refs. 3 and 4 for a cascade of gamma rays is presented.
Nuclear matrix elements are calculated using the single-
particle model and the liquid-drop model. The nuclear
matrix element and density of levels used in this work
are spin-dependent. The angular distribution is calcu-
lated with respect to the heavy-ion beam which produces
the states with high spin.

II. THEORY

The spectrum and angular distribution of the eth
member of a gamma-ray cascade depends on the level
occupation after (e—1) emissions and on the spectrum
and angular distribution for one transition. The occupa-
tion of levels is energy- and spin-dependent. Let
y„(E,J,M; 1) be the level occupation after the emission
of e gamma rays, and t= 0 be the time at which gamma
emission started. The following equations are satisfied
by the functions y (E,J,M; 1):

In Eq. (1), Eo is the maximum energy of the gamma-
ray-emitting nucleus, and S(E,J,M; E',J',M') are the
transition probabilities between the states charac-
terized by E, J, M and E', J', M'. The transition
probability S(E,J,M; E',J',M') can be considered as a
sum of transition probabilities of a definite multipolarity.
Let Sl, (E,J,M; E',J',M') be the transition probability
for electric radiation of order I.. Then

SI,(E,J,M; E',J',M')

Sic(1+1) E E'i'i+'—

JP(21.+ 1)!!]s ac J

Xe'/hc! (JM!Qjr sr !J'M')—! Xp(E' J',M'). (2)

In Eq. (2) (JM!Qsr sr ~!J'M') are the matrix elements
of the components of a multipole tensor of order 1.and
p(E',J',M') is the density of final states. A similar
equation exists for magnetic radiations. Before a choice
for the form of nuclear matrix elements and the density
of levels is made, the general method of determining the
level occupation regardless of the specific form is
discussed.

The total level occupation y(E,J,M; 1) is the level
occupation with the appropriate quantum numbers
after the emission of any number of gamma rays and can
be expressed as a sum of terms in which each term
represents the level occupation after the emission of a
specified number of photons, so that

AoBy (E,J,M)
=&,o P

Bt JIM' E
y~ r(E', J',M', 1)

y(E,J,M; t)= g y&(E,J,M; 1).
k=o

XS(E',J',M'; E,J,M) dE' y(E,J,M)—

S(E,J,M; E',J',M') dE',

Using Eqs. (1) and (3) an integrodifferential equation
for the total level occupation is derived.

By(E,J,M; t)

e= 0, 1, 2, . (1)
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y(E', J',M'; t)S(E',J',M'; E,J,M) dE'

y(E,J,M; t) P—S(E,J,M; E',J',M') dE'. (4)

y (E',J',M'; 1)
Bt J'J~~~ E

XSz, (E', J' M' F' EJ" M' —M) dE'—
x!Y~ ' "'!' (s)

In Eq. (5) Ysr jr.n'~'& are the vector spherical harmonics

Let nr„(E,O, t) be the total number of the emitted gamma
rays of multipolarity L and energy E which have been
emitted into the solid angle dQ characterized by 0 up to
the time t. Then
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of order I.. Since at the time t=0 there are no gamma Z(E,J,M)
rays the solution of this equation becomes

gp

Z(E',J',M') T(E',J',M', E,J,M) dE'

~,(E,n, t) =
J'J"3II'

y(E', J',M', t)
J'M' g

+y(E,J,M; 0). (12)

XSI.(E', J'M', E' E, J—",M' M)—dE' dt

(6)

For all practical purposes one is interested in the
function eJ. at a time which is in6nitely large as com-
pared with the lifetime for electric dipole or electric
quadrupole transitions. One therefore is interested in
N, (E, n, t= ).

It is convenient now to introduce the radiation width
I'7 such that

I'~{E,J,M)=k Q S(E,J,M; E',J',M') dE', (7)

and also a function Z(E,J,M) such that

Z(E,J,M) = y(E,J,M; t)I', (E,J,M) dt
0

Using Kqs. (6)—(8) and (9), Nl. (E, 0, t= ~) may be
rewritten as

~,(E, n, t= )

gtr pr ier
Z (E',J',M')

XT(E' J' M'E' —E J" M' —M) dE'

X [&M ~'""[' (10)

Therefore, if Z(E',J',M') is known, el, (E, 0, ~ ) can be
calculated.

Now an equation for Z(E,J,M) is derived. Integrating
Kq. (4) over t from t=0 to t= ~, one obtains

y(E J M ~) y(E JM 0)—
Z (E',J',M')

XT(E',J',M', E,J,M) dE' Z(E,J,M) . (11)—
Since for E&0 the erst term on the left-hand side of
Kq. (11)vanishes, the following equation for Z(E,J,M)
is obtained.

and a branching ratio T(E,J M; E,J,M ) such that

S(E,J,M; E',J',M'),

I'~(E,J,M) T(E,J,M; E',J',M')
(g)

In Kq. (12), y(E,J,M; 0) depends on the level occupa-
tion at t=o which has to be supplied as an initial
condition.

Two different forms were used for y(E,J,M; 0). First
a 8 function was considered.

y(E,J,M; 0)=CX8(EO—E)6(J—Jo)8(M) . (13)

In Kq. (13), C is a proportionality constant. The
above form for the function y(E,J,M;0) is not too
removed from physical reality as the following argu-
ment shows. In heavy-ion bombardment the spin of the
compound system is in a direction perpendicular to the
heavy-ion beam. Therefore the projection of the spin in
the direction of the beam vanishes. The neutrons which

precede gamma emission carry away only a small frac-
tion of the spin; therefore when gamma emission sets in
the s component of the spin in the direction of the heavy-
ion beam is still very small, hence the factor 5(M). The
spread of the spin of the compound nucleus in heavy-ion
bombardment is not considerable and the change due to
evaporated neutrons is insignihcant, hence the factor
6{J—Jo). Finally, energy considerations limit the spread
of the energy range at which gamma emission sets in, to
an energy around Eo, hence the factor 5(E—Eo) in Kq.
(13).To determine the effect of a more realistic form for

y(E,J,M; 0) a Gaussian form was used

E—Eo) 2 J—J0) 2

y(E,J,M; 0)=C exp —
~
+aE) ~J )
(J—Jo '

+( (14)

In Kq. (14), hE, d J, and d M are the respective spreads
in energy, spin, and the s component of the spin. The
linearity of Kq. (12) suggests that if a solution for a y
used in Kq. (13) is known, then the solution for a y used
in Kq. (14) may easily be generated. In particular if the
solution of Kq. (12) using a 5-type y is Z&(E,J,M), then
the solution of Kq. (12) using a Gaussian y is

—tE' —&, '
Z2(E,J,M) = P Zi(E', J',M') exp

E AE i
J'—J ' M'

+( f +
/

dE'. (15)4J) ~M)

Equation (12) can be solved by successive approxima-
tions such that

Z(E,J,M) = Q Zg(E, JI,M)
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and

Zg(E,J,M)= P Zi, i(E',J',M)

Thomas, ""in the analysis of nuclear evaporation,
concluded that the most accurate form for the densities
of the levels is

&& T(E',J',M', E,J,M) dE',

4=1, 2, 3, , (17)

(2J+1)
p(E,J)= exp

s'"(2cr )3J'

—(J+2)'
~(E), (22)

2C7 g

Zp(E, J,M) =y(E,J,M; 0).

Now the choice of the form of the nuclear matrix
element and the forms of the density of states are
discussed.

Two extreme models for the decay were used, (a) the
single-particle model and (b) the liquid-drop model.
According to the shell model the radiation is mainly
electric dipole, for which the average value of the ap-
propriate matrix element for a transition from a high-
spin state have been given previously. '

l(J,M, IQ- I JfMr) I

= (e2Ro'/576) (2J~+1)(2Jr+ 1)

E=at' —t (24)

and the spin-dependent nuclear temperature v J is
defined by

1 d lnp(E, J) a)'I' 5 1

r dE ) 2 (2E+t)

1 1 ((J+i2)' 3 d inr

Ty r 4 2cr 2 dE

(25)

where

p(E) =B(E+t) "4 exp[2(aE)'"] (23)

Here the thermodynamic temperature t is determined
by

~ ~

~

~ ~J.y 2

X ! (19) The moment of inertia of the nucleus is ch'. Equa-
—Mr M M / tions (22) and (23) were first derived by Lang and

LeCouteur. "
In Eq. (19), Ro is the radius of the nucleus and

III. RESULTS AND CONCLUSION

is a Wigner 3j coeKcient. According to the liquid-drop
model the radiation is predominantly electric quadrupole
and the nuclear matrix elements are as given previ-
ously. These nuclear matrix elements were calculated
for the case where the shapes of equilibrium are oblate
spheroids and the matrix elements are

(Qo')= l(5/~)"'5ZcRo'(2/n") (~' —1) (20a)

(Q+i') =(Q+")=o. (20b)

Here Z is the nuclear charge, Ro the radius of the
spherical nucleus, and g is the ratio of the minor to the
major axis. The dependence of q on spin can be found in
Ref. 16. For spins higher than a critical value Beringer
and Knox" find that the shapes of equilibrium are
prolate spheroids rotating around one of their minor
axes. For such spheroids the components of the quadru-
pole tensor calculated previously4 become

Equation (12) was solved numerically using the
method of successive approximation of Eqs. (17) and
(18). For single-particle transitions, Kq. (19) was used
for the nuclear matrix element while Eqs. (20) and (21)
were used for transitions according to the liquid-drop
model. The forms (22), (23), and (24) were used for the
densities of levels for both models.

A sample calculation was performed for A = 200, and
excitation of 10 MeV and a spin of 30 units of k, with the
parameter a as 20 MeV '.

The repeated integration in Eq. (17) was performed
numerically using Simpson's —,

' rule and coded for a
computer. The energy range was divided into intervals
of 0.25 MeV. First a calculation with the initial condi-
tion [Eq. (13)]was performed.

To check the accuracy of the numerical integration a
comparison was made between the numerical and
analytically calculated results. For this comparison a
less realistic form for the density of levels was chosen
such that

(Qo')=-'( / )'"l o'( /n"')(~' —), ( a)
p (E,J)= exp[(L~/t) —J'/2ct], (26)

&Q ')=0, (21b)

(Q 22) = -'(15/2m)'~'-'ZcR '(1/q4") (rP 1) . (21c)—
Various spin-dependent and spin-independent forms

for the density of levels have been suggested. For
the present treatment spin-dependent factors are of
paramount importance and are therefore included.

"R. Beringer and W. J. Knox, Phys. Rev. 121, 1095 (196'1).

for which Zi (E,J,M) can be calculated analytically. The
largest deviation was 0.5'Pz of the analytically calculated
value. This deviation was obtained for energies below
1.0 MeV. For such low energies the density of levels
becomes meaningless so that the results are of no

' T. Darrah Thomas, Nucl. Phys. 53, 558 (1964).
' T. Darrah Thomas, Nucl. Phys. 53, 577 (1964)."J.M. Lang and K. J. LeCouteur, Proc. Phys. Soc. (London)

A67, 586 (1954).
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0.25

interest; also the contribution to radiation from such
low-lyirig states is not appreciable. If energies below 2
MCV are disregarded the deviation does not exceed 10 '
of the analytically calculated result.

The series fEq. (16)j converges very quickly. For a
test of convergence, the functions Z(E), Zi(E), and 8i
are introdoced such that

Zi(E) = p ZI, (E,J,M), (27a)

Z(E) =Q Zi(E) =Zi(E)Q 8i(E), (27b)

5
Mev

FIG. 1.The spectrum for a cascade of gamma rays in the energy
region 2 &E&8 MeV. Curve (a) represents the spectrum according
to the single-particle model and the curve (b) represents the
spectrum according to the liquid-drop model. The gamma-ray
intensity is expressed in arbitrary units; for comparison both
intensities are normalized to 1 at 2 MeV.

Ii= 1+0.030 sin'8,

Ii= 1+0.028 sin'8,

Ii= 1+0.04 sin'8,

Ii= 1+2.34 sin'8 —2.46 sin'8,

Ii= 1+2.30 sin'8 —2.40 sin48,

I6= 1+2.52 sin2g —2.6f sin4g.

(30a)

(30c)

(31s.)

(31b)

(31c)

which may be replaced by the stronger requirement that

8a(0) &8~i(0), (29b)

is used as criterion for convergence. The satisfaction of
this criterion guarantees that for all energies the contri-
bution from the (k+1)st member of the cascade is
smaller than the contribution from the kth member of
this cascade. This occurs (see Table I) for k=6. A
glance at Table I also shows that for higher energies the
sum of the contribution duc to the 6rst terms of the
cascade is much larger than to all the others.

The shape of the spectrum is shown graphically in
Fig. 1. Curves (a) and (b) illustrate the spectra calcu-
lated on the basis of the single-particle model and of the
liquid-drop model, respectively. In the 6rst case the
radiation is mainly electric dipole and in the second
case, mainly electric quadrupole. The gamma-ray in-
tensity is expressed in arbitrary units and for both cases
is normalized to unity at 2 MCV. The spectra in Fig. 1
correspond to a 5-type of initial population of states.
The shape of the spectrum changes only slightly if,
instead, a Gaussian population of states with DE=2
MCV ls used.

The shape of the spectrum is sensitive to the parame-
ter a appearing in Eq. (25), the equation for the density
of states. Therefore the shape of the spectrum by itself
cannot be used as a criterion for the appropriate nuclear
model.

On the other hand, the angular distribution is very
sensitive to the model and less sensitive to the initial
type of population of states. This fact is demonstrated
in the following equations for the angular distribution.

where

8i(E)=Zi(E)/Zi(E) .
For each model the angular distribution for a cascade

(28) of gamma rays is compared with the angular distribu-

The function Z 1,(E) is closely related to the total popula-
tion of stRtcs Rt Rn cnclgy E RftcI 0 gamma cmissions.
This population after k emissions is compared to the
population after one emission by means of the function
8i(E). Therefore the function 8i(E) measures the rela-
tive contribution to the population of states from the
0th step of the cascade when the contribution from the
first step is norma/ized to unity. For low energies the
function 8i,(E) first increases and then decreases with k.
For higher energies this function always decreases with k
(see Table I). The requirement that

11.30
51.03

105.53
109.20
60.74

4.06 2.06
5.08 1.18
2.53 0.25
0.60 0.02
0.08 0.00

1.14 0.65 0.32 0.19
0.35 0.11 0.03 0.01
0.03 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00

0.07
0.00
0.00
0.00
0.00

TABLE I. The functions 81,(A), tabulated for the energy region
0&.8&8 MeV. For higher energy regions the value of these
functions becomes so small they are not tabulated. Here the 6l@(L&')

are calculated according to the single-particle model. Similar re-
sults according to the liquid-drop mendel predict even faster
convergence.

8i, (E))8i+i(E) for 0&E&EO, (29a)
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tion of a single transition. Also, for each model, the
angular distribution of the cascade of gamma rays is
calculated for two types of initial conditions. First the
initial population of states is assumed to be of a B-type,
and second, a Gaussian initial population of states with
DJ=5 and AM=5 is used. In Eqs. (30) and (31), the
angular distribution according to the single-particle
model is given as a function of the polar angle with
respect to the direction of the heavy-ion beam. The
angular distributions in Eqs. (30a) and (30b) are for a
cascade of gamma rays with an initial 8 type and with a
Gaussian-type population of states, respectively, while
the angular distribution in Eq. (30c) is an angular
distribution for one emitted gamma ray according to the
sing1e-particle model. The equivalent equations for the
angular distribution according to the liquid-drop model
are found in Eqs. (31). All angular distributions are so
normalized that the angle-independent term is one.

By comparing the angular distribution in Eqs. (30)
and (31) one immediately notices the big difference in
the angular distribution as predicted by the two models.
Furthermore, it can be seen that the angular distribution
is more isotropic for a cascade of gamma rays than for a
single emitted gamma ray, and that the angular distri-
bution is more isotropic for a Gaussian type of initial
population of states than for a 5-type initial population
of states.

For a cascade of dipole gamma rays when J—+ J—1~
J—2 ~ a much larger anisotropy is expected than the
one predicted by Eq. (30). The reduction in the anisot-

ropy is due to dipole transition from a state with
angular momentum J to states with angular momenta J
and J+1. This point can be best demonstrated by
considering a single gamma transition. The angular
distributions 2 (J—+ J'; 8) for transitions from a state

Ia 1+0.04 s——in'8. (30c)

The average energy of a gamma ray in this cascade
was calculated and found to be 1.65 MeV.

In the present sample calculation the dependence of
the spin of the compound nucleus excitation was not
incorporated. In more realistic cases the inclusion of this
dependence would provide the dependence of the angu-
lar distribution on the excitation energy.

In conclusion, the angu1ar distribution is sensitive to
the nuclear model, but is less sensitive to the number of
emitted gamma rays and to the initial population of
states.

with. a spin of 30k for a nucleus of 3=200 were calcu-
lated as

A (30~ 29
& 8) = 1+0.5 sin'8 (32a)

A (30 -+ 30 8) = 1—0.48 sin'8 (32b)

A (30~ 31)= 1+0.44 sin'8. (32c)

The relative intensities I(J +I'), w—hich depend on the
magnitude of the nuclear matrix element and the spin
dependence of density of levels are

I(30 —+ 29)= 1.00, (33a)

I(30~ 30)=1.14, (33b)

I (30 —+ 31)=0.35. (33c)

The transition probability of 30 —+ 30 is larger than the
transition 30~ 29 despite the fact that there are more
Anal states with J=29 than states with J=30. How-
ever, the nuclear matrix element for the transition
30 —+ 30 is almost twice as large as the nuclear matrix
element for the transition 30 —+ 29. Using Eqs. (32) and
(33) the combined angular distribution becomes


