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would then be the 6—12 nearest-neighbor-model. Horton
and Leech' also concluded that near-neighbor calcu-
lations best 6t the data for argon and krypton.

A nearest-neighbor model is physically unrealistic.
It assumes that the potential vanishes abruptly at a
distance quite close to the potential well. One would
expect a meaningful theoretical model to incorporate
all neighbor interactions. As pointed out by Guggen-
heim and McGlashan, " the Lennard-Jones potential
exaggerages the effect of distant neighbors and is in-
adequate for predicting the thermal properties of the
solids. What is required is a deeper and shorter range
potential. In this connection, Leech and Reissland~
have added an intermediate-range attractive term
1/rs (i.e., the next term in the expansion of the Van der
Waal's potential) to the Lennard-Jones 6-12 potential.
The agreement of their specific-heat calculations with
Morrison's argon data' was not significantly better than
the Horton and Leech 6—12 (AN) results. However, a
1/r' term" considerably improved the agreement with

"E.A. Guggenheim and M. L. McGlashan, Proc. Roy. Soc.
(London) A255, 456 (1960).

'4 J. W. Leech and J. A. Reissland, in ProceedAzgs of the Eighth
International Conference on Low Temperature Physics, London,
196Z (Butterworth's Scientific Publications Inc. , Washington,
D. C., 1963)."J.W. Leech and J. A. Reissland, in Proceedings of the Ninth

the argon experiments. The e6ect of this term is to
deepen the potential well and hence decrease the effect
of all but the nearest neighbors. It would be interesting
to see how well theoretical calculations of the speci6c
heat, with this new term in the potential, compare with
our xenon and neon data.

ACKNOWLEDGMENTS

Professor G. K. Horton stimulated our interest in this
problem. We are indebted to him and to his students,
J. L. Feldman and J. S. Brown, for many discussions.
Dr. T. McConville provided the basic design for the
calorimeter which was constructed by C. Latham and
A. Siemons. Mrs. D. Fenichel was most helpful in
computer programming, and J. Buchanan assisted in
the measurements of xenon.

We are grateful to Dr. M. L. Klein for telling us of
his work with Dr. T. K. H. Barron in advance of
publication. Lastly, it gives us great pleasure to acknowl-

edge the interest in this work of Dr. J. A. Morrison and
Dr. D. L. Martin. Their numerous comments were
most helpful to us in arriving at a critical appraisal of
the experimental data.

International Conference on Low Temperatlre Physics, Collmbgs,
Ohio, 1964 (Plenum Press, Inc., New York, 1965).

PHYSICAL REVIEW VOLUME 142, NU M B ER 2 FEBRUARY 1966

Unified Approach to Interacting Phonon Problems*
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A unified treatment of the behavior of a system of interacting phonons is presented. This treatment is
based on the physically measurable atomic-displacement correlation function or structure function. The
perturbation treatment of its high-frequency behavior is briefly summarized. Its more complex behavior at
low frequencies is studied in detail. Using a simple model of longitudinal phonons with cubic anharmonic
interactions and without umklapp processes, two modes, representing damped first and second sound, are
obtained. The parameters which occur in the calculated correlation function are shown to agree with those
expected more generally from a phenomenological analysis which is also presented. The paper clarifies
certain paradoxes relating to the difterence between phonon, ordinary sound, and second sound, by showing
that there is no fundamental distinction between these concepts in the only physical quantity, the dis-
placement correlation function.

I. INTRODUCTION

~ ~

~

~

S is by now well known, inelastic neutron scatter-
ing and Brillouin scattering measure the distribu-

tion in energy of density Quctuations of an atomic
system. At high frequencies when these Quctuations
have a wavelength short compared to an average mean

+ Based in part upon a portion of the doctoral thesis submitted
by P. C. Kwok to the Physics Department of Harvard University,
1965. Supported in part by a grant from the National Science
Foundation.

t'Present address: IBM Watson Research Center, Yorktown
Heights, New York.

free path this continuous energy spectrum has a well-
defined peak. The position and width of this peak cor-
respond to the natural frequency and damping of the
phonon or the ordinary sound mode. The collision rate
1/T which corresponds to this mean free path is ap-
proximately equal to the damping of thermal frequency
phonons. When the fluctuations have a wavelength long
compared with the mean free path or ~r&&1, a hydro-
dynamic description applies. In this limit, there appears
a second peak with a smaller weight. It describes the
thermal conduction mode or under certain circum-
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stances the second sound mode associated with propaga-
tion of phonon energy density. From a theoretica] point
of view the behavior of the high-frequency excitation
spectrum is easily understood: The infinitely long-lived,
"theoretical" phonon is simply the normal mode of the
atomic vibration; its damping is determined by a
standard quantum-mechanical perturbation calcula-
tion of the anharmonic interactions between these
"theoretical" phonons. ' On the other hand, in the
hydrodynamic limit, the problem is treated in a differ-
ent and incomplete fashion. One introduces without
microscopic derivation the ordinary sound mode with
velocity determined by the adg, butic elastic constants.
One calculates the attenuation of this wave due to the
irreversible processes it produces in a phonon heat bath
from a phenomenological Boltzmann equation for the
phonon distribution function. ' The second sound mode
is derived from the conservation laws implied by this
equation. ' To find the relationship between these two
hydrodynamic modes, i.e., their relative weights in the
density Quctuation excitation spectrum, one has to
make use of another theoretical construct, namely, the
two-Quid hydrodynamics. 4

The hydrodynamic region is a complicated one if its
description is based on the "theoretical" or harmonic
phonon because the hydrodyanmic modes involve the
interactions of many such phonons. On the other hand,
from the point of view of the experimentalist, who sees
"physical" phonons, no such diS.culty arises. The pur-
pose of this paper is to present a unified "physical"
treatment which eliminates the deficiencies of the usual
hydrodynamic treatment and goes over to the familiar
treatment at high frequencies where the "theoretical"
phonon and "physical" phonon are the same. The
"physical" phonon is described by the displacement cor-
relation function or phonon Green's function which we
calculate by using thermodynamic Green's-function
techniques. We show, in particular, that this function
has two oscillation frequencies for long wavelengths
when umklapp processes are unimportant, correspond-
ing to the (damped) first and second sound. Since the
natural frequencies of the displacement correlations are
the phonons, our conclusion is tantamount to the state-
ment that both Grst and second sound are phonons.

The calculations are carried out for a particularly
simple model of the interacting phonons to avoid un-
necessary complications. Furthermore, in this paper,
we only consider the low-frequency limit, since the high-
frequency calculations are more straightforward.

As an introduction let us review the conventional but
nevertheless instructive hydrodynamic treatment based

'L. Landau and, G. Ruiner, Physik Z. Sowjetunion 11, 18
(1937').

P A. Akhiezer, J. Phys. (USSR) 1, 277 (1939); see also T. O.
Woodruff and H. Ehrenreich, Phys. Rev. 123, 1553 (1961).' J. C. Ward and J. Wilks, Phil. Mag. 43, 48 (1952).

P. C. Hohenberg and P. C. Martin, Ann. Phys. (N. Y.) (to be
published).

on the phenomenological Boltzmann equation

(8/Bt)N(prt)+cp V,h (prt) = —(BN/Bt), ,ii;.;.., (1.1)

for the phonon distribution function N(prt) and trace
the essential steps of the derivation of second sound.
We begin with the conservation law for the heat density
or energy density of the phonons q,

Bq/Bt+V jv=0, (1.2)

where j, is the heat current. If the heat current j, is
also a conserved quantity we have

(8/Bt)j „+V;X;,=0, (1 3)

where X;; is the heat Qux tensor. At a frequency low
enough that local equilibrium can be established it is
possible to express X;, entirely in terms of conserved
quantities. Then in an isotropic medium where X;;= 5;;X,
we can combine (1.2) and (1.3) and obtain the following
wave equation for q:

(~'/@')q (»/~q)—"V'q=o; (1 4)

the velocity of the second sound Isis givenby (»/Bq)'t'
at equilibrium.

In a superfluid (e.g., liquid He') in the absence of
vorticity the second sound mode exists because (1.2)
and (1.3) are satisfied, the latter as a result of j, being
proportional to v„the conserved superQuid velocity, in
a reference frame in which the particle current is zero. '
For the phonons in a crystal we also have second sound.
The reason is that if we neglect the small anharmonic
corrections to the expression for j„then j, is equal to
c'P, where c is the sound velocity and P is the phonon
momentum density, so that it also satisfies a conserva-
tion law. Specifically, we have

(8/Bt)j „+V;cA.;;=—(1/r U)j„, (1.3').
where A;; is the momentum stress tensor and rp is the
collision time for the umklapp processes which do not
conserve P. The collision time gives rise to a finite
thermal conductivity that damps the second sound
mode. Other dissipative coeKcients are obtained using
the Boltzmann equation (1.1) and expanding c'A;, =X,,
about its local equilibrium value (X;;)s. These terms
are schematically represented by

X;;=(Xg)s+D8;;(Bq/Bt),
D=c'v-.

(1.5)

and, consequently, the following dispersion relation for

'The velocity of the normal Quid v„is equal to —(p,/p„)v,
sinCe prsv&+ pave=0

Then from Eqs. (1.2), (1.3'), and (1.5) we obtain

8' (aX) a 1 aq—
q
—

~ ~

V'q D V'q+ —=0- — —
Bt (Bq) gg R rU R
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the propagation of heat waves

Oi2 u—22k'+i~(Dk'+1/rv) =0, (1.7)

uP = (cd/cjoy). ,—-', c'.

At very low frequencies where corU«1, Eq. (1.7) de-
scribes thermal conduction as it is adequately approxi-
mated by uf—k'+us/r&=0 In .the frequency region
a)D«c' and ~TU))1, it yields the slightly damped second
sound mode. In the subsequent analysis, Eq. (1.7) and
the corresponding equation for first sound will appear as
the natural frequencies of the displacement correlations.

In Sec. 2, the model is formulated and the Green's-
function formulation briefly described. In Sec. 3, a
generalized Boltzmann equation is derived for the non-
equilibrium Green s function. In Sec. 4, the various
equilibrium correlation functions are deduced directly
from the Holtzmann equation and the equation for the
nonequilibrium displacement. In Sec. 5, the displace-
ment correlation function is rederived with a slight re-
arrangement to conform more closely to the derivation
at high frequencies. The high-frequency results, and
the interpolation between them and the results con-
tained in this paper, have been summarized elsewhere'
and are not reported here.

II. MATHEMATICAL FORMULATION
OF THE MODEL

We will now study the various problems of the inter-
acting phonons posed above by using a simple model
with longitudinal phonons only. The Hamiltonian
density for this model is

X(rt) =-', m'(rt)+-', c'Vd(rt) Vd(rt)
—i~n(n. (rt) Vd(rt) Vd(rt)+ .Vd(rt) Vd(rt)r(rt))

+ien'(V d(rt) Vd(rt)) J(rt) d(rt), (—2.1)

where d(rt) is the displacement field and 7r is the canoni-
cal conjugate Geld which satisfies the following com-
mutation relation~ with d

ensemble average of any operator A(rt) (with t in the
imaginary time interval {0,—iP}, P=1/kzT) in the
presence of J as

Tracee ~~'(SA (rt))+
&A(rt))= (2.5)

Tracee t'~0S

where &,=J'd'r X(rt) with J=O, and S is the time-
ordered operator

S=~ expi dt d'r J(rt)d(rt)
~

E. p
)+' (2 6)

8(d(rt)) 8(d(r't'))
G(rt; r't') =

8J(r t') hJ(rt)
(2 g)

We obtain the equation for G by Grst taking the
ensemble average of (2.4), getting

(~ /~t, )(d(1))-"V &d(1))

+(1/2i)n(123)(G(23)+(d(2))(d(3)))= J(1). (2.9)

In this equation, we have introduced

(8
n(123) = —2ni —V28(12) Vsh(13)

Ea~,
8 1 8

+V2h(12) V3—8(13)+——8(12)V3'8(13)
833 2 812

8
+-', VPh(12)—h(13) i (2.10)

at,

The desired physical functions of real time are obtained
by a trivial analytic continuation. The Green's func-
tion for the displacement Geld is defined as

G(rt; r't') =i(&(d(rt)d(r t'))+)—&d(rt))&dZr't'))) (2.7)

or, equivalently, using (2.5) and (2.6), as

and also have used the abbreviation {1}~ {ri,ti},etc.,
and the repeated index summation convention; we then
differentiate (2.9) with respect to J:

L7r(rt), d(r't)]= (1/i)8'(r —r') . (2.2)

n is an eGective cubic anharmonic coupling constant and
J is an external source introduced to generate the neces-
sary equations. From (2.1) and (2.2) we readily find that

d(it) =s.(rt) ', nVd(rt) V—d(—rt),

((cj'/Ri2) —c'Vi2)G(11') —Z(12)G(21') = 8(11') . (2.11)

and
1 hG(23)

Z(11')= —n(11'2)(d(2))——n(123) . (2.12)
h&d(1'))

d(rt)=c'V'd(rt) —n(Vd(rt) Vd(rt)+Vd(rt) Vd(rt)

+2d(rt) V'd(rt)+-', V'd(rt)d(rt))+ J(rt) . (2.4)

(2 3) Z is the self-energy operator that contains all the an-
harmonic corrections

Following the conventional procedure, ' we define the

'P. C. Kwok, P. C. Martin, and P. B. Miller, Solid State
Commun. (to be published); P. C. Kwok, thesis, Harvard Uni-
versity, 1965 (unpublished).

V We take 5=1.
See, for example, L. KadanoB and G. Baym, Quantum Statisti-

cal Mechanics (W. A. Benjamin, Inc. , New York, 1962).

This equation can be written in the following iterative
form:

Z(11')=—n(11'2) (d(2))

1 8Z(23) ~
.n(123)G(22)G(33),

I ~ (2 13)
2i h&d(1'))i
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with the help of the identities

8G(23) 8G '(23)
= —G(22) G(33),

G-'(1 ') = ((a'/at, ')—c'V ')S(11')—Z(1 1') .
(2.14)

III. GENERALIZED BOLTZMANN EQUATION

As discussed by Kadanoff and Baym, ' the derivation
of the Boltzmann equation is best carried out directly
in terms of the real time Green's function G or G
defined as

G~(11')= i((d(1)d(1') )—(d(1))(d(1'))),
G&(11')=G~(1'1) .

(3.1)

In thermal equilibrium, the system is uniform and the
functions G (11') depend only on the relative co-
ordinates {1—1'}.We can then define the following
Fourier transform:

d(o d'p
~sp (rl—rl') —sot (tl—tl')G~ &(11')=i

( )
XG~ &(y,(a) . (3.2)

The transforms G~ &(pre) can be readily shown to have
the following representation':

2' 2' 3

G (y~) =2x"(y~) LI+&0(~)j,
(3 3)

G'(y~) =2x"(y~)&o(~),

where E0(s&) is the equilibrium phonon distribution
function

X0(a)) = (ee —1)—', (3 4)

and x"(pa&) is the spectral function giving the frequency
distribution of the elementary excitation of the system.

The perturbation series for Z can now be easily obtained
from (2.13) by carrying out the indicated functional
derivative. After this is done we can put the source
J=O. Then (d) vanishes, and in the ensuing spatially
invariant system G(11') and Z(11') depend only on
t& t&' an—d Ir& —r.& I.

In this paper, we will not pursue the perturbative
treatment, since it only involves calculations of suc-
cessive collisions. Our primary aim is to study the
collision-dominated or hydrodynamic region, obtaining
the second sound mode, and to examine the various low-
frequency properties connected with it. For this pur-
pose, it is necessary to deduce a Boltzmann-like
equation.

In the harmonic approximation in which +=0, x ' is
equal to

xa"(p~) =s.(a&/
~

&o
~ )5(aP —c'p') . (3.5)

Iet us now consider the system not in complete
thermal equilibrium. The system will no longer be uni-
form. Therefore G~ &(11') are not just functions of
{1—1'}, but depend on both 1 and 1'. If we de-
scribe these functions by the relative coordinates
r= r~—rl', t = t~—t~', and the center-of-mass coordinates
R=-', (r~+rx'), T=2(tq+t~'), we can still use the defini-
tion (3.2). However, the Fourier transforms G (p~)
must now be dependent on R and T, so that

8M dp
G (11')= i — e'&'-'"'G (y(a RT) . (3.2')

2' (2n-)'

Likewise, Eq. (3.3) becomes

G~(ixe, RT) =2x"(yo), RT)L1+E(y(a, RT)],
G&(pa, RT) =2x"(p~, RT)1V(p~, RT) .

The functions x"(pcs,RT) and 1V(p~,RT) are easily in-
terpreted as the local spectral function and the local
phonon distribution function, respectively. To 6nd the
equation for G~(pv, RT) or G&(pro, RT), we begin with
Eq. (2.11) and a similar equation with 1 and 1 inter-
changed, namely,

((a'/atv') —c'Vp')G(11') —Z(1'2)G(21) = 5(11') . (3.6)

Subtracting (3.6) from (2.11), we obtain

a a a a )
at, at, . at, at, .)

—c'(v, +v,.) (v,—v, ) G(11')

+n(132)(d(3) )G(21')—n(1'32)(d(3))G(21)

=Z'(12)G(21') —Z'(1'2) G(21), (3.7)

where Z'(12) is the self-energy operator minus the
"source" term {—n(123)(d(3))}. Our next step is to
change the coordinates 1 and 1' to rt and RT and take
the Fourier transform with respect to r and t. The re-
sulting equation is very complicated, unless the devia-
tion from thermal equilibrium is small and slowly vary-
ing in space and time. In that case, it can be simpliied
by expanding the various terms in powers of the gradient
VR and time derivative a/aT. Then, keeping only the
lowest order terms, we Andfa, - . a 1

+vR'c'p G &(p~,RT)—n (vz, vz, (d(RT)))~p, ——
( vR,. „(d(RT))~p' G &(y~,RT)

kaT" ap~ 2 ( aT ) ap~

a „q a 1~ a' . q
a-

+n I VR; .(d(RT)) Ip'& I.(d(RT)& —Ip' -G'(y RT)—'aT ) a~ 2 LaT2 ) a~
= —-', (Z'&(y(u, RT)G&(p(v, RT) —Z'&(y(e, RT)G~(pre, RT)), (3.g)

where Z'& & are functions similar to the G~ ~ de6ned from Z'.
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RT = ( —y W (d(RT)))'—
~

——„T'—c—— „(d(RT))i
p'; (3.10)

that give rise t

— ~ «)) -( —(')) ~x"(p, )= (3.1.1)

x (y~, )
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a roximation because
for any arbitrary function,

'
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kaT
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~ps

T —Z'~(y(0, RT)(1+%(p(a,RT))j. (3.12T = —-', LZ'~(ya, RT)E(pau, RT)—Z & y(0,„—(d) p'—iV(pa), RT) = ——,

2 8T2 8(d
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into (3.12), we finally obtainSubstituting them into . , w

d ' —' „(d)p'—
i $(y(0,RT)

a' a)-
n V. ;, —' V', d ' +n V, „(d)ip,ar——isnV c'y n(V;V;(d))ra—p, +-,'N V', (d ' n, —-'n„u0 VR'c p —6 V,

kaT

= —0(yo), RT)

d pi dhlg

(2n.)' 2m

(Ad1

RT 2x" pi~02, 2(o2 Rf')$(y(o, RT)

2'
(a RT 2x" pi~02, RT)[(1+iV(ygai, RT))1V(y2(o2,2 P1'P2 21 2 2 2

27

(27I) 8(Q)i—Gl2—M)8 (pi —pm
—p

(2ir)'
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2.1 tobethe Hamiltonianreadily found from t e
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,'(M-'+c'p')G&(pM, RT)E(RT)= — -', M' c (3.16)

MpG&(pM, RT) . (3.1'I)

ese parts

( M — "
Ã(yM, RT)—Ep(M))-(« "i M RT)—Xp"(yM))(& pM,

-' M'+c'p')2(X pM,07

(2pr)'

GM
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P(RT) =
7r
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2s (2n. '

e ends explicitlyis the one that depen sThe second term is
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(2n-)'

(3.19)
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A
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dM dp
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&&2Xp"(pM)E(pM, RT .T . (3.23)
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N(pa&, RT) into two parts

N(pa&)RT) =Nag(pcs, RT)+Ng(pa), RT), (3.24)

where E@z is the local- or quasi-equilibrium distribu-
tion function that makes the collision term 0- in the
3oltzmann equation vanish. From (3.15), we find that
EqE has the following form:

NqE(y(a, RT)
= Lexp(P(RT)&v —PpP ' V(RT)) 1] ~ (3.25)

where Po ——1/kgTp. Here P(RT) and V(RT) can be in-
terpreted as the local temperature and the phonon drift
velocity if (P(RT)—Po(«Po and

~
V(RT) '1(( the sound

velocity c. These parameters are not independent of
each other, but are related through the conservation
equations (3.21) and (3.22), in which we approximate
the functions by their quasi-equilibrium values. Our
next step is to calculate N&(pu, RT) by successive ap-
proximation, making use of the Soltzmann equation
(3.8). The analysis is straightforward, and we obtain to

linear order in the collision time mph

E2(RT) =Em pm(RT),

jg, (RT) =c'Pp(RT) =jx,qE(RT),

A„,(RT) =-', S,,E,(RT)
frphc (Va P2j(RT)+ VR,.P„(RT))

++'rpgc'8;;VRbPg(RT), (3.26)
where

pp d'p 1
(p, ~= cp)c'p' . (3 2&)

c&, (2s)' sinh' ,'Poc-p

The function r(p, ru) is the frequency- and momentum-
dependent collision time dedned by

N~(p~, RT) = r(pa))Np(4))(1+Np(&o))p(po) RT),
(Poc'

p(p~, RT) =
~

— ~'VR Pm(Rf')
(4er,

3poc'
p,p,V,,.P„(RI')~, (3.2g)

4er,
' )

and satisfies as a consequence of the Boltzmann equation

y(pa), RT) =n'
diMy d py dM2

2s (2~)' 2s

dap~
(2~) '6(~&—~2—~)8'(p~ —p2 —p)

(2s)'

XL(&l &2)p1'p2 g~lp2 +2~2pl ] 2xo (pal)2xo (p2&2)(NO(&2) NO(~1))

X(r(p~)$(p~, RT)+~(pg~~)P(p~~g)RT) —r(p, ~g)$(yg~g, RT)). (3.29)

However, we cannot solve for ~(p~) and therefore rph

exactly. We are only able to determine its order of
magnitude, for. example, by dropping the last two terms
in the bracket in (3.29). We find that

or

8 „G
„E2'(RT) VR'E—2'(—RT) c'r~qVR—' E2 (RT)

BT 3 BT

or
~(y~)—=(~' (y~) -~"(y~)) ' 2Q 8

= ——sr,c'Va' (d(RT)), (3.34)
G 8T

~(p, ~ =cp)=(Z'~(p, a&=cp) —Z'~(p, (u=cp)) —'. (3.30)

Since the damping of the phonon is'

P(p) = (1/2cp)(Z'~(y, (a=cp) —Z'~(p, (o=cp)), (3.31)

we have
7(y, o)=cp)=L2cpI'(p)] '. (3.32)

where

E2'(RT) =E2(RT)+ (2n/cm) cr,(B/BT) (d(RT) . (3.35)

Equation (3.33) or (3.34) is the same as the phenomeno-
logically derived equation (1.6) for the heat density g
when we let (d) =0 and r~= ~.

The second sound equation can now be obtained by
substituting (3.26) into (3.21) and (3.22) and elimi-
nating P(2&. We Qnd

IV. LOW-FREQUENCY CORRELATION
FUNCTIONS

In this section we will study the two macroscopic
equations (2.9) and (3.33) or (3.34) and carry out a
hydrodynamic analysis to find the various correlation
functions. Our first task is to rewrite (2.9) in a suitable
form. Putting J'=0 and neglecting the (d)' terms, we
have

8 „G 8
E2(RT)——Va'E2(RT) —c'rp&VR E2(RT)

BT2 3 BT

2n ( 8' . 8'
(d(RT)) c'r~hVR' „(—d(&T))

c' E alT' az' )
(8/Btg')(d(1)) —c'Vg'(d(1))

4n 8 + (I/2i)n(123) G(23) =0. (4.1)
er,c'VR' (d(RT)) (3.33)

3G' BT If we use the expression (2.10) for n(123), we find to
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nd &1 thatlowest orae»n the derivatives a/at» where p(«)» " P
the divergence, we obtain

.P(. t) i

22

t1 a E(ri'i)
P („„)i (4.2)

(2 ati

a' i v, (v. g) „v—(v g)—v'g
atat2 api E2

i'

(
(8Eii s

function very similar to Ei(r»ti .where Ei'(ri, ti is a unc ion

dM dp
Ei'(riti) =

)&c' '(y" (p(a, riti) —Xo (pi0))x, » — " &.~, (43)

ow y P2 in terms of Er', we obtamNow by expressing E2 and P2 in er

and

c'= (aplap)&~'

c t' api c (ap)

gp, (BE,'i, gp, EaTi, c„ (4.10)

4.5 except «r the termT uation is similar toT is equ
containing g, if we put

(1 a Ei (ri i)—n(123)G(23) =ni ——
2j &2 at, c'

dt e'*'(d(rt)),

(4.11)

or

'fi h t. The absence of the
—v P,(r,t,)1' 1 1 where c, is the pe honon speci c ea .

is a result o our nof t calculating E1 anddissipative term is
l .The enomenenological deriva-E' P suKciently accurate y. p

for E2' is the same as(4.4) tion of the equation for
heat density is

4 2 2 t1 cc4 Bt 2 t c

th t there is an e
in the bracket is uninteresting s

ag/at oI i are ProPortional to (d) and it is only when the partic e c~urreh coeKci

XV'(a/at)(d) in (3.
term, we have

correlation functions o
1 ulation is identicalconvenience). T e

/

he technique of ca cu a ion
'B

to that descri e y
=0. 4.

ibed b Kadanoff an arBt2 2 Bt c'
e the same. The un er yi

tions the subsequen evmine K s. (4.5 an from these equatio
d f a much more functions (d) and ( )h aftervariousa ia a

'

honon Ham'lt'""" w'th o ~ ~ ~ dd l

can be derive rom a

l turned o8 at t= .
We be in by noting

h d
onic interaction. e e in

00

( )-(/~'po)g( ),rt, where pois
m and g, rt =pou rt is

d( = re '

ks) d3 —ik r
P

0

00

d'r e '~' dt e'"(8(rt)),8( = re
~P0i+a ~

0
ag;/at+ V,T,;=0

(a'/at')g, +v;(BT;,/at) =0, (4.6)

~ is the stress tensor. I'"ollowing pthe rocedure
d t' d BT/ad 'b d in the Introduction, we

about the local equilibrium value

(4 ~)BTg/at (BT,r/at)0 re,,(a—/at)V g, —
'

cosit . (aT;;/at) 0 can now be expressedwhere p is the viscosity. B

he inde endent conserve quan i
'

we will choose to be g and E2. e en

BEBTg) t'api t' a BE

E at io Eapis; a,

m lex number in the upper half plane.
( ) d( ),Now taking this transform of Eqs.

obtain

(—s'+c'k')d(ks) —(3n/2c')is ( s)
= —isd(k)+(3n/2c') 8(k), 4.

't't') 8(ks) —(2a/c') er,isc'l't'd(ks)
= —is r hc'k') 8(k)+(2u/c') er,c'k'd(k). ( .

k nd 8(k) are the spatial transformsThe functions d( an

N. Y. 24, 419"L.KadanoB an d P C. Martin, Ann. Phys. (N. .)(1' i.
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of (d) and (8) at t= 0:

d(k) = d'r e ' '(d(r 0))

8(k) = d'r e '«—'( 8(r 0)) .

They reduce to
—s'+-', c'k'

xea(ks) =
{(sa csk2)[s2 r'caka] (3u2/c )eTos c ka}

(a/2c') Tpc.isc'k'(4.14)

{(ss cska)[s2 &csk2] (3u2/c4) ar speak }

3C(r) =3Cp(r) —(d(r) J(r)+ [8T(r)/Tp]3Cp(r))
X rt( —t)e" (4.15)

[rt(x) = 1 for x)0 and rt(x) =0 for x(0, and 3Cp(r) is the
unperturbed Hamiltonian density]:

Tr[exp( —Pp J'd'r 3C(r))d(r)]
(d(r, O))=

Tr[exp( —PpJ'd'r 3C(r))]
(4.1u)

Tr[exp( Pp J'd'—r 3C(r))3Cp(r) 7——Cp.

Tr[exp( —Pp J'd'r 3C(r))]
(8(r,O))=

We have also used the initial condition that (8/R) (d(rt))
and (cj/cjt)(8(rt)) at t=o are zero. We may determine

by perturbation theory the values of d(k) and 8(k)
induced by sources externally applied for t &0 according
to the Hamiltonian

when we neglect dissipative terms containing TpQ which
are smaller by a factor of s~~h. We will come back to
these terms in the next section where X~~ is rede-
rived in a slightly diBerent way. We note that
Xag= —X~s, as it must, since for harmonic phonons,
& Tpc„=s Tp(8arp/itTp)a is equal to 2arp

These response functions coincide with those obtained
from the two-fluid hydrodynamic analysis carried out
by Hohenberg and Martin, 4 if we identify

(3n'/c') prp= ((c./c. )—1), (4.20)

,'Tpc„c-'k'( s'+—c'k')
x as(ks) =

{(s'—c'k') [s'—-', c'k'] —(3u'/c') arps'c'k'}

—(2n/c') arpisc'k'
x sa(ks) =

{(s' —c'k') [s'——,'c'k'] —(3u'/c4) ar,s'c'k'}

(4.19)

(
c ) T Bp) s Bp)

c, & cp, ar), ap/,

We may rewrite these functions to exhibit the two re-
normalized sound poles with velocities nq and u2
de6ned bysd(k)

j
gJ(k) csks

~8(k)

~T(k)

s8(k)
—+0,

u(k)

(4 1p)
(s'—ugk') (s' —usak')

= (s'—c'k')(s' —-', c'k') —(c„/c„—1)s'c'k'8d(k) —+0;
ST(k)

or
u&'+ups= [a+((c~/c, )—1)]c'; u&'us = sc'. (4.21)

we Gnd

which agrees with (4.11) upon using
In obtaining the latter expression, we have recalled the
fact that, when (d)=0, (8) is simply Es, the thermal
energy of the phonons, so that the zero-point energy is
subtracted out. If we express d(k) and 8(k) in terms of
J(k) and 5T(k) and note that

(—s'+ c'k') d(ks) —(3u/2c') is 8(ks)
= —(is/c'k') J(k)+ (3n/2c') c,, 8T(k),

In particular, when [(c~/c„)—1] is much smaller than
one, a condition that is certainly satisied at su%ciently

(4.12') low temperature, we have

(—s'+-,'c'k' —asr, hc'k') 8(ks)
+(2n/c') airpskc'd( k)s

= (—is+ r,«c'k')c„5T(k)—(2a/c') srp J(k) . (4.13')

1—-'.((c,/c. )—0 -'((c./c. )—1)
xda(ks) = +

ss+ u~sk s —sr+ us&k a

3n t' 1
These equations allow us to calculate the Fourier Xaa(ks)= — Tpc„is~

transforms of the response functions, or retarded com- 4c' k—s'+uPk' —s'+us'k')
mutators, "of the operators d(rt) and 8(rt):

(ks) — dsr e—r«(r r')—d] giz(t —t')

X a s(ks) = ', Tpc„c'k'i-—s'+uPk'

Xiq(t —t')([A(rt), B(r't')]). (4.18)

1—9/4((c /c„)—1))
(4.22)

s2+usaks j
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where"
Ni'=c'+-,' ((c„/c.)—1)c',
Nm'=ac' —k((c./c. )—1)" (3o.'/c') er,co'c'k'

Z(k(u)——(o'+-', c'k' —uor hc'k'V. ALTERNATIVE DERIVATION OF THE
DISPLACEMENT CORRELATION

FUNCTION

or
((c~/c„)—1)o&'c'k'

1 ~ )
o)'+—-,c'k' io)r—pi,c'k'

(5.5)
In this section, we will rederive Xee(ks) using another

approach. First of all, it can be easily shown that
Xzz(ks) is simply the analytic continuation of the
function'

using (4.20). Thus

G(k(o) =[—aP+c'k' —((c /c„)—1)a)'c'k'/

( a)'+—-',c'k' ivor—i,c'k') j '-(5.6)

derivative on the equation for E2'(rt) (3.34), which is
also valid for imaginary times. The result for the

(4 23) continuation is

G(kryo„)= d'r e a (r r). —
—ip

dt e+'" &'—"&G(rt,r't'),

ei„=2rrv/ iP;—i = integer,
(5 1)

where

G(k(o„)=[—(o,'+c%'—Z(kco„)]—',

—ip

(5.2)

Z(ka) )= d'r e *" ' "& (Q ~+inlay(t
—t')

which is the Fourier transfer of the imaginary-time
Green's function, from co„to s in the upper half-plane.
The expression for Xzz in the hydrodynarn. ic limit shown
in (4.22) can therefore be obtained alternatively by cal-
culating G(k&o„) or G(k, s) at small momentum k and
frequency co„.

From (2.11) and (2.12), we find that

where

—L1—4((c./c. )—1)7
G(ka)) =

2 ~g7 1g2k 2 I~2k 2

—-'((c /c„)—1)
7

2 ~g&2g2k2 N22k2
(5.7)

which is identical to our previous result for Xg~, if we

put G0T'yh= 0.
Let us now discuss the implication of this formula. As

is well known, the complex poles of the retarded Green's
function represent the frequency and damping of the
normal modes or elementary excitations of the system,
which are, in our case, the excitations of the atomic
vibrations or density fluctuations. From (5.6), we find
that G(k~) can be expressed as a sum of two poles. In
particular, for small [(c„/c„)—1j and rar~h, we find

1 t' bG(23) i
X ——n(123) I

2i I b(d(1'))) (&f) 0

. (5.3)

9 c„
r2= —1 ~rph)-

4c,
(5.8)

Since we only need Z(k&o, ) at low k and &o., we can make
use of the expansion (4.2) or (4.4) for (1/2i)n(123)G(23),
getting

Z(k(o.)= d'r e '"'&' "& d] ~+ice (t—t')

~ We note that they are the two Quid analog of the equations
NP—c'+ (c„/c„—1)c'; u22=0, which give the adiabatic compressi-
bility for the sound velocity when there is no second sound.

( 3n 6 8
x

~

— —E,'(rt)), (5.4)
2c' 8(d(1')) Bt

where E2'(rt) is the previously defined function except
that t is in the imaginary time interval (0, —iP). We
have neglected the terms depending on (d) explicitly.
Z(kau) can now be evaluated by taking the functional

9/c„
1—-~ —1 rph,

4&c.

and Ni2 and NP are given by (4.21) or (4.23). The first
term describes the first sound with velocity I& and
damping proportional to co2v~. The other term cor-
responds to the second sound with velocity e2 and
damping o&'r2. Since [(c„/c„)—1]is very small, the damp-
ing of the 6rst sound is much smaller than that of the
second sound, even though they are both described by
the relaxation time r~q. It is obvious from (5.7) that the
second sound mode must be treated like the 6rst sound
mode, since they appear on the same footing as ele-
mentary excitations of the system. In other words,
both of them are phonons. The only difference is that
the second sound appears with a weight smaller by
[(c /c. )—1].


