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would then be the 6—12 nearest-neighbor-model. Horton
and Leech® also concluded that near-neighbor calcu-
lations best fit the data for argon and krypton.

A nearest-neighbor model is physically unrealistic.
It assumes that the potential vanishes abruptly at a
distance quite close to the potential well. One would
expect a meaningful theoretical model to incorporate
all neighbor interactions. As pointed out by Guggen-
heim and McGlashan,’ the Lennard-Jones potential
exaggerages the effect of distant neighbors and is in-
adequate for predicting the thermal properties of the
solids. What is required is a deeper and shorter range
potential. In this connection, Leech and Reissland®
have added an intermediate-range attractive term
1/78 (i.e., the next term in the expansion of the Van der
Waal’s potential) to the Lennard-Jones 6-12 potential.
The agreement of their specific-heat calculations with
Morrison’s argon data’® was not significantly better than
the Horton and Leech 6-12 (AN) results. However, a
1/7° term® considerably improved the agreement with

# E. A. Guggenheim and M. L. McGlashan, Proc. Roy. Soc.
(London) A255, 456 (1960).

3 J. W. Leech and J. A. Reissland, in Proceedings of the Eighth
International Conference on Low Temperature Physics, London,
1962 (Butterworth’s Scientific Publications Inc., Washington,

D. C., 1963).
3 J. W. Leech and J. A. Reissland, in Proceedings of the Ninth
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the argon experiments. The effect of this term is to
deepen the potential well and hence decrease the effect
of all but the nearest neighbors. It would be interesting
to see how well theoretical calculations of the specific
heat, with this new term in the potential, compare with
our xenon and neon data.
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A unified treatment of the behavior of a system of interacting phonons is presented. This treatment is
based on the physically measurable atomic-displacement correlation function or structure function. The
perturbation treatment of its high-frequency behavior is briefly summarized. Its more complex behavior at
low frequencies is studied in detail. Using a simple model of longitudinal phonons with cubic anharmonic
interactions and without umklapp processes, two modes, representing damped first and second sound, are
obtained. The parameters which occur in the calculated correlation function are shown to agree with those
expected more generally from a phenomenological analysis which is also presented. The paper clarifies
certain paradoxes relating to the difference between phonon, ordinary sound, and second sound, by showing
that there is no fundamental distinction between these concepts in the only physical quantity, the dis-

placement correlation function.

I. INTRODUCTION

S is by now well known, inelastic neutron scatter-

ing and Brillouin scattering measure the distribu-

tion in energy of density fluctuations of an atomic

system. At high frequencies when these fluctuations

have a wavelength short compared to an average mean

* Based in part upon a portion of the doctoral thesis submitted

by P. C. Kwok to the Physics Department of Harvard University,

1965. Supported in part by a grant from the National Science
Foundation.

T Present address: IBM Watson Research Center, Yorktown
Heights, New York.

free path this continuous energy spectrum has a well-
defined peak. The position and width of this peak cor-
respond to the natural frequency and damping of the
phonon or the ordinary sound mode. The collision rate
1/7 which corresponds to this mean free path is ap-
proximately equal to the damping of thermal frequency
phonons. When the fluctuations have a wavelength long
compared with the mean free path or wr<1, a hydro-
dynamic description applies. In this limit, there appears
a second peak with a smaller weight. It describes the
thermal conduction mode or under certain circum-
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stances the second sound mode associated with propaga-
tion of phonon energy density. From a theoretical point
of view the behavior of the high-frequency excitation
spectrum is easily understood: The infinitely long-lived,
“theoretical” phonon is simply the normal mode of the
atomic vibration; its damping is determined by a
standard quantum-mechanical perturbation calcula-
tion of the anharmonic interactions between these
“theoretical” phonons.! On the other hand, in the
hydrodynamic limit, the problem is treated in a differ-
ent and incomplete fashion. One introduces without
microscopic derivation the ordinary sound mode with
velocity determined by the adiabatic elastic constants.
One calculates the attenuation of this wave due to the
irreversible processes it produces in a phonon heat bath
from a phenomenological Boltzmann equation for the
phonon distribution function.? The second sound mode
is derived from the conservation laws implied by this
equation.? To find the relationship between these two
hydrodynamic modes, i.e., their relative weights in the
density fluctuation excitation spectrum, one has to
make use of another theoretical construct, namely, the
two-fluid hydrodynamics.*

The hydrodynamic region is a complicated one if its
description is based on the ‘theoretical”’ or harmonic
phonon because the hydrodyanmic modes involve the
interactions of many such phonons. On the other hand,
from the point of view of the experimentalist, who sees
“physical” phonons, no such difficulty arises. The pur-
pose of this paper is to present a unified “physical”
treatment which eliminates the deficiencies of the usual
hydrodynamic treatment and goes over to the familiar
treatment at high frequencies where the “theoretical”
phonon and ‘“physical” phonon are the same. The
““physical”” phonon is described by the displacement cor-
relation function or phonon Green’s function which we
calculate by using thermodynamic Green’s-function
techniques. We show, in particular, that this function
has two oscillation frequencies for long wavelengths
when umklapp processes are unimportant, correspond-
ing to the (damped) first and second sound. Since the
natural frequencies of the displacement correlations are
the phonons, our conclusion is tantamount to the state-
ment that both first and second sound are phonons.

The calculations are carried out for a particularly
simple model of the interacting phonons to avoid un-
necessary complications. Furthermore, in this paper,
we only consider the low-frequency limit, since the high-
frequency calculations are more straightforward.

As an introduction let us review the conventional but
nevertheless instructive hydrodynamic treatment based

(1;31,7.) Landau and .G. Rumer, Physik Z. Sowjetunion 11, 18

2 A. Akhiezer, J. Phys. (USSR) 1, 277 (1939); see also T. O.
Woodruff and H. Ehrenreich, Phys. Rev. 123, 1553 (1961).

3J. C. Ward and J. Wilks, Phil. Mag. 43, 48 (1952).

4P. C. Hohenberg and P. C. Martin, Ann. Phys. (N. Y.) (to be
published).
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on the phenomenological Boltzmann equation
(8/0t)N (prt)+-cp: VN (prt)= — (ON/38)conision, (1.1)

for the phonon distribution function N(prf) and trace
the essential steps of the derivation of second sound.
We begin with the conservation law for the heat density
or energy density of the phonons ¢,

3g/01+V +§,=0, (1.2)

where j, is the heat current. If the heat current j, is
also a conserved quantity we have

(8/01) j itV iXi;=0,

where X;; is the heat flux tensor. At a frequency low
enough that local equilibrium can be established it is
possible to express X;; entirely in terms of conserved
quantities. Then in an isotropic medium where X;;= 8;;X,
we can combine (1.2) and (1.3) and obtain the following
wave equation for ¢:

(9%/01)g—(8X/39) eaV*q=0;

the velocity of the second sound %, is given by (9X/dg)/2
at equilibrium.

In a superfluid (e.g., liquid He%) in the absence of
vorticity the second sound mode exists because (1.2)
and (1.3) are satisfied, the latter as a result of j, being
proportional to v, the conserved superfluid velocity, in
a reference frame in which the particle current is zero.?
For the phonons in a crystal we also have second sound.
The reason is that if we neglect the small anharmonic
corrections to the expression for j,, then j, is equal to
¢?P, where ¢ is the sound velocity and P is the phonon
momentum density, so that it also satisfies a conserva-
tion law. Specifically, we have

(8/88) jaitVic*Aij=—(1/70) jai (1.3")

where A;; is the momentum stress tensor and 7y is the
collision time for the umklapp processes which do not
conserve P. The collision time gives rise to a finite
thermal conductivity that damps the second sound
mode. Other dissipative coefficients are obtained using
the Boltzmann equation (1.1) and expanding ¢?A;;= X;;
about its local equilibrium value (X;;)o. These terms
are schematically represented by

(1.3)

(1.4)

Xi=(Xj)otDdi(0g/01) , (1.5)
D=cr.
Then from Egs. (1.2), (1.3’), and (1.5) we obtain
FLENEY ¢ 3 1 9g
—q— (——) V2q—D—Vqq+——=0  (1.6)
9 09/ eq ot Ty 0f

and, consequently, the following dispersion relation for

5 The velocity of the normal fluid v, is equal to — (ps/ps)Vs
since ppVp+psVs=0.
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the propagation of heat waves
WP —ulk?+iw(Dk24-1/7y)=0, 1.7
2= (8X/0q)eq=2%c?. (1.8)

At very low frequencies where wry<<1, Eq. (1.7) de-
scribes thermal conduction as it is adequately approxi-
mated by —u#%*+iw/7y=0. In the frequency region
wD<Kc? and wrp>>1, it yields the slightly damped second
sound mode. In the subsequent analysis, Eq. (1.7) and
the corresponding equation for first sound will appear as
the natural frequencies of the displacement correlations.

In Sec. 2, the model is formulated and the Green’s-
function formulation briefly described. In Sec. 3, a
generalized Boltzmann equation is derived for the non-
equilibrium Green’s function. In Sec. 4, the various
equilibrium correlation functions are deduced directly
from the Boltzmann equation and the equation for the
nonequilibrium displacement. In Sec. 5, the displace-
ment correlation function is rederived with a slight re-
arrangement to conform more closely to the derivation
at high frequencies. The high-frequency results, and
the interpolation between them and the results con-
tained in this paper, have been summarized elsewhere®
and are not reported here.

II. MATHEMATICAL FORMULATION
OF THE MODEL

We will now study the various problems of the inter-
acting phonons posed above by using a simple model
with longitudinal phonons only. The Hamiltonian
density for this model is

3C(xt) =3w2(et)+3c2Vd(xt) - Vd(rt)
—1a(r(2t)Vd(xt) - Vd(xt)+ Vd(xt) - Vd(1t)w(xt))
+3$a2(Vd(xt)- Vd(xt))— T (xt)d(xt), (2.1)

where d(rf) is the displacement field and = is the canoni-
cal conjugate field which satisfies the following com-
mutation relation? with &

[r(xh),d(r't)]=(1/3)83(x—71). (2.2)

a is an effective cubic anharmonic coupling constant and
J is an external source introduced to generate the neces-
sary equations. From (2.1) and (2.2) we readily find that

dGt)=n(r)—3avd(x)- Vd(xt), (2.3)
and

d(xt) =c*V2d(rt)— a(Vd(rt) - Vd(rt)+ Vd(rt) - Vd(rt)
+1d () V2d(et) +3V2d (xt)d(xt))+ T (xf) . (2.4)

Following the conventional procedure,® we define the

¢P. C. Kwok, P. C. Martin, and P. B. Miller, Solid State
Commun. (to be published); P. C. Kwok, thesis, Harvard Uni-
versity, 1965 (unpublished).

7We take 2=1.

8 See, for example, L. Kadanoff and G. Baym, Quantum Statisti-
cal Mechanics (W. A. Benjamin, Inc., New York, 1962).
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ensemble average of any operator A (rf) (with ¢ in the
imaginary time interval {0, —i8}, B=1/ksT) in the
presence of J as
Tracee FH(SA(xt))+
<A (xt) > = ’

Tracee FHoS

(2.5)

where Ho=/d% 3¢(rt) with J=0, and S is the time-
ordered operator

S (expi /0 " f & J(n)d(rt))+, 2.6)

T0— —’Lﬁ

The desired physical functions of real time are obtained
by a trivial analytic continuation. The Green’s func-
tion for the displacement field is defined as

G(rt; v't))=i({(d(xt)d(x't"))1)— (d(xt) XdZx't)))  (2.7)
or, equivalently, using (2.5) and (2.6), as
G(rt; v'Y)= 6(d(rt))_ Hlrt)) . (2.8)

SI(Y) 8T (xt)

We obtain the equation for G by first taking the
ensemble average of (2.4), getting

(9%/01*)(d(1))—c*V1*(d(1))
+(1/20)a(123)(G(23)+(d(2)(d(3)) =T (1).

In this equation, we have introduced

(2.9)

(V]
2(123)=—2a (a—tVZ(S(IZ) . V35(13)

) 19
+V25(12) - V4—5(13) - —5(12) V525(13)
ot 2 0ty

+%V226(12)—15(13)) (2.10)
oty

and also have used the abbreviation {1} <> {ry,4}, etc.,
and the repeated index summation convention; we then
differentiate (2.9) with respect to J:

(8% 91:2)— c2Vi)G(11) —2(12)G(21") = 6(117).  (2.11)

2 is the self-energy operator that contains all the an-

harmonic corrections
S(11)=— (11'2)(d(2)>—i (123)16—(2—31 (2.12)
- 2% saanyy”

This equation can be written in the following iterative
form:

2(11) = —a(11'2){(d(2))
6=(23
6<d(1’))> , (213)

1 .
—-—a(123)G(22)G(33)(
2%



498

with the help of the identities

8G(23) _8G1(23) _
=—G(22)———G(33),
¥d(1)) ¥d(1) (2.14)

G (11) = ((9%/042) —c2V12)6(11) — =(117).

The perturbation series for 2 can now be easily obtained
from (2.13) by carrying out the indicated functional
derivative. After this is done we can put the source
J=0. Then (d) vanishes, and in the ensuing spatially
invariant system G(11’) and =(11’) depend only on
Hh—t/ and |ri—r;].

In this paper, we will not pursue the perturbative
treatment, since it only involves calculations of suc-
cessive collisions. Our primary aim is to study the
collision-dominated or hydrodynamic region, obtaining
the second sound mode, and to examine the various low-
frequency properties connected with it. For this pur-
pose, it is necessary to deduce a Boltzmann-like
equation.

III. GENERALIZED BOLTZMANN EQUATION

As discussed by Kadanoff and Baym,® the derivation
of the Boltzmann equation is best carried out directly
in terms of the real time Green’s function G> or G<
defined as

G>(11)=4((d(1)d(1))— (d(1) Xd(1))),
G<(11)=6>(1"1).
In thermal equilibrium, the system is uniform and the
functions G>'<(11’) depend only on the relative co-

ordinates {1—1’}. We can then define the following
Fourier transform:

dw
G <(11)= 1,/ / i+ (r1—11")—iw (t1—t1")
(2m)?
XG> <(pw). (3.2)

The transforms G><(pw) can be readily shown to have
the following representation®:

G>(pw)=2x"(pw)[1+No(w)],
G<(pw)=2x""(pw)No(w)

where No(w) is the equilibrium phonon distribution
function

(3.1)

(3.3)

No(w)=(ef*—1)7", (34)

and x”/(pw) is the spectral function giving the frequency
distribution of the elementary excitation of the system.
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In the harmonic approximation in which a=0, x”
equal to

X0’ (pw) =m(w/|w|)§(w*—c?p?). 3.5)

Let us now consider the system not in complete
thermal equilibrium. The system will no longer be uni-
form. Therefore G>*<(11’) are not just functions of
{1—1'}, but depend on both 1 and 1. If we de-
scribe these functions by the relative coordinates
r=t1—n’, t=t;—t,, and the center-of-mass coordinates

=3(r1+r!), T= 2(t1+#"), we can still use the defini-
tlon (3.2). However, the Fourier transforms G><(pw)
must now be dependent on R and 7', so that

d ]
> <(11)=i / ¢ / ¢ir—iotG><(pw,RT). (3.2/)
(2m)?

Likewise, Eq. (3.3) becomes
G>(pw’RT) = ZXN(PO’;RT) [1 +N(pw’RT)] ’
G<(p,RT)=2x" (p,RT)N (po,RT) .

The functions x”/(pw,RT") and N(pw,RT") are easily in-
terpreted as the local spectral function and the local
phonon distribution function, respectively. To find the
equation for G>(pw,RT") or G<(pw,RT), we begm with
Eq. (2.11) and a similar equation with 1 and 1’ inter-
changed, namely,

((8%/0tr2)—c2V1A)G(11)—Z(1'2)G(21) = 8(11").
Subtracting (3.6) from (2.11), we obtain

9 0 g 0
)
oty 0ty/\ot Oty

—c(V1+ V) (Vi— Vl’):lG(l 1)

(3.3)

(3.6)

+a(132)(d(3))G(21)—(1'32)(d(3))G(21)
=3'(12)G(21)—=2'(1'2)G(21), (3.7)

where 2'(12) is the self-energy operator minus the
“source” term {—a(123)(d(3))}. Our next step is to
change the coordinates 1 and 1’ to rf and R7" and take
the Fourier transform with respect to r and #. The re-
sulting equation is very complicated, unless the devia-
tion from thermal equilibrium is small and slowly vary-
ing in space and time. In that case, it can be simplified
by expanding the various terms in powers of the gradient
Vz and time derivative 8/87". Then, keeping only the
lowest order terms, we find

(i+vn-c2p)c>-<<pw RT)—a [(VR Ve (R ——f(vR (d(RT)))p2 ]G> <(pRT)
of ’ i AT ap:

o [(vm—x«zmr»)%—a

v

( 0 <RT>>)1>2 ]G> <(pu,RT)

= —3(2"> (0w, RT)G<(pe>,RT) —2'<(po, RT)G>(p>,RT)) ,

(3.8)

where 2’>< are functions similar to the G>'< defined from Z’.



142 INTERACTING-PHONON PROBLEMS 499

First of all, we examine the equation satisfied by the local spectral function x’(pw,R7T") that can be readily ob-
tained from (3.8) with the help of (3.3'):

[(a%w-FVn'62p)—a(ViVj(d>)sza—;"j ( : A<d>)?26pz

a 92 a
el T Jpoo bl 0 o kD)0, 39)
(.0
Clearly, to first order in {d),

. . a 0 L \2
x“(pw,RT>=f[(w—ap- V(dRT))— (6“5; a—T-<d<RT>>) pz]; (3.10)

for any arbitrary function f is a solution to (3.9). To determine f, we use the fact that when (d)=0 it must reduce
to the thermal equilibrium spectral function, which is simply X, in our present approximation because we have
neglected in (3.8) terms that give rise to anharmonic corrections to the spectral function.? Thus we find that

oo RE) —a T R o e vai@yi— (o i) 52
X (pw’RT)—Wlw—ap'VR<d>|6[(w ap- Vr(d)) (C 26(d))p]. 3.11)

If we now go back to Eq. (3.8) and observe that we can extract the spectral function x” from both sides, we im-
mediately obtain the following equation for the phonon distribution function N (pw,R7"), which is the Boltzmann-
like equation we seek:

a3 R 0 1 a3
(—.«»+vk-c2p)zv<pw,kr>— [(VR,vad»wp———(vx.—:<d>)p2 ]N<pw,RT>+a[(vR, A<d>)pzw—
ol ?J 2 [h Jw

1 . .
__(a_ﬁ(@)pa ]mpw,m—m 2>(peo,RT)N (peo, RT) — =/ <(po,RT)(1+ N (p,RT))].  (3.12)

The description will be complete when =’> and =< are known. These functions can be easily calculated, if we retain
only the lowest order term in the perturbation series for Z’, which is, according to (2.13),

(11 = (1/24)a(123)G(22)G(33)(231') . (3.13)
They are
’ Y _ 2 _dio_]_' dspl dw2 d3P2 4 W1— Wo— & 3 —_—T)o—
2osoRl=at [ 2 [ 5 [22 [ R anistomoporpp

X [(@1—w2)p1- pr—wrpa’+30apr PG> <(pro, RT)G><(pooo,RT) . (3.14)
Substituting them into (3.12), we finally obtain

[(50%“4vn.ﬁp)_a(vivxw)wm; (v @) a7,+"‘(v <d>)1’f‘°i“i°‘<i<d>> 2o Jrosrn
= —o(pw,RT)

e e s b

X [(w1—w2)p1- pr—Swipa>+Ew2p1212x" (D101, RT) 2% (0202, RT)[(1+ N (p1o1, RT))N (powo, RT) N (peo,RT")
— N(p1or, RT)(1+ N (2o, RT))(1+ N (po,RT))].  (3.15)

We will now study the energy and momentum conservation laws. The energy and momentum density can be

9 These are the “Poisson-bracket” terms in the better generalized Boltzmann equation described in Ref. 8, Chap. 9.
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readily found from the Hamiltonian (2.1) to be

and
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(3.16)

R7T). (3.17)

Working with these expressions for the energy and momentum is inconvenient since they contain parts that de-
pend explicitly on the displacement of the atoms making up the crystal. Since we will only study linear effects,
we can separate these parts out. For example, the energy density (3.16) can be written in the following way:

. dw ap . .
n — . %wg 242 17 0w, _ 0// ,RT_ o(w
BORD)= [ 2 [ )20 (oK)= )V (0 R~ o)

/ / (2n)3 3w +e2p%)2(¢ (00, RT)— X,

1(w2+c2p2)2xo"(pw>N<pw,RT). (3.18)

(2m)?

Clearly, the first term can be neglected as it is of second order. The second term is the one that depends explicitly
on (d), while the last term is the local thermal phonon energy. A similar separation can be carried out for P;(RT).
Therefore, denoting {P«(RT"),E(RT)} as P,(RT"), we have

P,RT)=P,ORT)+P,>[RT),

where

P, RE)= / / 22 26" (00, RT) =X (p)) V()

(27)3

2rJ (2m)3
and p,={ps[(0*+c*p%/20]}.

The P, can be calculated directly if x”’ is known. In
particular, using the approximate form (3.11),%° we find

EI(RT)=%<£f:<d(RT)>>(€o+€To) ,
’ (3.20)
PI(RT>=§<vn<d<RT)»<%eo—-em,

where (et €r,) is the thermal equilibrium energy density
of the phonons at temperature 7'y and ¢, is the zero-point
energy. To determine the P,®, we multiply Eq. (3.15)
by p. and integrate over » and p. Neglecting terms pro-
portional to (d)? and terms proportional to o® which

10 These results for £; and P; can only serve to indicate qualita-
tively their dependence on (d). Our approximate Boltzmann
equation (3.8) and spectral function (3.11) are not accurate
enough for these functions to agree quantitatively with conserva-
tion laws for E; and P; which can be derived from subtracting the
equations (3.21) and (3.22) from a similar set for the total £(R¢)
and P (R¢?). To remedy the situation, more terms in the Boltzmann
equation must be included (for example, the “Poisson bracket”
terms) so that a better spatial function together with better
equations for E and P can be obtained. However, since the second
sound mode in the various correlation functions occurs through
E; and P,, the more complicated treatment is not necessary for

our purpose.

(3.19)

X" ()N (po,RT),

come from expanding x'’ about Xy’ in ¢, we obtain

6E2(RT)
————+ Vr'jm= ——(——(d(RT))) er, (3.21)
and
dPy(R )
———+Vz,A2ii(RT)
a i)
=——(VR,. — ery, (3.22)
3 ¢? oT
with
iz (RT)=c?Py(RT),
Aos(RT) / dw / a3p
22] h 2w (21r)3p1p}
X 2X," (pw)N (p,RT).  (3.23)

The energy current therefore satisfies a conservation
law. According to the general discussion in the Intro-
duction there will be a second sound mode. We can see
this more explicitly by carrying out the expansion of the
various functions about their local equilibrium values.
We begin by separating the distribution function
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N(pw,RT") into two parts
N(pw,RT)= N qu(pw,RT)+N1(pw,RT),  (3.24)

where Nqg is the local- or quasi-equilibrium distribu-
tion function that makes the collision term ¢ in the
Boltzmann equation vanish. From (3.15), we find that
N qg has the following form:

NQE(p“’)RT)
=[exp(8RT)w—B:P-V(RT)—1T, (3.25)

where By=1/kzT,. Here B(RT") and V(RT) can be in-
terpreted as the local temperature and the phonon drift
velocity if |B(RT)—Bo|<<Bo and |V(RT)|<«< the sound
velocity ¢. These parameters are not independent of
each other, but are related through the conservation
equations (3.21) and (3.22), in which we approximate
the functions by their quasi-equilibrium values. Our
next step is to calculate Ny(pw,R7’) by successive ap-
proximation, making use of the Boltzmann equation
(3.8). The analysis is straightforward, and we obtain to
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linear order in the collision time 7,
Ey(RT)=Esqu(RT),
iz (RT)=?Py(RT) =jm,qu(RT),
Asis(RT)=136,;E2(RT) . .
—%Tph"'?(VRiP%(RT)"‘VRjP%(RT))
3ronc?0;VROPy(RT),  (3.26)
where
Bo asp

1
Tph=— 7(p, w=cp)c3p’— .
P Pl by

The function 7(p,w) is the frequency- and momentum-
dependent collision time defined by

N1(pw,RT) = 7(pw) No(@) 1+ No())$(pw,RT)

(3.27)

a Boc® N
dep,

3606

pip]-vmpz,«(kﬂ), (3.28)

€r,

and satisfies as a consequence of the Boltzmann equation

A, dwl dspl dwg
o(po,RT)=a? f o / o / (21)18(w1—w1—)5*(ps—Pa—p)
2rJ Q2w)3J) 2rJ (27)3

X [(w1—w2)py- pa— Fwipa®+Fwapr?122Xo" (Prw1) 2Xo” (Paws) (V o(w2) — No(w1))
X (r(pw)p(p,RT") + 7(p1eo1) (101, RT) — 7(pro1)p(preor, RT)) . (3.29)

However, we cannot solve for 7(pw) and therefore rpn
exactly. We are only able to determine its order of
magnitude, for example, by dropping the last two terms
in the bracket in (3.29). We find that

7(pw)=(2">(pw) —Z'<(pw))*

or
(D, 0=cp)=(2">(p, w=cp)—2'<(p, w=cp))™. (3.30)
Since the damping of the phonon is®
I'(p)=(1/2cp)(Z">(p, w=cp)—Z'<(p, w=cp)), (3.31)
we have
(D, w=cp)=[2cpT (D) I (3.32)

The second sound equation can now be obtained by
substituting (3.26) into (3.21) and (3.22) and elimi-
nating P®. We find

il RT “ 2Ey(RT)—c? 2 i RT
a_f—:zEz( )——;VR Ez( T)—C TphVR EEz( T)
62

9T

2(! 63 d RT 2 V 9 d RT
_—c_ze”(a—fs( (RT))— crpnVr2——(d( )>)

B T (d(RT)) (3.33)
——€7c2V, —~ .
3c? e o1

or

92 . c? . d .
—--A—Ezl(RT) ——VR2E2’(RT)— CszhVR2_TE2,(RT)
a1? 3 oT

2a d .
=——erci?VrR—(d(RT)), (3.34)
c? oT

where

EY (RT)=Ey(RT)+(2a/c?) er,(8/0T)(d(RT).

Equation (3.33) or (3.34) is the same as the phenomeno-
logically derived equation (1.6) for the heat density ¢
when we let (d)=0 and ry= .

(3.35)

IV. LOW-FREQUENCY CORRELATION
FUNCTIONS

In this section we will study the two macroscopic
equations (2.9) and (3.33) or (3.34) and carry out a
hydrodynamic analysis to find the various correlation
functions. Our first task is to rewrite (2.9) in a suitable
form. Putting J=0 and neglecting the (d)? terms, we
have

(8/01:9)(d(1))—c?V1%(d(1))
+(1/24)a(123)G(23)=0. (4.1)

If we use the expression (2.10) for «(123), we find to



502

lowest order in the derivatives d/d¢, and Vj, that

——a(123)G(23) a(; 7 o i lh)— Vi P1(l’1ll))
1 0 Es(rith
+o(> 2 Bl 8 XC) CE)
2 all 62

where Ey/(r1,41) is a function very similar to E;(ry,t1):
a*p

XX (pw,rat) —Xo” (pw) )N o(w) .

(4.3)
Now by expressing £, and P, in terms of Ey/, we obtain
1 1 0 E{(r:t)
—a(123)G(23)=a(—— i
2 2

tl 62

— V1 Pi(rith)

a 07 Eo/(r1ty
_-—eTo——<d(r1h)>) +—‘~ (r ) . (44)
9ty? 29

ct o c?

The term in the bracket is uninteresting since in our
approximation E,’ and P; are proportional to (d) and
V{d), respectively, and it simply changes the coefficients
of (d) and c2v¥(d) by factors of order a2. Omitting this
term, we have

62 30( i) Ezl(l’l)
—(d(1))—*VHd(x))+— — =0.
or 29 ¢

(4.5)

Before we examine Egs. (4.5) and (3.34), let us first
point out that they can be derived from a much more
general basis than our special phonon Hamiltonian with
a cubic anharmonic interaction. We begin by noting
that Vd(rs)~ (1/c\/po)g(rt), where po is the mean density
of the particle system and g(rf)=pou(rt) is the particle
current density, so that the term %¢?Vd-Vd in the
Hamiltonian corresponds to the familiar kinetic term
3po(u)2 Then we consider the conservation law for g,

8g:/9t+V,T;;=0
or
(0%/9¢%)gi+V(3T 35/ 04)=0, (4.6)

where T';; is the stress tensor. Following the procedure
described in the Introduction, we expand 974;/d¢
about the local equilibrium value (87;;/9%),

0T s;/ 91==2(8T s/ 0t)o—0:1(9/ )V - &,

where 7 is the viscosity. (87;/ %) can now be expressed
in terms of the independent conserved quantities, which
we will choose to be g and Es’. We then obtain

9T} ap op\ OE;
(Do) 2
ot /o 9o/ By IE,'/ Kot

(4.7)

(4.8)
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where p(rt) is the pressure $(7':;)o. Substituting (4.7)
and (4.8) into (4.6) and taking the divergence, we obtain

92 ap P
—vi-(=) Tv-9-ar(re)
at? A/ By at

ap\ OEY
+( ) iy
OEy) ¢ Ot

This equation is similar to (4.5), except for the term
containing 7, if we put

c*=(9p/dp) gy

c ( ap ) c <8 p> 1
a~— s
VPo\OEy/ ¢ A/po\dT

where ¢, is the phonon specific heat. The absence of the
dissipative term is a result of our not calculating £, and
P, sufficiently accurately. The phenomenological deriva-
tion of the equation for E’ is the same as that for the
heat density discussed earlier. The only difference is
that there is an extra term that is proportional to
8g/ 9t or (9/8t)v{d) in the expansion of 0/ gy +/dt, since
it is only when the particle current is zero that jg, is
equal to j,. This extra term is just the term (2a/c?)er,
X V2(9/0t)(d) in (3.34).

We will now use Egs. (4.5) and (3.34) to calculate the
correlation functions of d and E,’ (denoted by (&) for
convenience). The technique of calculation is identical
to that described by Kadanoff and Martin.!! Our nota-
tion will also be the same. The underlying idea is to find
from these equations the subsequent development of the
functions (d) and (8) after various adiabatically applied
sources are suddenly turned off at (=0. We define the
one-sided Fourier transforms

(4.9)

and

(4.10)

dkg)= | d% e*'r / dt e¥#{(d(rt)),
0

(4.11)
8(ks)= [ d¥r ks / dt e 8(xt)),

0

where 2 is a complex number in the upper half plane.
Now taking this transform of Egs. (4.5) and (3.34), we
obtain
(—22+c%?)d(kz)— (3a/2¢?)iz8(kz)
=—i42d(k)+ (30/2¢%) 8(k), (4.12)
(— 22§k —121p0c%k?) 8 (kz) — (20/ c?) eryizch?d (kz)
= (—1z+1puc?%?) 8(k)+ (20/c?)erc?k2d(k) .  (4.13)

The functions d(k) and 8(k) are the spatial transforms

(1;1615) Kadanoff and P. C. Martin, Ann. Phys. (N. Y.) 24, 419
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of {d) and (&) at t=0:

a1 = / &r e Hd(50)),
(4.14)

8(k)= / dr e=%7(§(1,0)).

We have also used the initial condition that (8/9¢){d(xz))
and (9/9¢)(8(xt)) at t=0 are zero. We may determine
by perturbation theory the values of d(k) and 8(k)
induced by sources externally applied for /<0 according
to the Hamiltonian

3C(r) =3Co(r) — (d(x) J (x)+[8T(r)/ T¢ ]3Co(x))

Xn(—t)et, (4.15)

[n(x)=1 for x>0 and 5(x) =0 for x<0, and 3Cy(r) is the
unperturbed Hamiltonian density |:

Trexp(—Bo/ d*r 3¢(r))d(r) ]
Trlexp(—BoS d? 3¢(r))]
Trlexp(—BoS d*r 30(r))3Co(r) ]
TrLexp(—BoS d* 3(1))]

(d(r,0))=
(4.16)

(8(r,0))=

In obtaining the latter expression, we have recalled the
fact that, when (d)=0, (8) is simply E,, the thermal
energy of the phonons, so that the zero-point energy is
subtracted out. If we express d(k) and §(k) in terms of
J(k) and 67'(k) and note that

od(k) 1 68(k)
o 0,
Kk 27,2
sI(k) %2 oT(K) win
od(k) 68(k)
TR Iw
we find
(—22+c?%2)d(kz)— (32/2¢2)iz 8 (k)
= —(i2/c%2)J (k) + (3a/26%)c.6T(k), (4.12")
(=224 3c%k2—izTonc?k?) 8(kz)
+ (2a/c?)eryizck?d (kz)
= (—18+Tpuc?%2)c,0T (k) — 20/ er, J (k). (4.13")

These equations allow us to calculate the Fourier
transforms of the response functions, or retarded com-
mutators,!! of the operators d(xf) and 8(rt):

0
Xap(ks)= dsre‘“"('—")/ dt ettt
—0

Xin(t—t){[A(xt),BX't)]). (4.18)
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They reduce to

— 22+%62k2
de(kz) = ’
{ (22— c%k2)[22— 3%k ]— (3a2/c*) eryz%c?k?}
(a/2¢®) Tycizck?
Xa S(kZ) = ’
{(22—c?%?)[2*—5c%k*]— (3a%/c*) ery2?c?k?}
1T oc,0%k2(— 22+ c2k?)
X s5(kz) = e ,
{ (22— %) [ 22— ek ]— (3a?/c) ery22c 2k}
— (2a/c?) eryinck?
X sa(kz) = i ,
(22— k) [ 22— 3]~ (302/c*)ery2c?h?)

(4.19)

when we neglect dissipative terms containing 7,4, which
are smaller by a factor of zr,,. We will come back to
these terms in the next section where Xgg is rede-
rived in a slightly different way. We note that
Xsq=—Xgs, as it must, since for harmonic phonons,
3T oc,=3%To(der,/ T o) is equal to 2er,.

These response functions coincide with those obtained
from the two-fluid hydrodynamic analysis carried out
by Hohenberg and Martin,* if we identify

(Ba?/c*)ery=((c5/c0)—1),

which agrees with (4.11) upon using

(-G G)
Cv - Copo \9T/ , dp T-
We may rewrite these functions to exhibit the two re-

normalized sound poles with velocities #%; and u,
defined by

(22— 1,%k) (22— ua?k?)
= (22— c%?) (32— §c%?) — (cp/co—1)2%%?

(4.20)

or
w b =[ (o 0) = D% g =1ot.

In particular, when [(¢,/¢»)—1] is much smaller than
one, a condition that is certainly satisfied at sufficiently
low temperature, we have

1=3(ea/e)—1)  $(es/c)—1)

(4.21)

de(kz) = T )
_z2+u12k2 _z2+u22k2
3a 1 1
Xae(ks)= —""—‘T()Cviz< ) )
4¢? —buth? — gt
9/4((cp/cx)—1)
X ss(kz)= %Tocvc2k2(—i—
._..ZZ_I_ul?k?
1—-9/4((cp/c0)—1)
+ : ) (4.22)
_Z2+u22k2
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wherel!?
2220243 ((cp/¢») — 1) c?
L 1 zf( 2/C2) , 4.23)
w2222 —1((cp/c0)—1)c2.
V. ALTERNATIVE DERIVATION OF THE
DISPLACEMENT CORRELATION
FUNCTION

In this section, we will rederive X44(kz) using another
approach. First of all, it can be easily shown that
Xqa(ks) is simply the analytic continuation of the
function?®

—if
Gkw,)= / A3y e—ik- (=) / dt e+iw,(t—t')G(rt,r',;')’
0

(5.1)

w,=2mv/—iB; v=integer,

which is the Fourier transfer of the imaginary-time
Green’s function, from w, to z in the upper half-plane.
The expression for X4q in the hydrodynamic limit shown
in (4.22) can therefore be obtained alternatively by cal-
culating G(kw,) or G(k,z) at small momentum k and
frequency w,.

From (2.11) and (2.12), we find that

Gkw,)=[—w,+c%2—Z(kw,) 1, (5.2)

where

—iB
Z(kw,‘):/d%’ e——ik.(r——r/)/ dl e+iwy(t—t’)
0

X[—-él—ia(IZS)( :22,3)1) (dm] L 5.3)

Since we only need Z(kw,) at low k and w,, we can make
use of the expansion (4.2) or (4.4) for (1/24)a(123)G(23),
getting

D(kw,)= [ d3r e~k =1 /

0

—iB
dt gFiov(t=t)

x(—s—a iEg;'(rt)) (5.4
262 8(d(1)) ot

where E,/(rf) is the previously defined function except
that ¢ is in the imaginary time interval {0, —z8}. We
have neglected the terms depending on (d) explicitly.
Z(kw) can now be evaluated by taking the functional

12 We note that they are the two fluid analog of the equations
U2+ (cp/co—1)c?; u2=0, which give the adiabatic compressi-
bility for the sound velocity when there is no second sound.
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derivative on the equation for E.'(rf) (3.34), which is
also valid for imaginary times. The result for the
continuation is

(302/c*) erywc?k?
2 (kw)=2
— w32k —dwrpnck?
or
(cp/c0)— 1)w%2k2
=7 , (5.5)
— 3o — ek
using (4.20). Thus
G(kw)=[—w+c2%k2— ((cp/co)— 1 )22/ X
(—w? 12k —iwromc?k?) T, (5.6)

which is identical to our previous result for Xaq4, if we
put wrpr=0.

Let us now discuss the implication of this formula. As
is well known, the complex poles of the retarded Green’s
function represent the frequency and damping of the
normal modes or elementary excitations of the system,
which are, in our case, the excitations of the atomic
vibrations or density fluctuations. From (5.6), we find
that G(kw) can be expressed as a sum of two poles. In
particular, for small [(c,/c,)—1] and wrpn, we find

—[1—=2((cp/co)—1)]
— w?—{wT1c%h2—u,%k?
—$((cp/co)—1)

H
— 0 deorac Uk

9/¢y
ro=—| ——1)7pn,
* 4(0,, ) ’
9/c
el 1=5C1) e
4\c,

and #,2 and u,? are given by (4.21) or (4.23). The first
term describes the first sound with velocity #; and
damping proportional to w?r;. The other term cor-
responds to the second sound with velocity #. and
dampingw?rs. Since [ (¢,/¢») — 1] isverysmall, the damp-
ing of the first sound is much smaller than that of the
second sound, even though they are both described by
the relaxation time 7pp. It is obvious from (5.7) that the
second sound mode must be treated like the first sound
mode, since they appear on the same footing as ele-
mentary excitations of the system. In other words,
both of them are phonons. The only difference is that
the second sound appears with a weight smaller by

I:(CP/Cv) —11

Gkw)=

(5.7)

where

(5.8



