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Because it is impossible to obtain 6rst-principle crystal potentials of the lead salts with suKcient accuracy
to calculate energy bands in agreement with experiment, we have developed a new pseudopotential con-
taining only 2n+1 adjustable parameters, where n is the number of different atoms per unit cell. This
pseudopotential contains all the important relativistic effects including spin-orbit interactions and yet re-
quires only 5 parameters for the lead salts. We have chosen the parameters to Gt the ordering of the six
levels around the forbidden energy gap at the (-', -', -', ) point on the Brillouin-zone face as well as two optically
measured energy gaps presumed to be at the center of the zone. The energy bands obtained are in very good
agreement with the rest of the optical data, the photoelectric data, and the pressure dependence of the
forbidden gap. Reasonably good agreement is obtained between our calculated effective masses and g values
and the experimentally determined ones.

I. INTRODUCTION

'HE lead salts, PbTe, PbSe, and PbS are partially
polar semiconductors with an average valence of

Gve and crystalize in the rock salt structure. Their
known characteristics such as small energy gaps, low
resistivities, large carrier mobilities, and unusually high
dielectric constants which do not usually appear in
polar crystals, have made the various electrical and opti-
cal measurements possible, thus allowing a close view
of the relationship between the optical, electrical, and
chemical properties of polar crystals. So far the in-
vestigation of these materials has been focused on the
transport properties and the electronic structures.
Cyclotron resonance' yields reliable values for effective
masses and their anisotropy. Magneto-optical transi-
tions' ' provide information about the structure near
the band extrema. De Haas —van Alphen oscillatory
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magnetic susceptibility, Shubnikov —de Haas oscilla-
tory magnetoresistance, ' " piezoresistance, " " and
other optical and transport phenomena, " " have all
been observed extensively. The knowledge amassed
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ENERGY BANDS OF PbTe, PbSe, AND PbS

from these studies is almost conclusive in identifying
the location of both the conduction- and valence-band
extrema as at the point L= (~/a) (1,1,1),on the Brillouin-
zone face. The fact that these three semiconductors all
have positive temperature coefficients for the forbidden
gaps and small effective-mass components leads us to
believe that there exists an over-all similarity in their
energy-band structures. The only important difference
is that the mass anisotropy for PbTe, being about 8-14,
is larger than that of PbSe and PbS by approximately
an order of magnitude. Therefore the constant energy
surfaces for PbTe are prolate ellipsoids of revolution at
L while those for PbSe and PbS are nearly spherical.

Here we need a theoretical treatment. However, a
calculation from 6rst principles is not practical because
of difhculty in obtaining a crystal potential with an
accuracy commensurate with the small band gaps. This
inaccuracy is attributed to the uncertainties in the ap-
proximations used in the calculation of the covalently
bonding valence electron contribution to the exchange
and correlation potentials. As has been pointed out by
Phillips, " the s levels are especially sensitive to such
small errors in the crystal potentials. The computational
difhculties in making the potential self-consistent, and
the complexity of the core potential, which, in heavy
atoms, involves both a large relativistic effect and the
spin-orbit interaction, "'"also increase the difficulty of a
6rst principles approach. As an example, Conklin et al."
have done a nonself-consistent but otherwise first
principles relativistic calculation of PbTe. They got re-
markably good results; the top of the valence and bottom
of the conduction bands had a relative error of only
0.3 eV—but this was enough to interchange the two
bands.

The purpose of this work is to devise a new pseudo-
potential scheme which is capable of producing reason-
ably good numerical results for solids composed of
atoms of high atomic number without going into much
more elaborate procedures. We are aiming for a rather
general application. In particular, we have worked out
the cases of the lead salts.

Our treatment includes all the important relativistic
effects and spin-orbit interactions, yet requires only a
few adjustable parameters. An advantage of this method
is that the band structure can be described more clearly
from the presently available experimental data. Some
of the experimental data are essential in the calculation
while the rest are used to check the consistency of the
results.

In the next section we construct a pseudopotential
which, because of its physical nature, requires only two

25 J. C. Phillips, Phys. Rev. 125, 1931 (1962).
~' L. E. Johnson, J.B.Conklin, Jr., and G. W. Pratt, Jr., Phys.

Rev. Letters 11, 538 (1963)."F.Herman, C. D. Kuglin, K. F. Cu6, and R. L. Kortum,
Phys. Rev. Letters 11, 541 (1963).' J.B.Conklin, Jr., L. K. Johnson, and G. W. Pratt, Jr., Phys.
Rev. 137, A1282 (1965).

arbitrary parameters per atom plus a spin-orbit param-
eter, a total of five parameters for the lead salts. In the
third section we give the formulas for calculating eRec-
tive masses and g factors. In the last section we show how
to choose numerical values for the parameters in our
pseudopotential and display the energy bands calcu-
lated therefrom. We compare our energy bands with
the optical-reQectivity measurements of Cardona and
Greenaway and with the photoemission studies of
Spicer. Calculated effective masses and g values are
compared with experiment and other details of the
bands are discussed and compared with experiment.

II. PSEUDOPOTENTIAL

Let us examine several theoretical aspects of the
problem before presenting our pseudopotential model.
Since the orthogonalized-plane-wave method" has been
considered the most successful among the existing band
calculation methods in getting valence wave functions,
we chose to express our crystal valence wave functions
in the same manner.

Let P~ be the crystal wave function which transforms
according to the irreducible representation F of the
cubic point group. Since f~ should be orthogonal to the
atomic core functions X& of similar symmetry, it can be
separated into a smooth part and a core part as ex-
pressed in the following form:

where

C~,~ ——(1/1V)'"(g~, (expik r~,)XP (r—rq, )
+Pq, (expik. r~,)XPr(r —r~,)j; (2)

Here r~ is the lattice vector, X is the number of unit
cells in the crystal, and X&, X& refer to the core func-
tions corresponding to the two diferent atoms in the
unit cell of the NaC1 crystal structure.

The smooth part q» may be expanded in a series of
symmetrized plane waves transforming like I', viz. ,

where K;; are reciprocal lattice vectors. The set of vec-
tors k+K;; in the bracket, for the same k, and i, all
have the same magnitude and are related to each other
by operations of the small group of k.

The Schrodinger equation is written as

(T+U+H-)QI, = (E+E..)QI, (4)

where T and V denote the kinetic and periodic potential
energy, respectively; and H„represents the spin-orbit
interaction Hamiltonian.

By substituting Eq. (1) into Eq. (4), we obtain the
following equation satisfied by the smooth-part wave
function yI, ,

"C.Herring, Phys. Rev. 57, 1169 (1940).
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PbTe PbSe PbS

TABLE I. Numerical values of quantities appearing in the
pseudopotentials. (The ro's and P's are taken from atomic wave
functions while the Z's and «x's are adjustabel parameters chosen
to fit the experimental data. }

The Fourier transform of V,gq is

V(E)=
Eu3 P'+E'

32m.Z cosKro (P sinKro+K cosEro)
+

E

roPb

g VI

pPb
PvI
ZPb
~VI
O'Pb
O.VI

where

0.493ap
0.412ap
3.228ap '
3.597up i
2.9
3.2
0.125
0.17
0.78

0.493uo
0.264ao
3.228ap i
4.608up '
2.9
3.2
0.125
0.33
0.78

0.493ap
0.169ap
3.228uo '
4.167ap '
2.9
3.2
0.094
0.366
0.78

where a is the lattice constant. We determine ro and p
from Slater's32 analytical atomic wave functions

Pb —38$ 8r3g—6.088r
5y

Te 46$ 3r2.7&—6.554r
4y

sO 506 4r2g 7 583'

X2„s—98.67'—5»«

ro and p satisfying the following relations:

V.,=
—(~~ +~i )L(&ai IK.I@~i )—&-]c'ii

(&)

where rj, r2 in turn satisfy the following relations:

X(ri) = (X(ro)/2e),

X(r2) =(X(ro)/2),
The physical significance of the orthogonality of P& to

4 &, can be seen from Eq. (5).This equation shows that
the effect of orthogonalization may be accounted for by
including a repulsive potential V~ in the valence
Hamiltonian. Therefore, V+ Vii forms an effective po-
tential for the new Hamiltonian. The eigenvalues of the
new' Hamiltonian are identical with those of the old one
but the eigenfunctions are "smooth" in the sense that
they are not oscillatory in the core region.

Phillips and Kleinman" have observed the cancella-
tion of V and Vg in the calculation of the Fourier
coe%cients. Cohen and Heine" further demonstrated
the details of the cancellation much more explicitly in
real space. They showed that within an error of ten per-
cent, the repulsive potential could be expanded in the
occupied core states. As the core states form a nearly
complete set of functions in the core region, the can-
cellation of the total potential V+Vii is almost com-
plete inside but nonexistent outside the core, i.e.,

V+ Vii= V(r')L3(r —r') —g& X&*(r')X&(r)] (8)
=0 inside the core.

where X(r) is the outermost p core orbital of the atom.
This prescription, though not unique, fixes ro and P leav-
ing us with only one adjustable parameter per atom, Z.

For lead salts with the NaCl crystal structure, the
total contribution from the two different atoms in a
unit cell to the Fourier transform is given by

V(E)= V "(E)+V '(E) cos(K ~)
= V '(K)wV '(E), (12)

where VI refers to one of the atoms Te, Se, and S, and
s =-,'a(1,1,1); the plus (minus) sign holds for even (odd)
reciprocal lattice vectors K.

In Table I, we have listed the values of ro, P, and Z
which we used for each atom, and in Table II, some
Fourier transforms of the pseudopotentials for PbTe,
PbSe, and PbS.

To determine the eigenvalues and the coefficients
appearing in the expansion of the eigenfunction qj,
in Eq. (3) we only need to diagonalize the secular deter-
minant of Eq. (5).

(13)
Based on the preceding arguments, we are now ready

to set up a new pseudopotential scheme of calculation.
Let us first consider only part of the Hamiltonian, ex-
cluding the spin-orbit term for the moment.

The crystal pseudopotential is taken to be a super-
position of simple pseudopotentials of the individ
atoms. These atomic pseudopotentials can be expres
in the following form:

where

H;i(k)= Ik+E,iI'3;&++ C;,*Ci„V(IKg—Ki„I)
m f J

y&E;Ie..+V..IE,). (14)

V.(g=p, r&ro,

Veff= (2Z/r)(1 —e ~&" "'&), r&ro.

ual
So far, we have concerned ourselves with the pseudo-

potential in general. Actually, the pseudopotential felt
by the electrons with s-like symmetry is weaker than
that by the other electrons. It is important to realize
that, although an s electron sees a stronger relativistic
potential, the s repulsive potential is larger than the p

3 J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).
"M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961). "J.C. Slater, Phys. Rev. 36, 57 11930).
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TABLE II. Fourier transforms of the pseudopotentials for the lead salts.

2x

(111)
(200)
(220)
(113)
(222)
(400)
(133)
(240)
(115)
(440)
(135)
(244)
(260)

UPb(k)

—0.1476—0.0987—0.0287—0.0117—0.0082
0.0004
0.0037
0.0045
0.0073
0.0079
0.0080
0.0080
0.0078

vT'(k)

—0.1771—0.1225—0.0429—0.0226—0.0183—0.0073—0.0027—0.0015
0.0034
0.0049
0.0055
0.0056
0.0060

VPbTe (k)

0.0925—0.2212—0.0716
0.0109—0.0265—0.0069
0.0064
0.0030
0.0039
0.0128
0.0025
0.0136
0.0138

VPb(k)

—0.1499—0.0987—0.0260—0.0088—0.0053
0.0031
0.0062
0.0068
0.0091
0.0094
0.0093
0.0093
0.0088

—0.2073—0.1490—0.0624—0.0395—0.0345—0.0211—0.0150—0.0134—0.0061—0.0031—0.0019—0.0015—0.0003

0.0573—0.2477—0.0885
0.0307—0.0398—0.0180
0.0211—0.0066
0.0152
0.0062
0.0111
0.0077
0.0085

V '(k) VPb '(k) VPb(k)

—0.1509—0.0984—0.0242—0.0069—0.0035
0.0047
0.0077
0.0083
0.0102
0.0102
0.0100
0.0099
0.0094

va(k)

—0.2180—0.1579—0.0686—0.0448—0.0397—0.0258—0.0194—0.0178—0.0100—0.0068—0.0054—0.0050—0.0037

VPbs (k)

0.0671—0.2562—0.0928
0.0380—0.0431—0.0210
0.0271—0.0095
0.0202
0.0034
0.0154
0.0048
0.0057

one as a consequence of the nonexistence of 1p core elec-
trons and. of the lower energy of s core levels relative to
the p levels. Hence, it is quite improper to assign the
same pseudopotential to all electrons. To remedy this
point, an excess repulsive potential term U, is added to
the Hamiltonian which acts only on the s component of
each valence level. Although a similar statement could
be made for p electrons relative to d, it seems to be the
case that only s-like levels are highly sensitive to small
changes in the crystal potential. "

U, is of the form

where the summation is over the outermost s core states
only. E&'s are the atomic core state energies.

The matrix elements of V, to be entered in Eq. (13)
are

(E; I
V,

I
E;)=—xxpb(E;I &xP')(&x,'"

I E;)Ex,
—xxvx(E 'Ix vx)(x vx

I
+')g vx cosI (K,—K,) ~j, (16)

where X, is the outermost s Slater atomic core func-
tion of the anion. E5, and E, ' are the energies of the
Pb Ss and the anion outermost s levels. o.pb and nvz are
two more adjustable parameters.

The s-shift effect raises all the s levels relative to the
others to a considerable extent, as can be seen from Table
Vl. If this efFect were ignored, the energy bands cal-
culated would be inconsistent with experiment. This s
shift is difFerent from the one we reported earlier. "
Previously, the s shift for each electron was taken to be
the sum of two terms each proportional to the amplitude
of the square of the wave function on one of the lattice
sites. Because of the extreme sensitivity of the bottom
of the valence band (states 1'i(1), I.2'(1), and Xx(1) in
Table VI) to the s shift, when the parameters Qpb and
o.vz were chosen to fit energy gaps near the Fermi sur-
face, the s shifts calculated by the former method raised
the bottom of the valence band of PbS to somewhere near

3'L. Kleinman and P. J. Lin, Proceedings of the Internutionul
Conference on the Physics of Semiconductors, Puris, 1964 (Academic
Press Inc. , New York, 1965), p. 63.

the Fermi surface. The results we reported previously"
for PbTe were not nearly so strongly afFected by the s
shift but did have a somewhat too narrow valence band.
The reason the former method does not work well for
large s shifts is that it is essentially erst-order perturba-
tion theory. When the s shift is included in the potential
as it is in our present scheme, the wave functions change
in such a manner as to reduce the effect in those levels
where it is strongest.

We wish to emphasize that we have only four adjusta-
ble band parameters, Zpb, Zyz, Qpb, Avz plus one spin-
orbit (s-o) parameter xx. All other parameters are fixed.

The effect of spin-orbit coupling in some semicon-
ductors has been studied by several authors. ""The
first quantitative estimation of s-o splitting in Si and Ge
was done" by treating s-o interaction as a perturbation
on the orthogonalized plane wave states. This perturba-
tion calculation is applicable only when the s-o coupling
strength is much smaller than the energy gap between
any two levels with the same double group symmetry.
We know that the valence s-o splitting of the 6p elec-
tron in a Pb atoms is 0.0936 Ry" which is greater than
the energy gap 0.013 Ry of PbTe. Consequently, the
perturbation approximation can not properly be used.
Therefore it is necessary to include the s-o term in the
unperturbed Hamiltonian.

We have noticed that the major contribution to the
s-o matrix elements comes from the orthogonalization
terms within V,„in Eq. (7), especially those which are
associated with the outermost p and d core functions.
We shall only consider this major contribution from the
outermost p and d terms. Neglecting the inner core func-
tions will slightly underestimate the valence s-o split-
ting but the use of the smooth Slater wave functions as

"R.J. Elliott, Phys. Rev. 96, 266, 280 (1954)."L.M. Roth, B. Lax, and S. Zwerdling, Phys. Rev. 114, 90
(1959).

"M. H. Cohen and E. I. Blount, Phil. Mag. S, 115 (1960).
"M. H. Cohen and L. M. Falicov, Phys. Rev. Letters 5, 544

(1960).
3g L. Liu, Phys. Rev. 126, 1317 (1962)."F.Herman and S. Skillman, Atomic Structure Culculutions

(Prentice-Hall, Inc. , Englewood Cliffs, New Jersey, 1963).
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TABz E III. Atomic spin-orbit splittings. '

d., (Ry)

S'~ 0.0986
S'~ 0.0070
Se'& 0.4317
Se4& 0.0307
Se'" 0.0721

Z„(Ry)
Te4& 0.6739
Te'& 0.0618
Te'" 0.1177
Pb'& 1.2834
Pb'& 0.0936
Pb'" 0.2116

' Values are taken from: F. Herman and S. Skillman, Atomic Structgre
Cclcglations (Prentice-Hall, Inc. , Englewood Cliffs, New Jersey, i963).

where (E';
I

and C»& have been dined in Eqs. (2)
and (3) and the summation is over the outermost p and
d core states of both atoms.

It is convenient to evaluate (E, I
4», ) by expanding

a plane wave in terms of spherical Bessel functions.

oo l'
e'"'=4s Q Q i'j p(kr)

l'=O, m' —lr

X Yp *(HP)Yi (& v), (1g)

where O~, C are the directional coordinates of k, and 0, q
are those of r.

Let
X =(~( )r/)rY-( 0~);

then

(e'"',X,~)=47ri'Y& *(0'p) r j&(kr)P&(r)dr, (19)

which can readily be evaluated.
The values of (C~~ I H„I4 ~, ) can be obtained from

the atomic core s-o splittings listed in Table III. For
instance, let

I E; ) transform like L3. If the Pb nucleus
is taken as the origin then L3 is d-like about the cation
(Pb) and p-like about the anion. The contributions from
the Sd core state of Pb and the outermost p core state of
the anion to

are

and

(c~~ IH..lc»~ )

(x „~ IH„, IX, ~ ")=(—1/5)5

x~avr
I
H,

I
x~nv') =xA vr

where 65&Pb, A„z are, respectively, the atomic s-o split-
tings of the 5d core in Pb and the outermost p core in the
anion (Te, Se, or S).

If p; and q, are degenerate in the absence of the s-o in-
teraction, it is convenient to choose them as the eigen-

the core functions tends to overcompensate this effect.
However, all this can be taken into account by introduc-
ing an adjustable parameter n into the s-o matrix. We
can therefore neglect the term (E; I H„I E~ ) and con-
sider only (%pl VSOIE& ), which we may put into the
following form:

(E' IV"IE~ &= —~& «' I4'~ &

(17&

functions of V.. Therefore we include V„with the
pseudopotential in the secular determinant which we

diagonalized to determine the coeKcients of the plane
waves. The case in which the y, and q, transform like
L36 and L3" is an example. (We have used the notation
L3' to represent the irreducible representation being L3
in single group and L6 in double group. L3" refers to the
two levels L&4 and L3' degenerate by time reversal. )
On the other hand, if the q; and q; are nondegenerate in
the absence of the s-o interaction, but belong to the same
representation in the double group, such as the repre-
sentations L3' and L&', we determine 6rst the p; and q;
without considering the offdiagonal elements of V„be-
tween them and then diagonalize the matrix (p; I

V„ I q, ).
In doing this, we intermix Lq and L3. This kind of mixing

plays an important role in determining the effective
mass and g factor, as we will discuss in the next two
sections.

For points of even lower symmetry, like Z along the
(110) direction, the irreducible representation of the
single group are all nondegenerate. Hence we first 6nd
the wave functions y disregarding the spin orbit inter-
action, since the diagonal terms are zero anyway, and
then use these q

's as basis functions to find the eigen-
functions and the eigenvalues of U„.

where E~, ', E~, , and Ep,+g" are the energies of the
states Pz, ', tP&, and P&,+z, respectively, and

Ap A'
a =t —+ xvv) .

nz 4''c'
(21)

It has been shown by Pratt and Ferreira" that the
second term in H' leads to corrections of one part in 10'
to effective masses calculated from the erst term alone.
We therefore consider only the first term. The basis
functions given in Table IV are chosen for the repre-
sentations at the point L for a fcc structure.

40 G. W. Pratt and L. G. Ferreira, Proceedings of the Internutionul
Conference on the Physics of Semiconductors, Puris, 1964 (Academic
Press Inc. , ¹wYork, 1965), p. 69.

III. EFFECTIVE MASSES AND I FACTORS
OF HOLES AND ELECTRONS

In this section, we shall derive the expressions for the
effective masses and g factors of holes and electrons. By
analyzing the dependence of the effective masses on the
behavior near the band edge we will have some idea
about the best choice of the parameters, Zpb, Zyz,
Apb) and Qgzo

It is well known that the dependence of the energy on
wave vectors near a symmetry point in the Brillouin
zone can be obtained by second-order perturbation
theory, i.e.,

I (4o IH'14~. "&
I

'
Z„„-=L„-+ +P +", (2o)

2m ' Ea,"—Ea,
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TABLE IV. Basis functions, selection rules and nonvanishing matrix elements of H =k p at L= (~/a) (1,1,1).

L' 1
4,=—(xy+yzPzx) i

v3

1
Ec=—(x+y+z) J,

v3

1
Icg=—(xy+yz+zx) l

v3

1
Eg (x——+—y+z) l

v3

L":
454 ~

L '.

L 45 ~

81 = (x+cgy+cg z) i sg = (x+cg y+cgz) l
bc' ——(x+cgsy+cgz)$ bg'= (x+cgy+cggz)l

1
gc {cg( z+gcgxg+cggy)l p(xy—+cggxz+Myz)l}

v2

1
gg =—{~(z'+~'x'+~y') t+p(xy+~xz+M'yz) 1'}

v2

1
b, =—{~(z'+~'xs+~yg) l —P (xy+xxz+I'yz) l }

v2

1
bs = {cs(zg—+cgx+cggy') t'+P (xy+Mgxz jcgyz) f}

v2

L;

LzXL2'

L;XL3'

LgXD)

Ll

L2'

L3'

L6

L2'

La

L6

L3'

Lg'+L2'+L3'

L4+Ls+L6

L3'

L6

Lj+L2+Le
L4'+L5'+L6'

L4+

L6

L4

L6

L6

L4 +L6 +L6

Nonvanishing matrix elements

(scc I
H' IEc)= —,

' (k,+kg+kg)3{'4

(ccc I
H'

I
gc') = ', (k,+cgkg+cg'k, )—3Ig

&gcc I
H'

I
bc') = ', (k +Mgkg+-ggk. )3I4

&Ec I
H' I.c)= ;(k.+xkg+~gkg) M—s

(Ec I
H'

I bc) = ——', (k,+cggk„+cgkg) kIs

(gc IH'
I
gc') = -', (k,+kg+kc)kf g

(sc IH'
I
bc') =

4 (k.+egg+~'k. )~s

(bc I
H'

I
gc') = ——', (k,+cg'kg+c"k, )erg

(bc IH'I bc')= —-', (k,+kg+k, )Mg

B B B
where 3{'4=&scc I

—+—+—IEc)
B$ By Bs

B B B
Ms=&scI —y~ +~—Isc')

B$ By Bs

B B B
3E4 (ccc I

—+cg—+~g—
I

——bc')
B$ By Bs

B B B
Ms= (Ec I

—+xg—+x—I sc)
B$ By Bs

B B B
314= (EcI—+~+~4—Ibc)

B$ By Bs

B B B
~4= &sc I

—+—+—
I
sc')

B$ By B2

B B B
Ms= &sc I

—+x'—y~ Ib, ')
B$ By BS

B B B
~g = (bc I

—+~—+~g—
I
gc')

B$ By Bs

B B B
k{g= (bc I

—+—+—Ibc')
B$ By Bs

Matrix elements of the type (Pz, iPig„") are non-
vanishing only when the direct product r.*y r„y r ~

contains the unit representation. Here F„ is L2'+L3'.
This condition reduces the number of independent
nonvanishing matrix elements. The nonvanishing ele-
ments are also listed in Table IV. By using these ele-

kr' ——(3) '"(k +k„+k,),
kz' ——(2)

—'"(k,—k„),
kz' ——(6) '"( kz k„+2k,), — —

(22)

Inents and making the following transformation of co-
ordinates in k space:
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we get from (20) the expressions

E(L s+)=k "I +'F -I+(k "+k ") +~F + 'F '-I

h' h2

E(E '+)=k" +,'P, ~+(-k "+k ") + 'P+ 'P-'), -
2m i 2m

A'

E(E,'+) =k,"I~ + ',P, +(k,"+-k,")Il + ', (P,+P-+P,)I,
(23)

(lE"+)=., kI + PI+-', (k, "+k") + ', (P +Pu-+P ))),
&2m

'
& 2m

I &»'I a/»+a/ay+a/» I
It I '&

I

'

jVp jV.

I
&)al+

I
a/ax+cc'a/ay+(ca/as

I
el;+)

I

'

I
&»+ I a/ax+ ~a/ay+~'a/as

I
b„+&

I

p f

E.p —E,.

1% 'la/a +a/ay+a/a II

jV.

I
&II.I+ I a/ax+ ~a/ay+~'a/as

I a,p}I

Pp

I &Z,+I a/ax+~'a/ay+~a/as
I
elk'&

I

s

p4—

%e have denoted L1, L2, Ls by L1+, L2+, La+ and L1',
L2', L3'„by L1, L2—,L3—for convenience.

Ke shall see in the next section that the top of the
valence band can only be an Ll state. (See Fig. 1.) The
spin-orbit interaction mixes in the nearby L3 state so
that the top of the valence band is the Kramer's doublet

P,tt=aLIsi+bLEIEJ, and/, )s=(ILIsl —bLsssi. Thebot-
tom of the conduction band may be either of the strongly
spin orbit mixed states L2' or L3'. Independent of which
lies lower in the absence of the s-o interaction we may
write the Kramer's doublet for the bottom of the con-
duction band 1)bcokka =CLrt~ i—dLsg~ aIld!pE~„s =CLsl&

+dLss ''t. Assuming that the other levels are far from
the levels under consideration as will be seen to be the
case in our problem, the four-level approximation is
sufhcient for the effective-mass calculations.

jV.

I
&st+

I
a/ax+c»a/ay+a)'a/as

I
Ikr;+) I

'
ps—

jVp jV,

I&„+Ia/ax+~a/ay+~ a/asia„'&I'

I &„+Ia/ax+~ a/ay+~a/asia„'& I'
Fv=

I &s,+I a/ax+a/ay+a/asl ekk'&I'
P8—

(24) Le
3'

e»
Le»

n

e
L&»

(oLec+ 4Le»)

e'
Le»

I
kI

, I

fcLe»-4Lec)e e

II

tNL. +1L )
L(

ec
(eLe»+4Lg)

»

L3»
It

e
I

I &bi+I a/ax+ a/ay+a/asl bt'&I'

jV, jV,

l(at+I / a+ax~' / a+ay~ / alass»+) I'

jV, jV.

I &a,+ I
a/ax+(da/ay+a)'a/az

I
EI;+)

I

'
e
5

e
5 (aa-hie)

I

j-n-&~

I
(at+

I
a/ax+(ca/ay+(c'a/az

I
Ikl,+)

I

'
F12=

FIG. 1. Three possible orderings of levels around energy gap 5
at k= (m/a) (111). Each level is a Kramer's doublet. Thus
aLk' bL)() represents ckLkkkj, bLk—kt' and (kLkkk'i+bL)EJ—;(kL)'+bLE',
represents (kLk't'+bLkkki. ; and kkLkkJ, —bLkkkl cLE ' dLk ' repre-—
sents cLE ()'i+dLEE 't and cLE 'j' —dLkk k'J, ; cLE +dLErepEre-
sents cLkk"i+dLE" 1' and cLEE'"'—dL-'i.
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By (23), the components of the efFective masses can be put in the following forms.

Holes:
nz 4 lacM, bd—3fsl' IaDfi+cbMsl'= —1+- +

ts~ 3-

4 ladbIs+bc~sl' lacbfs be—Isl' la~4I'+Ibiidsl'
(2S)

m 4 lac%i bd3Is—I' IbcMi+adMsI'=1+- +
m)* 3

4 Ibc~s+ad~sls laches —bd~sl' le~el'+Id~~I'=1+- +
6

(26)

where the 6's are indicated in I'ig. I, and the M's are
defined in Table IV.

The e8ect of the wave functions and energy separa-
tions of levels on the e6ective masses is now clear. The
matrix elements III depend on the wave functions. The
a, b, c, and d are sensitive to small changes of the energy
separations.

The first term in the bracket of either of the two
equations in (25) is the dominant term because of the
smallness of h. On the other hand the s-o interaction
between L&' and L3' is small. Therefore the top of the
valence band is composed mostly of L~', in other words,
we expect a)b. Judging from the first term in the
bracket alone, an increase of d or a decrease of c tends
to make the effective mass more anisotropic. As a
consequence, the mass anisotropy is larger for the
configurations of Figs. 1(b) and 1(c) than for that of
Fig. 1(a).

Recently, some reliable experimental work on g factors
has been obtained by magneto-optical' and Shubnikov-
de Haas" studies of the lead salts. This information does
not play an important role in determining the param-
eters in our calculations; instead it is used as a supple-
mentary check.

The properties of the g tensor for the conduction
electrons or the g value for the paramagnetic impurity
ions in a crystal have already been studied extensively
by many authors" 4' "and need not be repeated here.
To describe the g factors of the lead salts, we adopt the
k p approximation. The problem can be somewhat
simplified if we consider only the six levels near the
band gap. Thus we have derived the following expres-
sions for the g components at the band extrema:

4' E. I. Blount, Phys. Rev. 126, 1636 (1962).
~ T. Kjeldaas and %'. Kohn, Phys. Rev. 105, 806 (1957)."L.M. Roth, Phys. Rev. 118, 1534 (1960l.
& Y. Yafet, Phys. R.ev. 106, 679 (1957)."Y.Yafet, in Sold Stute Physics, edited by F. Seitz and D.

Turnbull (Academic Press Inc. , New York, 1963), Vol. 14.
4' C. Kittel, QNuetlm Theory of SoQds (John %'iley Bz Sons, Inc, ,

New York, 1963), p. 281.

For the ealeece elecfrorIs:

4
I bus+ ass I

'
gll = 2 8 —6 ——

6

laches —bd~sl' Iab141' —Ib~sl'
(27)

gg= 28

For eke cosZNcfios electross:

4
I bus+ ad3IIs

I

'
g((=2 c —d +

+ +
A4

(28)

g= a(g»' cos'8+gP sin'8)'I', (29)

with the sign undetermined.
From (27) and (28), it is clear that with such a small

6 in the lead salts, the g factor and hence the Landau
level splittings are sure to be large. Because of this,
Palik, Mitchell, and Zemel' observed the splittings of
the s.(hi ——0, Am, =0) and the o(di 0, Am, =&1)——
spectra in magneto-optical experiments. The effective
valence and conduction band g factors are determined
from the measured splittings of the x lines and the 0

lines:

(30)

gg= 2C

where g„ is the longitudinal g value along the (111)direc-
tion and g& is the transverse component.

%hen the magnetic field H is at an angle 8 with re-
spect to the (111) direction, the eA'ective g value
becomes"
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l.0 TABLE V. Energy gaps (in Ry) in the lead salts. The experi-
mental Eo values are from Ref. 3; the other experimental values
are from reQectivity peaks in Ref. 24.'

0.8

0.6

0.2—

45
(l)

'2 (2)
(2)' (l)—

, (I)

X, (l)

= r, (2)

&0 L x'(2) —~'
a I.,6(2)-1.6'

E2 L3'(1)—I +6'

E3 6'I'(3) —65'(2)
E4 r,6(1)—I'Ig6(2)
E r '(1)—r 8(2)
Ii6 X5 '(1)—X'(1)

0.014 0.012 0.021
0.091 0.113 0.136
0.180 0.229 0.269
0.257 0.331 0.390
0.463 0.522 0.596
0.573 0.669 0.721
0.823 0.919 1.022

0.014 0.012 0.021
0.096 0.112 0.130
0.185 0.246 0.257
0.264 0.339 0.389
0.463 0.539 0.599
0.575 0.659 0.724
0.836 0.971 1.023

Experimental value Calculated value
PbTe PbSe PbS PbTe PbSe PbS

0.0 I I

40 80
Number of Plane Waves

I

I20

FIG. 2. Convergence of secular determinants for some
energy levels in PbS.

4'W. W. Scanlon, in Solid State Physics, edited by F. Seitz
and D. Turnbull (Academic Press Inc., New York, 1959), Vol. 9.

IV. ENERGY BANDS

Experimental data on the lead salts indicate that
the valence and conduction band extrema are located
at L= (m/a) (1,1,1) on the Brillouin-zone face. ' We know
that the gap must lie between an adjacent pair of L~,
L2', Ls, and L3' levels which are degenerate in the empty
lattice. Since L3' transforms like m, =~-,' and L34'
like m;= Moo, it is likely (and ca,lcula, tions confirm) that
L3" lies above the L3' state after the s-o splitting.
However, the ordering of L&', L2.', L3", L3', L3."',
and L3 ' levels still cannot be predicted without first
knowing the exact potential. Therefore prediction of the
ordering will depend mainly on those experimental facts
which are directly related to the nature of the conduc-
tion and valence band edges and the group theoretical
selection rules.

Let us now examine the important experimental in-
formation and the theoretical aspects which are helpful
in eliminating certain possible orderings.

(a,) Symmetry arguments require that all allowed direct
optical transitions taking place at L can happen only
between states with opposite parity under inversion.
The fact that the band edges at L belong to states with
opposite parity is con6rmed by the observation of
Scanlon4' on the direct band-edge transition.
(b) Relative to the anion Te, Se or S, Pb has a smaller
absolute charge and a larger core and hence larger re-
pulsive potential. The unprimed states are anion states
and the primed are Pb states in the tight-binding limit.
Thus we expect the primed states to lie above the un-
primed. This may also be seen by comparing the (11)
matrix elements Vooo —Vo2o+ Vt~, —Vttt of Lo and
Vooo —Voto —(Vtto —Vttt) of I o', the latter is less nega-
tive than the former. Hence we suggest that L3' be
above L3.

a Lg' =L2Id (1) in PbTe and L~d'=L2/8'(2) in PbS, PbSe; ++8'-—L2 8'(2)
in PbTe and L~@d' =Ld 8 (1) in PbS, PbSe.

(c) The experimental data show that all the effective
masses of the lead salts are positive. Hence we know
that if L3' belongs to the conduction band so does L2',
and L~, L3 belong to the valence band.
(d) Weinberg and Callaway" observed the Knight
shift due to the hyperfine interaction between holes and
the metal nucleus in PbTe. Their result confirms the
fact that the wave function in the valence band edge
of the lead salts is s-like at the metal ion site. Therefore
we identify the state to be L&'. The possibility that it is
the L3' state which can have a larger Lj' character
mixed in by the s-o interaction is dismissed because
L34' must lie above L3'.
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FIG. 3. Energy bands of PbS. The solid lines were calculated at
several points. The dashed lines are merely sketched in between
symmetry points.

"I.Weinberg and J. Callaway, Nuovo Cimento 24, 190 (1962).
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TABLE VI. S shifts for a few s levels in PbTe and PbS,

Level

r (1)
r (2)
X,(2)
X,(1)
~ (1)
I (2)
I-2'(1)
L '(2)

s shift in PbS(Ry)

1.2186
0.3308
0.2332
1.3032
0.1591
0.1013
1.2685
0.1596

s shift in PbTe(Ry)

0.4838
0.3965
0.3045
0.5659
0.2414
0.0917
0.5577
0.1024
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FIG. 4. Energy bands of PbSe. The solid lines were calculated at
several points. The dashed lines are merely sketched in between
symmetry points.

We conclude from above analysis that the level
orderings are limited to the three possibilities shown in
Fig. 1. We have already pointed out that due to s-o
mixing the bottom of the conduction band in all cases is

cL~ ' d——L3.' an—d that the eifective masses be-
come more anisotropic as d gets large and c small.
Thus we expect Fig. 1(a) gives the ordering of the L
levels in PbS and PbSe and that Fig. 1(b) or 1(c) gives
the ordering for PbTe.

The parameters Zpb, Zv~, npb, and nv~ were chosen to
fit these orderings at I- with the correct energy gap Eo
measured' at O'K. In addition the gap at the center of
the Brillouin Zone between the I'~(2) and I'~5(2) levels

(s and p lead levels in the tight-binding limit) was fit to
the optical data of Table V. The spin-orbit parameter n
was chosen to 6t the splitting of the P~~(2) level

(E5 E4 in Table —V). The splitting in PbTe and PbS
is fit with the same value of n=0.78. This gives us some
confidence in our simplified procedure for calculating
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FIG. 5. Energy bands of PbTe. The solid lines were calculated at
several points. The dashed lines are merely sketched in between
symmetry points.

spin orbit splittings. The reason for the larger splitting
in PbS is that this particular level is a lead level in the
tight binding limit. Since PbS is more polar (due to the
larger Te repulsive potential) than PbTe, this "lead"
level has a larger amplitude on the lead atom in PbS
than in PbTe. Since all the energy gaps of PbSe except
Eo lie between those of PbTe and PbS, it is somewhat
surprising to find the anomalously large experimental
value for the Frq (2) s-o splitting in PbSe. However, if
one examines Cardona's'4 Fig. 1 he will see that the E4
peak is PbSe is so broad as to practically unobservable.
We therefore feel that it is quite likely that the listed
experimental value is in error and have chosen the same
value for n for all three lead salts. The values chosen for
all the parameters are listed in Table I and the Fourier
transforms of the potential seen by electrons with no s
character are listed in Table II. In Table VI we list
some s shifts, i.e., the shift in some energy levels when
Qpb and nvz go from zero to the values listed in Table I.

In our calculation of the energy bands 116 plane
waves are included in the expansion of the wave func-
tions which lead to 11th or lower order secular equations
at F and 35th or lower secular equations along
A=(k, k,k). We have carried out the calculation at the
symmetry points I', I, I, 8', and also at several points
along the (1,1,1), (1,0,0) (1,1,0) directions. (The (1,1,0)
direction was not calculated for PbSe. ) In Fig. 2 is dis-
played the convergence of several levels for PbS, the
most slowly converging case, from which we estimate
the lack of convergence after 116 plane waves to be no
worse than 0.005 Ry. The calculated energy bands of
PbS, PbSe and PbTe are displayed in Figs. 3, 4, and 5.
Figure 6 is an enlargement of Fig. 5 showing clearly the
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TABLE VII. Comparison of energy difference (in Ry) between
anion and cation valence s levels in crystal and free atom. 39

TABLE VIII. Energy-gap dependence on lattice
constant and pressure.

»(2) —I'1(1)
E „Pb—E

PbS

0.564
0.641

PbSe

0.563
0.606

PbTe

0.393
0.371

PbS
PbTe

0.925
0.68

—5 44X10 6

—6.64X10 '
—7X10 ' '

9X10—8 b

ZEg kg BEg
=(eV/atomic unit) ——(eV cm'/kg) experimental

dS 4I' BP

local extrema along the (1,1,0) direction. With a small

change in the parameters, the top of the valence band
can be made to occur there.

We may compare the energy at which Van Hove
singularities in the joint density of states of our cal-
culated energy bands occur with peaks in the reAec-

tivity. '4 The choice is not unique as there occur many
more Van Hove singularities than peaks in the reQec-

tivity. The best fit is shown in Table V. All but one of
the singularities chosen occur at a symmetry point; E3
occurs along the (1,0,0) axis and is pointed out in Figs.
3, 4, and 5. The agreement between theory and experi-
ment for twenty of twenty-one gaps is better that 0.02
Ry. The one bad 6t, E6 in PbSe, is for a very badly
washed out peak (See Fig. 1 of Ref. 24) and could

possibly be due to a misinterpretation of the experi-
mental data. It should be pointed out that no attempt
was made to adjust the parameters in the calculation
to 6t any of the gaps except Eo, E4, and E5. On the other
hand the agreement between theory and experiment
should not be taken too seriously. In the first place one
should compare the theoretical joint density of states
singularities with peaks in the derivative of esE' (where

es is the imaginary part of the dielectric constant)
rather than with peaks in the reRectivity and in the
second place the identification of the peaks is not unique;
in fact it is not unlikely that a peak in the reAectivity
could be due to the interference of two or more nearby
singularities in the joint density of states. Therefore we

do not claim to have calculated the energy bands with

great accuracy but rather to have displayed with reason-
able accuracy all the trends as one goes from PbS to
PbSe to PbTe.

0.0

0.2

a Reference 22. b Reference 15.

TABLE IX. Calculated values of matrix elements (in Ry)
deined in Table IV,

Spicer and Lapeyre" using photoemission data which
unlike optical data give information about energy
levels rather than energy gaps, observed a doublet in
PbTe due to a pair of levels 0.7 eV and 1.2 eV below
the valence band maximum. This doublet disappeared
abruptly as the photon energy was increased from 9 to
10 eV. This they attributed to some "last" conduction
band level 8.1 to 8.6 eV above the conduction band
minimum to which the valence pair could be excited.
They assumed (correctly) that these levels were at L.
They also determined the existence of a level 2.4 eV
below the top of the valence band which they assumed
to be elsewhere in the zone. Our calculated PbTe bands
have the L44'(1) and Lss(1) spin orbit split levels lying
0.77 eV and 1.21 eV below the valence band maximum
Lt'(2). The Ls.'(3) level lies 8.8 eV above the top of the
valence band and the transition from I 3 is optically
allowed. The level lying elsewhere in the zone could be
our Xs'(1) level 2.44 eV below the top of the valence
band although it is unclear why the X5 7' member of the
doublet is not observed. Finally, Spicer and Lapeyre
speculated that the optical peak E~ observed at 1.25
eV might be a pair of unresolved peaks at 1.0 eV and
1.5 eV due to transitions from L,"(1)and Ls'(1) to the
bottom of the conduction band I.s.'.Undoubtedly these
contribute to the peak, however we have identified the
peak with a third contribution lying between these two
in energy. (See Table V.)

Similar studies have been made in PbS by Sacks and
Spicer. ' They 6nd valence-band states approximately
2.0 and 3.0 eV below the valence-band maximum. The
2.0 eV peak they associate with I 3 and place an upper
limit of 0.15 eV on its spin-orbit splitting. Our calculated
Lss(1) level lies 1.74 eV below the valence band maxi-
mum and is spin orbit split from L,4'(1) by 0.067 eV.
Our calculated Xs r'(1) and Xs '(1) levels lie 2.98 and
3.13 eV below the valence band maximum.

0.4

K,

Ky

BENT 3f4 3f5 3II6 Mv 3ES

PbTe 0.410 0.306 0.802 0.810 0.779 0.781 0.639 0.674
PbSe 0.464 0.319 0.857 0.866 0.788 0.786 0.678 0.731
PbS 0.467 0.329 0.902 0.901 0.848 0.857 0.717 0.767

—". (OP,0) + (5/2P/2P)

FIG. 6. Enlargement of PbTe bands,'around forbidden gap.

49 W. E. Spicer and G. J.I.apeyre, Phys. Rev. 139, A565 (1965)."B.H. Sacks and W. E. Spicer, Bull. Am. Phys. Soc. 10, 598
(1965).
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TABLE X. Calculated energy gaps and coefficients of single-group
wave functions contained in double-group wave functions.

a b c d 6 61 d2 d3 64

PbTe 0.974 0.227 0.668 0.744 0.014 0.096 0.108 0.103 0.071
PbSe 0.999 0.041 0.864 0.504 0.012 0.112 0.148 0.146 0.138
PbS 0.999 0.032 0.881 0.473 0.021 0.129 0.169 0.149 0.144

There are no experimental data on the valence band
widths; however, we compare in Table VII the energy
difference between I'~(1) and I'~(2) which are anion s
and Pb s levels in the tight-binding limit with the
difference in energy of the two levels in the free atom. "
The correspondence is striking. In view of the huge s
shifts involved (Table VI) it is clear that unlike the
diamond family of semiconductors, the lead salts cannot
be 6t by a momentum-independent pseudopotential.
It should be emphasized that the s-shift parameters n
were chosen to fit the direct gap and the Pq(2) —I'rq(2)
gap, i.e., only the levels P&(2), L&(2), and L&'(2) were con-
sidered in determining the two n s. The shifts of these
levels in PbS and PbTe are comparable while the shifts
induced in the bottom of the valence band (I'&(I), X&(1),
L2'(1) are more than twice as large for PbS as for PbTe.
That these huge s shifts, caused by parameters chosen
to Qt entirely independent data, give reasonable valence
band widths, is a consequence of the physical nature of
our pseudopotential.

We have calculated the dependence of the energy gap
on lattice constant for PbTe and PbS and thus have been
able to compare the pressure dependence of the energy
gap with the measured value"" in Table VIII. The
crystal potential is taken to be a superposition of rigid
atomic pseudopotentials when in actual fact the true
atomic pseudopotentials are functions of the lattice
constant. Thus the agreement between theory and ex-
periment is quite satisfactory and is another indication
of the general correctness of our band structure.

The matrix elements dined in Table IV were cal-
culated from the eigenfunctions of our pseudopotential
Hamiltonian and are listed in Table IX. The eigenfunc-
tions of the pseudopotential are of course "smooth, "i.e, ,
do not contain the rapid oscillations of the true eigen-
functions in the core region. Because the pseudopo-

TABLE XI. Comparison of calculated effective masses and g
values with experimental values obtained by Cuff, Ellet, Kuglin,
and Williams (Ref. 12).

tential was chosen to 6t the eigenvalues, the eigen-
functions are expected to be only approximate; therefore
it was felt to be not worthwhile to put in the rapid
oscillations by orthogonalizing the smooth functions to
the core states. In Table X we list the coefBcients of the
single group wave functions contained in the double
group wave functions as well as the energy gaps needed
to calculate the effective masses and g values.

Using the formulas of the previous section, the effec-
tive masses and g values are calculated and compared in
Table XI with the experimental values given by Cuff,
Kllet, Kuglin, and Williams. "Although there is a fair
amount of variation in experimental values listed
throughout the literature, '—'4 these appear to be typical.
The theoretical values are seen to be in reasonably good
agreement with the experimental ones. The agreement
would be improved if M2, 355, and M3 were somewhat
larger and M1 somewhat smaller. The PbTe matrix
elements of Pratt and I'erreira" differ from ours in just
that way; their matrix elements were calculated from
eigenfunctions of a true potential (i.e., not a pseudo-
potential) and might be expected to be somewhat more
accurate than ours. In order to get the correct ordering
of levels they were forced to treat the value of their
constant "muffin tin" potential between atoms as an
adjustable parameter. They used one value of this
parameter to obtain the energy gaps and another to
obtain the coefFicients of the single-group states con-
tained in the double-group wave functions, "whereas
we obtained all the quantities needed to calculate the
effective masses and g values from a single-band cal-
culation whose parameters were chosen to get the right
ordering of levels at L but otherwise independently of
any effective mass or g-value considerations.

There are no direct experimental determinations of
the sign of the g factors. However, Palik, Mitchell, and
Zemel' have determined from a lack of splitting of the
o line that g„=—g, in PbS. [See Eq. (30).jThey further
notice that the 0~ (left handed circular polarization)
absorption is greater than the O.„for the lowest, l=0 to
l'=0, Landau transition. This they attribute to the
18J 2 y

l 0 conduction states lying below the
mz' ——+~, I' =0 conduction states, thus being more fully
occupied by free carries and therefore unavailable for
the magneto-optical transition. This corresponds to
g,&0 and g„(0, in agreement with the theoretical
values determined here.
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