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The elastic vibrational spectra of perturbed square-lattice systems with nearest-neighbor central and
noncentral interactions have been derived. The unperturbed system consists of masses » on the lattice
points and interacting with force constants «, which determines the resistance to compression, and 8, which
determines the resistance to shear along the direction [107]. In one case, the perturbations are Ng randomly
positioned isotopic impurities of mass 7', where N is the number of lattice sites. It is shown that the elastic
spectrum for this and all other isotopic impurity systems is completely determined by the average mass,
M= (1—q)m-+gm’. In the other case, corresponding to certain order-disorder situations, the constants de-
scribing the interactions between 2N¢ randomly positioned pairs of nearest neighbors are replaced by o’ and
B’. To first order in g, the resulting elastic modes are then completely determined by an average a,

_ g(a’—a)
a—a[ "ot (o' —a) (2/7) tan"(a/ﬁ)"z:l

and a similar average, 8, which is obtained from the previous expression via the interchange of @ and 8. The
appearance of 8 in the expression for & implies that the virtual-crystal approximation fails. It is shown, how-
ever, that two different forms of the virtual-crystal approximation place bounds on the & and {3, in accord-
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ance with a general theorem of Paul. A physical interpretation of the results is also presented.

I. INTRODUCTION

N a recent paper,! (denoted, hereafter, as P-B) the
authors obtained an expression for the vibrational
frequency spectrum of a one-dimensional chain of
atoms with the same mass and nearest-neighbor inter-
actions. Randomly positioned springs were replaced by
springs which had a different force constant, and the
spectral distribution function was calculated to first
order in the concentration of the impurity springs. The
mathematical techniques used were a modification of
those used by Langer? to solve the identical problem for
the same unperturbed system in which the impurities
were atoms with a different mass. While the motivation
for the previous paper was an attempt to obtain more
information about the effect of disordering on the
vibrational spectrum of binary alloys such as CuZn
and CoFe, in which the masses of the two constituents
are almost identical, the one-dimensional nature of the
problem limited the value of the solution. Nevertheless,
the mathematical techniques developed are quite help-
ful, and will be used here.

In this paper, two related problems are treated. In
both cases, the unperturbed lattice is a square-lattice
array of atoms with same mass, and with nearest-
neighbor central and noncentral forces. In one case, the
two force constants describing the interaction between
randomly positioned nearest-neighbor pairs of atoms
are replaced by a different pair of force constants. In
the other, randomly positioned atoms are replaced by
atoms of a different mass.

For convenience, we call the problems the impurity-
spring and impurity-mass problems. In both cases, the

% This work will constitute part of a Ph.D. thesis to be sub-
mitted to Harvard University by H.P.
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elastic constants are obtained as a function of concen-
tration ¢, to first order in ¢.

The most striking feature of the results is that while
the virtual-crystal approximation is found to be valid
for the impurity-mass problem, it is valid only for special
cases in the impurity-spring problem. The explanation
and implications of this result are discussed.

II. THE UNPERTURBED CASE

In the unperturbed case, we are considering the vibra-
tional spectrum of a square-lattice array of atoms of
mass m. In order to maintain both stability and only
nearest-neighbor interactions, these interactions must be
noncentral. We label the atom at the origin by (0,0)
and its four nearest neighbors by (1,0), (0,1), (1,0),
and (0,1). The equations of motion of the /th atom are
then

m:il,a-l— Z Cmr(l,l’)xl:,a’=0. (1)
U,af

Here, the // summation runs over the atom / and its
four nearest neighbors, and the o’ summation runs over
the two orthogonal coordinates.

The force-constant matrices have the forms

c<1,o>=c<i,o)=—(;z Z),
C(0,1)=C(o,i)=—<§ z> @

C(0,0)=2(a+ﬁ)((1) (1’)

For central force interactions, 3=0 and the lattice
466
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shows zero-frequency shear modes for propagation along
certain principal directions.

Expressing the displacements in terms of normal
modes

w1,y=2 Qs,2(k) expi(k-Ri—w; i) , )
g

where 7(=1 or 2) labels the two orthogonally polarized
modes and v labels a displacement component, we ob-
tain the normal-mode solutions

4 ka0 kya
wl,k2=-—[a sin? 2 +ﬂ sin?-;] y

m
4)

4 kaa kya

wz,k2=——|:ﬁ sin>—+-a sin“’——:l ,
m 2 2
with eigenvectors

(k) (1 (i (0 ®)
= y == . d

O 0) e 1)

Equation (5) implies that for any propagation vector
k the two normal modes, 1 and 2, have polarization
vectors along £ and §, respectively. Thus, one of the
two labels, j and v, of Q;,, in Eq. (3) is redundant, and
will not be used hereafter.

III. THE IMPURITY-SPRING PROBLEM
A. Formulation

In this problem, the force constants « and 8, associ-
ated with 2V randomly positioned pairs of atoms, are
replaced by force constants o’ and 8. To simplify the
equations of motion, the four nearest neighbors of an
atom which are separated from it by vectors (1,0),
(1,0), (0,1), and (0,1) are denoted by (I+1), (I+2),
(I+3), and (I+4), respectively. The equations of motion
can then be written in the general form

X1,1 a 0 2.%‘1,1— Xi42,1
—wm +
X1,2 0 B 2xl,2—xl+1,2_xl+2,2
(B 0)<2xz,1— *xl+4,1>
0 (6% 2961'2- —X144,2
(a 41 ><xl,1—xl+1,1)
B—B1,141/ \x1,2— X112
(a a,142 )(xl,l'_ xl+2,1)
0 B—Bi,142/ \X1,2— X142,
8—B1,143 X1,1— ¥143,1
+ 0 a—a,143
X1,2—X143,2

B—B1,144 0 X1,1— X144,1
+ o) ©
0 a0, 1+4 Xi,2—

X1+4,2

X411

X1+3,1

+

X143,2

+
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Equation (6) can be rewritten in terms of the normal
coordinates of the transformation

1,7=2_k Q4(k) expik-R;. ™

Since all the force-constant matrices are diagonal, the
« and y components of the displacement are inde-
pendent. Thus, equations of motion can be written
simply for each direction, using Egs. (6) and (7). In
addition, the two directions are indistinguishable. Thus,
it is sufficient to study one direction of polarization over
a complete quadrant of the propagation plane. For the
x components of the displacements, we have

—w¥ma1+a(22,1— Xip1,1— Fige,1)
+B(2x1,1— %143,1—F144,1)
= (Ol—az,l+1)(xz,1—xz+1,1)+(a—az,z+2)(xl,1—xl+2,1)
+ (B—Bu1,145) (%1,1— X14.3,1) + (B—Bu,144) (%7,1— X144,1) «
@®
By substituting Eq. (7) into Eq. (8), and using Eq.
(4) to simplify the resulting expression, one obtains
—mw? 3_x Q1(k) expik- Ri+m 3k w1 1201(k) expik-R;
= ((X—‘Olu_u)zk Ql(k)(l—expikza) expzk Rl
+ (a—al,z+2)zk Ql(k)[l —_ exp(— 1k;d)] expzk . Rz
+(B—B1,143) 2k Q1(k)(1—expik,a) expik-R;
+(B—B1,144) 2k Qu(k)[1—exp(—ikya) ] expik-R;.

After multiplying both sides of Eq. (9) by ®
exp(—ik’-R;)
and summing over /, one obtains
mN (w1, —w?)Q1(k’)
= IZID{ Q1(k) expi(k—k')- R,
X{(a—aq,141) (1 —expiksa)+ (a—ou,142)
X [1—exp(—1ik.a) 4+ (B—B1,143) (1 —expikya)
+(B—Br,14)[1—exp(—ik,a)]}. (10)

After interchanging k and k’ and performing some
trivial mathematical manipulations, Eq. (10) can be
written in the form

(w1, =) Q1(k)= =2k Pre PQ1(k),  (11)

where

(—24)
Py o D =~——3 {exp[—i(k—k)]-R,
Nm 1

X [(1,141—a) sin(k.'a/2) exp(iks'a/2)

— (0u,142— ) sin(ks'a/2) exp(—iks'a/2)
+(B1,143—B) sin(ky'a/2) exp(ik,'a/2)

— (B1,144—B) sin(ky'a/2) exp(—ik,'a/2) ]} . (12)
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The superscript (1) of k@ is used to indicate that
polarizations along £ only are included.

Equation (11) is identical in form to Langer’s?
equation (4) and Eq. (4) of (P-B). The three problems
differ only in the form of the &y . We shall follow the
approach described in (P-B) because it is closer to the
methods used here, although the basic technique was
originally presented, and is more completely described,
in Langer’s paper.

For a particular configuration of springs, we can write

(DD (w?) i, = (o> —?) b i+ P i 13)
such that Eq. (11) becomes
2w [DD(?) Juw'Qa(k) =0. (14)

The spectral distribution function for this configuration,
defined by

2w
glw)=lim — > 6(Q2—w?), (15)
N> N n
where the Q, are the exact eigenfrequencies for the par-
ticular configuration of springs, is given by?

4w 1
glw)y=—lim — Im TrD® (w2+1ie).
T N—ow N

(16)

e—0

In this expression, use of symmetry has made it un-
necessary to include D® (w?+-7e).
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To obtain the spectral distribution function for the
random distribution of springs, §(w), we must average
the distribution function over all configurations which
are consistent with a fixed value of ¢g. As shown by
Langer, it is sufficient to take the configuration average,
D®(w2+ie), of DV (w2 +ie). As in the one-dimensional
problem, D® (w?+i¢) is diagonal in k, so that

4o 1 _
§@)=— lim —ImY D®(wi+ie). (17)
k

T No= N
e—0

B. Configuration Averages
As in (P-B), Dy iV (w?) may be iterated to yield

Py 1o (D
Dk,k'(l)(w2)=

— by —
W —w? Wt —w?
q’k,k1(1)q)k1,k'(l)

Fooe Ll (18)

+
31 (wklz-—wZ) (wk»2——w2)

The average over configurations is performed at this
point. Since the wy are properties of the unperturbed
lattice, it is only necessary to obtain configurational
averages of the products @k x, ¥, iy 1., P, 7,
&y, 1 V. We proceed to obtain these averages. The first,
(B, 10 D) is easily obtained. We need

—2i
<¢k,k'<l)>=£N—z2<Zl exp[—i(k—K')- R, ]{sin(k.'a/2)[ (ar,1r1—) exp(iks'a/2)— (ou,102— ) exp(—iksa/2)]
m
+sin(k,/a/2)[(B1,1+3—B) exp(iky'a/2)— (Biipa—B) exp(—ik,/a/2)]}).

This expression is evaluated by keeping ! fixed while summing over configurations. No contribution to the terms
linear in the o’s is obtained from any configuration in which a;,141 or @z,142 is equal to . The analogous situation
holds for the terms linear in 8. Denoting

(19)

Aa=d'—a,
and
AB=8'—8, (20)
the configurational average is
—24)
<<I>k.w‘”>=%;— 3 expi(k’—k) - Ri{g[2iAa sin?(k,'a/2)+2iA8 sin?(k,/a/2)]} . (21)
m l
Performance of the summation over / yields
(Bg 1w V)= (4g/m)[ A sin2(k;'a/2)+ AB sin?(k, a/2) 16k xr - (22)
Next, consider the second-order term,
(—2)?
(P, 10y P Prcy e V)= > expi(ki—k)- Ry, expi(k’—ki) Ry,
Nom? un
X ({sin(k1za/2)[ (01,141~ ) exp(ik12a/2)— (s 142—) exp(—ikiza/2)]
+sin(k1,a/2)[(Bu,u+3—B) eXP(iklua/Z)‘ By, 1144—8) eXP(—iklya/Z)]}
X {sin(ks'a/2)[(arz,1211—0) exp(iks'a/2)— (an, 12— ) exp(—iks'a/2)]
+sin(ky/a/2)[(Bus,1z+3—B) exp(iky'a/2)— (Buz,ipra—B) exp(—iky/a/2)T}). (23)
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As before, only terms in which the «;,; and 8;,; differ from « and B, respectively, contribute to the right-hand side
of Eq. (23). In addition, as in (P-B), only the product terms in which the a;,,;, and B, ,;, represent the same springs
as the ai,,j, and By, j,, respectively, contribute to first order in ¢. It should be noted that all the o terms correspond
to springs which are parallel to the direction (1), while all 8 terms correspond to springs which are perpendicular to
the direction (1). Thus, all product terms which involve both o’s and 8’s must vanish, to first order in ¢, for a prod-
uct of ®’s of any order. As a result of these considerations, we may write

—27)2
(B 1, OV Py, 10 V)=

2. exp[i(ki—k)- Ry, ] exp[i(k’—ky)- Ry, |

Nom?
X {{[(au, 11— ) exp(ikiaa/2)— (any 142—a) exp(—ik120/2)] sin(kiza/2)
X [(ez, 1011—0) exp(iks’a/2)— (g 1042— ) exp(—iks'a/2)] sin(k.'a/2))
+{[(Br1,1:+3—B) exp(ik1,a/2)— (Buy,11+4—B) exp(—ikiya/2)] sin(k1ya/2)
X[ (Biz,1243—B) exp(iky'a/2)— (Biz,1z+4—B) exp(—iky/'a/2)]sin(ky'a/2))}. (24)

The important feature of Eq. (24) which makes this problem soluble is that the two-dimensional average of Eq.
(23) has been split into two one-dimensional averages which are mathematically identical to those which have been
evaluated in (P-B). This splitting occurs, for terms which are first order in ¢, for all order products of the ®’s.
As a result, using Eq. (30) of (P-B), we obtain the general expression

qu,k,. 4\" k1z0 . kos kot
(Bre s DBy g+ + By in D) = (——) [(Aa)" sin?( > Sln2< ) . sim( )
N1 \m 2 2 2

klya kz,,d kny
+(AB)" sin2<—) sinz( ) .. sin2<
2 2 2

C. Calculation of the Elastic Spectrum

) e

The form of Eq. (25) indicates, as expected, that D is diagonal in k. As a result, we may follow Langer and
write the diagonal elements of D as Dy» where

D (w?)= (26)

wt— Gy O (w?)

The configuration average of Eq. (18) may then be rewritten, using Egs. (25) and (26) as

G:V=¢Y —-———(— l)n‘lwn[(Aa)n sim(@) (f?{ ?PM)FI.HA,@)n sinz(k—jf)(kz1 Wz_))n—l] . @n

n  NnLpyn 2 Wy k2 —w? Wy 2 —w?
Since there are no terms in which both Ae and AB appear, Eq. (27) is easily transformed into the expression

[4g(Ac)/m] sin(kea/2) | [49(88),/m] sin(kya/2)

GV = i - . (28)
14+-[4(Ae)/mN ] s [sin*(k12a/2)/ (w10’ —w?) ] 1+[4(AB8)/mN] X, [sin*(k1a/2)/ (w1,1,*—w?)]
The entire problem is then reduced to an evaluation of the summations
1 sin2(ksa/2)
I=—3% ———, (29)
N k  w *—w?

and
1 sin’(k,a/2
e Z:sm( a/ ) (30)

N x wl,kz-—wz
Because of the symmetry associated with this lattice,

I(a,8)=J(B,a). 31)
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Equation (31) implies that one need evaluate Eq. (29) only. Transforming the right-hand side of Eq. (29) into an
integral, we obtain

a? [rla prla sin2(k,a/2)dkdk,
I=lim — / [ . (32)
>0 da ) _r1a ) —nja (da/m) sin?(kwa/2)+(48/m) sin?(kya/2)—w?—ie
In Appendix A, it is shown that the value of this integral is given by
I=(m/2wa) tan—(a/B) 2+ (im2%w?/32aB) (B/a)/? (33)
under the conditions
mw?/4aK1
and
mw?/46<K1. (34)

These conditions limit our discussion to the elastic portion of the spectrum. It would be reasonably simple, but
tedious, to obtain higher order terms in the w? power series expansion of I. Since interesting physical results are ob-
tained from the lowest order terms, we shall not continue the procedure, but shall continue with the determination
of the elastic portion of the spectrum.

Substitution of Eq. (33) into Eq. (31) yields

J = (m/2xB) tan=(8/e)!/*+ (im*w?/3208)(c/B)/* (35)
Substitution of Eqgs. (31) and (33) into Eq. (28) yields
(49Aa/m) sin?(ka/2)
1-+(2A0/7a) tan—1(a/B) 2+ (imw?Ac/8aB) (B/a) 2

GeW =

, (4908/m) sin(k,a/2)
" 14-(208/76) tan1(8/a)\/2+ (imw*AB/3B)(a/B)1/2

As in one dimension!:2 we may associate the positions of the poles of the function Dy®(w?) with the modes of
vibration of the lattice with the randomly distributed impurity springs. The frequencies, for each k, and with
polarization vector parallel to £, are given by the real part of the roots of the equation

@ — PG (?) =0. (37)

36)

A complete solution of Gx®(w?) would lead to a number of roots, for fixed k, of Eq. (37). The existence of these
roots is a mirror of the fact that k, for any one member of the ensemble, is not a good label. By restricting our cal-
culation of Gy (w?) to small w?, and keeping terms of lowest order only in the resulting small parameters, we have
suppressed the multiplicity of these roots. The resulting expression for the elastic mode frequencies is given by

o 4(20) 4 )
or=— 1+ in?(ksa/2)+—| 14 in(k,a/2). (38
m[l o+ (2/7)(Ba) tan—1<a/ﬂ>1/2] sl )+m[. B+(2/m)(88) tan~l<ﬂ/a>w] sin*(kie/2). (38)

The solution of Eq. (37) also contains an imaginary part. Writing the solution as

w=wx+A1xc— 1k, (39)
the imaginary part,
. oo { (Aa)? sin2(k.a/2) 1 (AB)? sin*(kya/2) } (40)
1"‘—4(043)1/2 a[1+(2Aa/7a) tan='(e/B)/2]2 B[1+(208/nB) tan—1(8/a)!/2]2} ’

corresponds! to the reciprocal of the lifetime of the mode. It should be noted that I'y x is of one order higher in the
small parameters of Eq. (34) than is A; x. Thus, although the low-frequency modes are shifted in frequency, they
are quite well defined.
Finally, the density of states §(w), as indicated in Eq. (17) and calculated in Appendix B, is given by
the expression )
g(w)=wm/m(@B)"*. (41)

Here, @ and B are defined by Eqgs. (57) and (58). These results will be discussed in Sec. V, after the analogous expres-
sions have been obtained for the isotopic-impurity problem.
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IV. THE ISOTOPIC-IMPURITY PROBLEM

A. Formulation

In this problem, the unperturbed lattice is again the square lattice discussed in Sec. II. In this case, the N¢ atoms
at randomly positioned sites are replaced by isotopes of mass #’. The mass of the isotope at site / is denoted by
m;. The equation of motion of the atom at this site is given by

w1\ 1/a O\/wri—ana1\ 1 /a O\/xi—xen\ 178 O\/xia—xus1\ 178 O\/x1—%440
o )olo M) olo oo oo Soan)
X1,2 m\0 B X1,2— Xi41,2 m\Q B X120 X142,2 m\0 « X1,2— X143,2 m\0 o X1,2— Xi44,1

DI Tl D
m m 0 B/ \xy2—x141,2 0 B/ \w1o—%x142,0

B O\ /%1,1—%143,1 B O\ /%11~ %1441
Fo oo S} @
0 a/\wyo—x143, 0 o/ \x10—x144,2

Asin Sec. ITI, the x and y components of the motion are completely decoupled, and may be considered separately.
As a result of symmetry, it is sufficient to consider the x-component motion for a complete quadrant of the space of
the propagation vector k. The transformation to the normal coordinates of the unperturbed system, Eq. (7), yields

the equation of motion,

—w? >k O1(k) expik- R+ (o/m)> "« [2— exp(ik.a) — exp(—ik.a) JQ1(k) expik- R,
+(8/m)X>_« [2—exp(ik,a)— exp(—ik,a) JO1(k) expik- R,

=3« O1(K)[(1/m)— (1/m;) ] expik- Ri;{a[ 2— expik.a— exp(—ik.a) ]+ B[ 2— expik,a—exp(—ik,a) ]} .

Equation (43) is similar in form to Eq. (9). By mathe-
matical manipulations which are similar to those which
lead from Eq. (9) to Eq. (11), Eq. (43) is transformed

into

(w12~ w?)Q1(k) = — 2w Q1(k') P, (44)
where
(Pk,k' = (wl,k//N)Zl [(m/ml)— 1] expz(k'-—k) . Rl . (45)

This result is identical to that obtained by Langer? for
the one-dimensional problem. It is easily shown that
the entire difference between the two problems is repre-
sented in the form of the function Gx(w?) which, for
this problem, is given by

Aw; k2
G () = G , (46)
H 0Nk [w1,0 (0102 —w?)]
where
A=(m/m)—1. 47

The remainder of the problem consists of the evaluation
of the sum

wl’k:2 4o sin2(/e,;’a/2)
) Pl
K’ wl’k,Z_.wZ m k' wl’kIZ__wZ
438 sin%(k,a/2)
—2——. (48
m K W ei—w

The two sums which appear on the right-hand side of
Eq. (48) have been evaluated in Appendix A and
have been used in Sec. III, for the case where Eq. (34)
holds. Substituting Egs. (33) and (35) into Eq. (48),
and inserting the result into Eq. (46), one obtains the
result

GV (w?) = gy {1+ A[14(Gwm/ (@)D 3. (49)

(43)

With this result, it is easily shown that the frequencies
of propagation, in the elastic limit, are given by the
expression

w?=w; i 2(14¢), (50)
where
k=1—(m'/m). (51)
The inverse lifetimes are given by
gAmw; i
o (52)
2(14+N)*(eB)!

Before leaving this problem, we should point out that
another aspect of it has been treated by Mahanty,
Maradudin, and Weiss.> They considered the local
modes which arise when m'<m. Many of the mathe-
matical difficulties, which these authors surmounted
quite elegantly, have been avoided in this work be-
cause attention was restricted to the elastic spectrum.

V. DISCUSSION: THE VIRTUAL-CRYSTAL
APPROXIMATION

One frequently finds statements in the literature that
the so-called “virtual-crystal approximation” must hold
for the elastic spectrum of a crystal containing a small
number of impurities, or a small degree of disorder. In
this approximation, the masses are all taken as the
average mass, and the spring constants are all taken as
the average spring constant. The justification given for
this approximation is usually that the wavelengths of
the modes are very long compared to the range of the
local perturbations, so that these perturbations are just
averaged. Other authors have carried the approximation
further, and have concluded that the failure of the

3J. Mahanty, A. A. Maradudin, and G. H. Weiss, Progr.
Theoret. Phys. (Kyoto) 24, 648 (1960).
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virtual-crystal approximation to explain the vibrational
frequencies near the Brillouin zone surface, of dilute
alloys, is evidence for the existence of short-range order
in these alloys. In this section, we examine this ap-
proximation with the aid of the solutions obtained in
the preceding sections.

The two one-dimensional solutions obtained pre-
viously!? yield virtual-crystal-approximation type re-
sults to first order in ¢. Langer! finds that the elastic
spectrum of a system with isotopic impurities is com-
pletely described by an average mass given by

(53)

In (P-B), the authors find that it is the inverse of the
spring constant which must be averaged. That is, taking
v as the nearest-neighbor spring constant of the un-
perturbed system, and v’ as the spring constant which
replaces it at randomly positioned sites, the elastic spec-
trum is completely described by an effective spring
constant ¥, which is given by the expression

V7=[1—9)/vI+ (/7).

Henceforth, we shall speak of this equation as the
virtual-crystal approximation for spring impurities.

For the isotopic substitution in two dimensions, the
situation is quite similar. Equation (50) can be re-
written as

m=1—q)m~+gm’.

(54)

w'=mwy 2 m(1—q)+qm’ ] (5%)

to first order in ¢. Since mw;,x? is independent of mass,
this is the result expected from the virtual-crystal
approximation.

Thereis good reason to believe that the approximation
must hold for the elastic spectrum of a system of any
dimensionality and any concentration where the only
substitutions are isotopic and the system is homogeneous
on a macroscopic scale. The reasoning goes as follows.
The masses enter the dynamical equation through
acceleration terms only. Thus, they do not contribute
at all to the static elastic constants, which depend only
on the interactions. The only way that the masses enter
into the classical expressions for the elastic spectrum is
through the density, since the elastic spectrum is, of
course, entirely determined, for a homogeneous solid,
by a knowledge of the elastic constants and the density.
Thus, the only condition for the applicability of the
virtual-crystal approximation to the elastic spectrum of
an isotope substituted system is that it be homogeneous.
That is, one must be able to divide the crystal into
volume elements whose dimensions are small compared
to the wavelength of the elastic modes, all of which have
the same density associated with them. In this case, the
virtual-crystal approximation is just a means of cal-
culating that density.

The argument just presented leads one to suspect
that it is in the case where the spring constants are
changed that one expects a breakdown of the approxi-
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Fi6. 1. Pictorial representation of the displacements of atoms in
the vicinity of an impurity spring, while taking part in a (10)
longitudinal mode. The dashed lines represent the equilibrium
positions. The impurity spring, with o’ >«, is between the atoms
denoted 1 and 2. Shear along the lines 3-1-5 and 4-2-6 introduces
the factor 8 into the expression_for the effective .

mation. This is the case. For comparison, we may re-
write Eq. (54) as

¥=v[1+qAv/(v+Av)]. (56)

Comparison of Eq. (38), for the perturbed system, with
Eq. (4) for the unperturbed system, shows that one can
define effective force constants @ and 8, by the relations

7= [1 ' ae ] (57)
" ot Aa(2/7) tan—i(a/8) 12

and

A
[1 ; 946 ] . (59)
B+AB(2/7) tan—'(B/a)!/?

These results indicate immediately that a knowledge of
¢, @, and ¢’ is not sufficient to define & The relationship
between « and B also enters into the expression for &.
The same is true for 8.

The reasons for this dependence can be visualized
easily. Consider Fig. 1, which portrays the displace-
ments of atoms in the region of an impurity spring from
equilibrium while participating in a longitudinal mode.
Here, we have taken o’>a. The intersections of the
dashed lines represent the equilibrium positions. The
straight vertical lines represent the lines of constant
phase associated with the mode of the unperturbed
system. Atoms 1 and 2 are connected by a spring which
is stronger, and which prevents them from separating
by the distance associated with the unperturbed mode.
As a result, there is a shear component in the motion of,
say, atom 1 with respect to atoms 3 and 5, and the shear
constant 3 enters into the frequency of a mode whose
frequency is determined entirely by « in the unper-
turbed system. Some of the relationships of this picture
to the mathematical solution, Eq. (57), are easily
seen. We note, first of all, that this is a calcula-
tion to first order in ¢. Thus, we can neglect other
“wrong” springs. As a result, the picture indicates that
there is no shear motion of atom 1 with respect to atom
2. Thus, B’ does not enter into the expression for a.
Similarly, we would expect, from this picture, that the
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virtual-crystal approximation would hold for & if 3=0.
This is the case, since (2/7) tan~!(® )=1, making Eq.
(57) identical to Eq. (56). Setting 8=0 also has the
effect, of course, of making the lattice unstable. Finally,
we may look at the problem as the picture does, with a
classical perturbation theory viewpoint, treating (Aa)
as the perturbation on this mode. In first order, the
energy shift is obtained by letting the system undergo its
unperturbed motion. In this order, 8 should not appear.
It)is only in second order, when the motion has been
changedto first order, that the effect of 8 should enter in.
It is readily seen from Eq. (57) that 8 only enters into
terms of second and higher order in Ac.

Equations (57) and (58) do show that the two virtual-
crystal approximations which may be used to obtain
average spring constants form upper and lower bounds
for the actual & and B, for the model discussed here.
The tan~(a/B)/? and tan—!(B/a)'/? in these equa-
tions have upper and lower bounds of 0 and /2.
For tan—!(B/a)1/2=0, these equations become

1/a=[(1—q)/a]+[q/e'], (59)
and

B=(1—q)B+g8'". (60)

For tan—1(8/a)!?=mw/2, of course, the situations are
reversed. Equation (59) corresponds to the 1/y aver-
aging which was obtained in one dimension, while
Eq. (60) is the straightforward averaging of the spring
constants. Any intermediate values of tan—1(8/a) will
yield results which lie between the two simple forms of
averaging. Note that this discussion has been restricted
to the cases where Aa/a>—1 and AB/B>—1. These
conditions must be satisfied if each atom has its motion
centered about a position of stable equilibrium in the
static crystal.

Pault has obtained the identical upper and lower
bounds for the elastic constants of isotropic multiphase
materials. He shows that such bounds hold in general
in the situation where ““- - - the constituents are distinct
and capable of separation by purely mechanical means
(e.g., not solid solutions).” In the language of lattice
dynamics, Paul is restricting his work to situations in
which the force constants between atoms belonging to
the interiors of different constituents are zero. That is,
the elastic constants associated with each of the constit-
uents completely describe the interactions. This situa-
tion is quite similar to that discussed here. In the de-
termination of the elastic constants, it is only the pair-
wise interactions, and not the masses, which are
significant. Thus, since nearest-neighbor interactions
only are considered, we may consider each impurity
spring as an independent constituent, and the results
are consistent with Paul’s bounds. For some reason that
we do not understand, the fact that the system is not
isotropic does not seem to be important in this case.

4B. Paul, Trans. ALM.E. 218, 37 (1960).
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Fi16. 2. Comparison of the effective force constants & and 3, as
a function of concentration ¢, with virtual crystal approximation
predictions. Here, Aa/a: and AB/B have been taken as —0.3, while
a/B=9. The dashed line represents the linear averaging of the
force constant, while the solid curve shows the averaging of the
inverse of the force constant.

This analysis raises the possibility, however, that im-
portant and interesting effects may appear when longer
range interactions appear.

Figure 2 shows the deviations of & and $, as given
by Egs. (57) and (58), from the virtual-crystal ap-
proximation. In these graphs, we have taken «/8=9.
This ratio was obtained from the elastic constants
of B brass, as measured by McManus® by setting
a/B=Cy;/[(C1i—C12)/2]. As expected, & lies close to
the curve defined by Eq. (59), while § is given, approxi-
mately, by Eq. (60). A choice of a/B=1, corresponding
to a strongly covalent crystal, would lead to lines for
& and 8 which have slopes, at ¢=0 and 1, that are ap-
proximately equal to the average of the slopes associated
with the two virtual-crystal approximations.

Since @ and B also determine, through Eq. (41), the
spectral distribution function for small w? the remarks
about & and B apply to it as well.

Finally, it isimportant to note that the random-spring
calculation performed in this work applies specifically
to the order-disorder problem. There exists another in-
teresting related situation which remains to be treated.
It is the case where impurity atoms, which are substit-
uted into the two-dimensional lattice, have approxi-
mately the same mass as the solvent atoms, but change
the spring constants. In this case, the four sets of spring

® G. M. McManus, Phys. Rev. 129, 2004 (1963),
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constants associated with the interaction of the im-
purity atom with each of its neighbors must appear
together in the averaging. Work is under way on this
problem, and it is expected that the results will soon be
presented. The results obtained here indicate that it is
highly likely that the virtual-crystal are inadequate for
the description of the modifications of the elastic spec-
trum of such a system. If this is the case, any attempt
to assign observed breakdowns of the approximation to
ordering or clustering, without corroborative diffrac-
tion evidence, would appear unjustified. This is par-
ticularly true when the modes are not a portion of the

H. POON AND A. BIENENSTOCK
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elastic spectrum, but are associated with the Brillouin
zone surface.
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APPENDIX A: EVALUATION OF THE INTEGRAL OF EQ. (32)

The value of the integral

sin2(k.a/2)dk.dk,

(A1)

T/a T/a
I=lim / /
0 ) _rrad —nja (da/m) sin2(kza/2)+ (48/m) sin(kya/2)— wi—1ie

is required in the limits w?X4a/m and «?*<<48/m. We begin by fixing &, and evaluating the integral over &,. Con-

sider the case w?> (48/m) sin?(k,a/2). Let

w'?=w?— (48/m) sin®(k,a/2), (A2)
and
r/a sin2(k.a/2)dk,
[1 =/ . (A3)
—n/a (da/m) sin2(k,a/2)—w'?—1e
Letting
Z=expiksa, (A4)
W= (m/a)w'?, (AS)
and
¢’ =(m/a)e, (A6)
Eq. (A3) becomes
m (Z—1)%dZ
I=— ) (A7)
daat J Z[2*—(2—w"2—i€e")Z+1]
where the contour of integration is the unit circle. The denominator of the integrand has three roots,
Zy=0, (A8)
Zi=(1—30"2—%ie")+i[1— (1—30''2—%ie”)2 ]2, (A9)
Zo=(1—30"2—3}ie")—i[1— (1—3""2— i) 2 ]1/2. (A10)
Since w’’2< 1, Z; is inside and Z, is outside the unit circle. Thus, we obtain the solutions
mw! 1 (Z1—1)2
11=——{ + } . (A11)
20a\Z1Zy Z1(Z1—Z2)
Evaluating Eq. (A11) in terms of the variables of Eq. (A1), we obtain
mw 1(B/a) [ (mw?/48) —sin2(k,a/2) J1/2
11=—{1; v/ } (A12)
2aa [1— (mw?/4a)+(8/a) sin%(k,a/2) 12
In a similar manner, we consider the case w®< (48/m) sin*(k,a/2). Letting
w'?=(4B/m) sin?(kya/2)—w?, (A13)
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we obtain the integral

/”/“ sin2(k,a/2)dk,
_n/a (4a/m) sin2(kya/2)+w'?

_mn { _ (B/)1[sin(kya/2) — (w'm/46) ]1/2 . (AL4)
200 [14(B/a) sin?(k,a/2)— (w?m/4a) M2
Substitution of Eqs. (A12) and (A14) into Eq. (A1) yields the expression
LT[ /@/w sin=Snat 191 (8/0) V[ (P /48)— sin?(kya/ 2) 12 dy
8maJ _r/a dra J g [1— (mw?/4a)+(8/a) sin2(k,a/2) 12
am e (8/a)2[sin®(k,a/2) — (w'm/48) 1 *dky
—_— . (A15)

dmar ) 2/a) sin~ motrapyr2 [14(8/a) sin(kya/2)— (w®m/4a) J?

It should be noted at this time that the integrands are all real. Thus, the first and third terms of the right-hand
side of Eq. (A15) contribute the real part of I, while the second term yields the imaginary part.
For convenience, we denote

T/a
13=(am/8wc) dky=m/40a, (A16)
—r/a
iam(ﬁ)ll2/(2/”) sin—1(mw?/4B8)1/2 [(mw2/4,3)-—Sin2(k,,a/2):|1/2d/ey (A17)
Tara\e) J, [1— (me?/da)+ (8/a) sin(kya/2) 2"
foe am (ﬁj)” 2 / rla [sin?(kya/2)— (mw?/48) 1 *dky ' (A18)
dra\a @2/a) sin" (ma?/4p) 12 [1— (mw?/4a)+(8/a) sin®(kya/2) M/
Let
t=sin(k,a/2),
§=(mw?/46)K1,
and
8 = (mw?/4a)<K1. (A19)

Then Eq. (A17) can be written as

ima? 8 1/2 p(8)1/2 (5_52)1/2(”
I= (-) / . (20)
8mra \a 0 [1—6"+(B/a)2 ]2 [1— 212
It is easily seen that /<1 over the range of integration. Thus, we may approximate the entire denominator of the
integrand of Eq. (A20) by unity to obtain an expression which is good to only first order in é and &’. In this case,

we may write
im (B 1/2 p(8)1/2
hz——(—) / (6—12)1/2dt
21 \a 0

im2w2 6 1/2
= (-—) . (A21)
3208 \a
Substitution of Eq. (A19) into Eq. (A18) yields the expression
m 6 1/2 p1 (l?_ 6)1/2dt
=0 . -
2ra\a. @ [1—2 V2 [1— 84 (B/a)t? V2

In this case, the approximations are less straightforward. It is clear that ¢’ may be set equal to zero, since it is
always very much less than the other terms contained in the radical in which it appears. Further simplification of
the integrand is hindered by the fact that §/¢>=1 near the lower limit of integration. Nevertheless, we may write
£1—(6/2)J*~=1 in the integrand for the reasons which follow. The factor [1+(8/a)*]'/? of the denominator is a
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relatively slowly varying function. As a result, the remainder of the integrand is sharply peaked near the upper
limit of integration. In this region, it is quite reasonable to replace the radical of the numerator by unity. Hence,
if I5 contained the entire contribution to the real part of 7, it would be sufficient to make this replacement. Un-
fortunately, however, a major portion of 75 is cancelled by I3. Thus it is necessary to justify this replacement a bit
more carefully. We do this by calculating an upper and lower bound to the integral. It is then shown that the dif-
ference between the two is negligible compared to the real part of 1. To compute these bounds, we note that the inte-
grand is positive and real over the range of integration. In addition, over this range, [1— (5/£2) < [1—(6/£2) /2K 1.
Thus, lower and upper bounds to the integral can be obtained by using the upper and lower bounds of the radical
in the integrand. To obtain the values of the associated integrals, we need

m fB\12 ! tdt m  m a\ 12
=0 )00, .
2ma \a @z (1= 214+ B/a)i ]2 4a 27a 8

and

o u
2N/ Sy =BT+ (B
=m_6(§)1/21n{[a+(ﬂ )b hl e (Ba) }_m_‘s(f)m 1n|:(ﬁ—a):|. (A24)

dra\a o(a)l/? l 20 4ma\e 20

Equation (A24) shows clearly that the difference between the upper and lower bounds is of the order of & Ins.
This should be compared with the result for I, obtained by using Eq. (A23) for I5, and substituting the results of
Egs. (A16) and (A21) into Eq. (A15). We get

m o 1/2 ,L‘m2w2 6 1/2
=—— tan™! <—) + (—) . (A23)
27a 8 3208 \a

Since the real part of the right-hand side of Eq. (A23) is of order unity, we are justified in neglecting the differ-
ence between the upper and lower bounds of 7.

APPENDIX B: EVALUATION OF THE SPECTRAL
DISTRIBUTION FUNCTION FOR THE
IMPURITY-SPRING PROBLEM

As indicated in Eq. (17), the spectral distribution function for this problem is given by

4w 1
Jlw)=— lim — Im TrD®(w?+}1e). (B1)
N-ow» N

™ e—0

Using Eq. (26) for D@ and Eq. (36) for G, Eq. (B1) becomes, for small w?,
glw)= l\}im (4w/Nm)Y [(4a/m) sin(ksa/2)+(48/m) sin?(k,a/2)—w?—ie]!
—> 00 k

e—0
Tla

T/a
= (a?w/7*) lim Im / [(4a/m) sin*(k,a/2)+(4B/m) sin?(kya/2) —w?—ie | 'dkdky. (B2)
>0 —r/a

—7r/a

Here, @ and § are defined by Eqgs. (57) and (58), respectively.
Let I(w?) be the integral of Eq. (B2). It can be written as

I=2(I+1,), (B3)
where
(2/a) sin—1(mw?/4B8)1/2 Tla
I,= / dky / [(4&/m) sin?(k.a/2)+ (48/m) sin(kya/2)—w?—ie | 'dks, (B4)
0 —r/a
and
T/a la
I= / dk, f [(4a/m) sin®(k.a/2)+ (4B/m) sin®(k,a/2) — wi—ie | 'dks. (B5)
J (2(a) sin T ma?ap)*  J—x/q ‘ "
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The real part of the denominator of the integrand of I, is always positive. As a result, the imaginary part of the
integral is of first and higher order in ¢, and vanishes when the ¢ limit of Eq. (B2) is taken.
Let

L=mw?/48, (56

"= (/) [ — (45 m) sin*(kya/2) ], (B7)
m w/a dkz

L (BS)

& J_njadsin(b,a/2)—w'"2—ie '
Then !

(2a) sin—1¢
I,= ] Idk. (Bg)
0

Substitution of Eq. (A4) into Eq. (B8) yields

m dz
Is=— ) (B 10)
ad 72— (2—w'"?—1ie)Z+1

where the contour is the unit circle.
The denominator of the integrand of Eq. (B10) is similar to that of Eq. (A7). It has roots, Z; and Zs, given by
Egs. (A9) and (A10), respectively. As before, Z; lies inside and Z, lies outside the unit circle. Thus,

I3=(mi/a&)[ 2wi/(Z1—Zs) ]

= (2ri/a){[w*— (48/m) sin*(k,a/2) ][ (4a/m)+ (4B/m) sin®(k,a/2)—w?]} 712 (B11)
After some simple manipulations which use Eq. (B6), substitution of Eq. (B11) into Eq. (B9) yields
imm [@le) sl dhy
[i=— / _ . (B12)
2a(@B)'* /o [£*—sin*(k,a/2) J/*[1— (mw?/4a)+(B/&) sin*(k,a/2)]'/?

To lowest order in w?, we have
immw (2/a) sin=1¢ dky
Il"—z /
0 C

2a(a@B)!/? £2—sin?(k,a/2) ]2
imm?
= (B13)
2a%(GB)1/?
Substitution of Egs. (B3) and (B13) into Eq. (B2) yields the density of states
wm
g(w)= (B14)

2m(@p) !



