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Cyclotron Resonance of Piezoelectric Polarons
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The magnetic 6eld dependence of the energy and linewidth of the transition from the n=1 to the n=o
Landau level of a piezoelectric polaron has been calculated numerically for polarons at zero temperature.
A weak isotropic piezoelectric coupling between the electron and the acoustic phonon modes is assumed,
and is treated as a perturbation on free-electron magnetic eigenstates. It is found that the shift in the cyclo-
tron resonance frequency due to piezoelectric electron-phonon interaction begins to dier drastically from
that expected from the polaron effective-mass theory when Ace,/mc'& 1,where ~, is the separation in energy
of the unperturbed magnetic levels, m is the band mass of the electron, and c is the velocity of sound in the
crystal. The semiclassical theory of Mahan and Hop6eld is reviewed and shown not to be suitable for inter-
preting recently reported cyclotron-resonance experiments in CdS, where the Landau-level spacings were
substantially greater than the mean thermal energy per electron. DifBculties encountered in extending the
present perturbation calculation to 6nite temperature are pointed out. Finally, the weak-coupling energy
shift of the n =0 to n= 1 transition for optical polarons {electrons coupled to longitudinal optical phonons)
is evaluated as a function of magnetic Geld and compared to previous results derived for weak Gelds. It is
suggested that the markedly nonlinear magnetic 6eld dependence of the energy shift found might oger an
attractive experimental way of observing optical-polaron effects on the electron self-energy.

I. INTRODUCTION

~ 'HK present study of "piezoelectric polarons"
(electrons coupled to acoustic phonons via the

piezoelectric electron-phonon interaction) is prompted

by the suggestion of Mahan and Hopheld' that the

piezoelectric electron-phonon interaction might play
an important role in determining the cyclotron reso-

nance frequency for electrons in the conduction band

of piezoelectric semiconductors, c.g., CdS. At thc

present time, measurements of the eRective mass of
photo-excited conduction electrons in CdS present
something of a mystery. On the one hand, careful

cyclotron-resonance measurements by Sacr and Dexter'
(henceforth referred to as BD) give a slightly aniso-

tropic "eRective mass, "which varies between 0.162 mo

and 0.171 mo (where mo is the electron mass in vacuum),

depending upon the orientation of the static magnetic

6eld relative to the crystal c axis. On the other hand, a
variety of diferent experiments, though less precise,
more or less agree among themselves that the "eRective
mass" lies somewhere between 0.19 mo and 0.21 mo.

None of these latter experiments were cyclotron-

resonance measurements and all have either been

carried out at much higher temperature than the 1.3'K
of the SD experiment or involve very high frequency

transitions compared to the 72-Gc/sec transitions

observed by BD.
To explain the disagreement between the measured

values of "eRective mass, " Mahan and Hopheld sug-

gested that at moderately low temperatures and fre-

quencies, piezoelectric coupling in Cds could produce

the required shift in the cyclotron resonance energy

{of the order of 15'P~), but that in experiments at high

~ Operated with support from the U. S. Air Force.
~ G. D. Mahan and J. J. Hop6eM, Phys. Rev. Letters 12, 241

{1964).
'%, Sacr and R. N. Dexter, Phys. Rev. 135, A1388 {1964);

K. Sawamato, J. Phys. Soc. Japan 18, 1224 {1963),

temperature or frequencies, piezoelectric-polaron effects
are negligible.

Unfortunately the calculation of Mahan and Hopfield
(henceforth referred to as MH) is semiclassical. The
experiment of BB, on the other hand, is done at low
temperature and strong 6eld. One may ask to what
extent the semiclassical treatment approximates a fully
quantum-mechanical calculation of the line shift.

We have undertaken an investigation of this question
for a hypothetical experiment at zero temperature. We
6nd that the agreement between MH and the quantum-
mechanical result is very good for 6elds weak enough
that her, &—,'mc'. However, for tu&&-,'n'. c' the semi-
classical approximation gives a qualitatively incorrect
result, predicting an energy shift which is much too
large and of the wrong sign. While the deviation of the
semiclassical theory from the results of an exact theory
may not be as serious at a temperature of 1.3'K as at
O'K, we shall give an argument to show that a fully
quantum-mechanical treatment is necessary for a self-
consistent interpretation of the BD experiment.

In the present work no weak-field approximations
are made. We investigate the line shift and linewidth
due to piezoelectric electron-phonon interaction at zero
temperature, using the "isotropic interaction" mode1, '
defined by the Hamiltonian

B=BO+FIg,
Bo hc Q lbgtbg+ (1/2——m) (P.y+ (e/c)A)', (1)
R= (»'&') 2 (1/&'&')(-""b &+H. ).

Here bit and bi create and annihilate, respectively,
acoustic phonons of wave vector l, c is the velocity of
sound in the solid, m is the electron band mass, g is the
magnitude of the electron charge, c is the velocity of
light, 0 is the crystal volume, A is the vector potential
describing the applied magnetic 6eld, and Ic is a coupling

' A. R. Hutson, J. Appl. Phys. Suppl. 32,', 228& {1961).
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II. PERTURBATION THEORY

In terms of the quantities in (2) we can rewrite Eqs.
(1) in the form

X=Xs+Xr,
Xe=2 Q kbatbs+(p srlsy)s+p„s+p s,

Xr ——(4rru/g)'ts P (1/k"')(e ' 'b t+H.c.).
(3)

Consider first the case when no magnetic Geld is
present (As=0). The unperturbed states of interest,
eigenstates of Ko, are given by

elp T!0)

where !0) is the phonon vacuum and p&1. Treating
3!&as a perturbation we obtain for the energy correction
&.(p)

E.(p) = —(4s.u/g) Q k '(2k —2y. k+k') —'. (4)

Expression (4) is not valid for p) 1 since in that case
the denominator of the summand can vanish at non-
zero k. With this restriction on p we obtain for the
excitation energy in the limit of inGnite volume

p'+E (p) E (0)

Q 1 1+p=p'+ —— —2p+ln — +p ln(1 —p')
7r p- 1—p

=p' ( I )VI3+p—'/10+O'/21+" 3 (3)

Now in the case of electrons coupled to optica/ modes
(which we will refer to as "optical polarons") it is
shown in' I that the zero-Geld excitation energy
analogous to (5) acts as an effective Hamiltonian (in
the sense that its eigenvalues when p' is replaced by
p„s+Lp —(lis/2)y]s+ p,' give the correct energy spec-
trum for the optical polaron in a magnetic 6eld)—
provided that the magnetic Geld is sufficiently weak.
If we compare the dimensionless Hamiltonian 3! in I
to (3) we find that the only formal difference is in the

' D. M. Larsen, Phys. Rev. 135, A419 (1964). This paper will
be henceforth referred to as I.

coefficient with dimensions of energy times length. If
we use mc'/2 as our unit of energy and rs ——k/mc as our
unit of length we can introduce the quantities

X=2H/mc, p= (rs/k)P, ~=P,s/mc, k=rsl,
(47m)'ts = 2s/rsmcs g =0/r '

r=R/rs, y= V/r„A= ( IIV, 0—, 0),
(2)

X'= 2k(eH/mc)/mcs

where we have assumed a uniform magnetic Geld, H,
in the s direction and we use the Landau gauge for A
(Y' is the F' coordinate of the electron). The dirnension-
less electron momentum operator is denoted by j and
its eigenvalue by p.

phonon energy spectrum (2k here versus 1 for optical
phonons) and in the wave-vector dependence of the
interaction (1/k'" in (3) versus 1/k for electron-optical
phonon interaction). Therefore we might expect (5)
to serve as an effective Hamiltonian for piezoelectric
polarons in a magnetic field.

To investigate this possibility we consider Xo as the
unperturbed Hamiltonian with normalized eigenstates

where
""'~""4-(y+2P./l')! { })

(P:+~V/4)~. (y) = (-+-:)l ~.(y)

X , (6)
2k+ (elis —kP)+ks

4s expL —(ks/X)'j 1 ki 'i" '&

c 9)=-—6 z
g ~=0 et 'A

(n —kj,s/li, ')'
X- (7)

2k+ L(rt—1)l~s—kisg+k'

where k~ is the magnitude of the component of lr in the
x-y plane.

We use the symbol (p in (7) to mean that in the
Infinite-volume limit the sum is to be evaluated as a
principal-part integral.

It is important to realize that it is always energeti-
cally possible for an electron in a Landau level with
e&0 to drop into a lower level by emitting an acoustic
phonon. Therefore no Landau level except m=0 can
be perfectly sharp, even at zero temperature. This is
in marked contrast to the model considered in I, in
which the electrons are coupled exclusively to the
longitudinal optical phonon modes. In that case
perturbation theory on the low-lying levels gives rise
to stationary states and no principal-value integral
appears in the expression corresponding to (7).Further-
more, variational techniques can be used to advantage
in calculating the energy separation of the optical-
polaron magnetic levels. No such methods can be
trusted in treating piezoelectric-polaron levels except

and ! {res}) is the phonon state characterized by the
set of occupation numbers {rts}. Modifying only
trivially the relevant expressions in I we can write
down the energy, E„, of the perturbed n= j. and m=0
states. (Since this is a zero-temperature calculation
we can set p, =0 and assume that no phonons are
present in the unperturbed states of interest. ) The
required expressions are

Zs=-s'~s+~C, () ),
Er =—',lis+nC r (X),

4s. exp! —(k,/li, )sg 1 k, '"
co(x)=-—Q

g nm ~t
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Expression {8), which is derived by using Stirling's
approximation for 1/e!, shows that eX'—kP can be
treated as a small quantity when I, —& 0 provided that
k11))X'. This suggests that (6) and (7) can be evaluated
for small X by expanding their energy denominators in
powers of (nX' —k,')/(2k+k') and L (I—1)X'—k~'j/
(2k+k'), respectively. In the case of optical polarons
such expansions gave rise to a procedure for expanding
the polaron energy in a power series in X' as was
indicated in I. However, that procedure fails in the
case of piezoelectric polarons, since it leads formally
to divergent integrals for the coefficients of terms of
order P4 and higher. This probably means that cor-
rections to the perturbed energy beyond the X' term
have no asymptotic expansion in powers of X'.

Nevertheless we can use the method of expansion
to prove that, in agreement with the eGective-mass
theory,

lim (EI—Eo)=X'—(n/Bs. )X'. (9)

possibly in the case of extremely weak or extremely
strong magnetic Geld.

IIlvcstlgatlllg flI'st tile weak-fiel hmlt of (6) and
(7) we note that in the limit X —+0 for fixed kI the
factors expL —(k,/X)'j(kI/X)'"/e! are approximately
given by

D /(2Ir)'"king expL —(IIX'—k12)'/2X'kI'). (8)

small. This can be seen most easily by rewriting H&
using the more symmetrical gauge A=-,'B(—F, X, 0),
reducing H to dimensionless form~ 3c~ and IMnlmlz1ng
with respect to fI, the expectation value of K in

(X/2Ir)'" exp( —is P k,bktbq) exp( —Xp'/4)

x-pLZf, P,'-b, )jl0&, (»)
where p is the magnitude of the component of the
electron coordinate perpendicular to s. This variational
procedure is just a generalization of the well-known
"product ansatz" of polaron theory5 to the case in
which a magnetic field is present. It is reassuring to
note that second-order perturbation theory and the
variational product-ansatz method agree in the limit
of strong magnetic Geld. '

Comparison of (10) and (9) shows that the polaron
correction to the transition energy changes sign as the
magnetic Geld increases, To study this eGect in detail
it is necessary to resort to numerical calculation of
Ej—Eo for intermediate values of P.

In the form given by (6) and (7) the numerical
calculation of Co(X) and CI(X) for arbitrary X would
involve summing a very large number of two-dimen-
sional integrals. However, we can reduce the problem
to calculating only three two-dimensional integrals by
the following method. Consider the expression for CI(X)
from (7). For all e& 1 we can write

The procedure is to write, for example,

2k+ (e—1)X'+k.'

2k+ {NX'—k11)+k' 2k+k' (2k+lP)'
dh exp( —L2k+ (n —1)X'+k.nit} .

where

(k,'—nX')'
+ +g Hence

(2k+k')'

(kP—IIX')'
E.=-

(2k+k')'l 2k+ (NX' —k ')+k'j

-
pl —(k./l)'j&k. i'

k

IIlscl'tlIlg tllIS cxpRlls1011 1nto (6) and tllc corresponding
expansion into (7), one can verify (9) by evaluating
exactly all terms except the terms arising from R in (6)
and its analog in (7). But these remainder terms can
be shown to have an upper bound which is of higher
order than X' in the limit X —& 0.

Having established the asymptotic form of Ej—Eo
for small P, we turn our attention to the limit of infinite
). In this limit the dominant contributions to Co and
C~ come from the n=o and m=1 terms, respectively.
Evaluating the integrals for large X gives

hm (E1—Eo)=X'+ (3V2/64) I'(1/4)nX'~'= lb,
'

+0.2403nX"'. (10)

We remark in passing that the m=0 term in Co Lsee
(6)j is an upper bound to Eo——,'X' even when n is not

X +D(X), (12)
2k —X'+k.s

4x
D(~)=—

3 o

exp L
—(kI/X)']

dt's

(e—kIs/X') '
X(expL —(2k+k,1)t)}P P '

(k 2/7 2)& gg-
H. FrohHch, Advances iN I'hysks (Taylor and Francis, Ltd. ,

London, 1954), Vol. 3, p. 325. The product ansatz discussion
begins on p. 345.

6 Strictly speaking, we must introduce a cutoB for the HamB-
tonian at the Debye wave number in order to dehne the ground-
state energy of the piezoelectric polaron. However, for calculating
the energy diBerence between the n=1 and e=o level we can
ignore the cutoff.
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FIG. 2. Natural line breadth (-,' width at ~ height) of the g=l
to n =0 transition at T=0. 8'p is represented by the lower curve,
W'z by the steeply rising curve.

III. VALIDITY OF SEMICLASSICAL THEORY

It is not surprising that a semiclassical theory of
cyclotron resonance should fail to give the correct
magnetic-field dependence of the line shift and line
breadth at zero temperature. The more important
question is whether we can expect such a theory to be
reliable at the relatively low temperatures and high
fields where, at present, well-defined cyclotron reso-
nance lines can be observed experimentally in piezo-
electric semiconductors. We proceed to study this
question in the particular case of the HD experiment.

linewidth expression for deformation-potential coupling
in this model is obtained by including an additional
factor of k' inside the sum in (15). [Expression (16b)
remains the same, of course. ]The linewidth coeKcient
5'D obtained this way for deformation coupling is
plotted in Fig. 2 to facilitate comparison with 8'~.

We remark that the MH theory would predict zero
linewidth at zero temperature.

Comparison of Fig. 1 and Fig. 2 indicates that at
zero temperature the line shift due to piezoelectric
coupling is approximately the same size as the intrinsic
piezoelectric linewidth except at very large fields
(&'»1) or very small fields (X'«1). However, unlike
the piezoelectric linewidth, which saturates with in-
creasing field, the line broadening due to deformation
potential interaction grows like X' and so eventually
becomes dominant. At very small fields one is prevented
from exploiting the fact that the line breadth from
acoustic phonon emission falls to zero more rapidly
than the line shift, by the fact that broadening from
impurities and imperfections does not vanish with
vanishing 6eld. We conclude that it would be difficult
to observe the effect of piezoelectric electron-phonon
coupling on the cyclotron resonance frequency of photo-
excited carriers in CdS or ZnO at temperatures well
below 0.1'K.

First, let us express the temperature in terms of the
quantity T de6ned by

T= 2ker/mc'

where kg is Boltzmann's constant and v. is the absolute
temperature. The results of the preceding section apply,
presumably, when 2'«1 and T«X'. (In CdS, 7= 1 at a
temperature of about 0.1'K.) In the BD cyclotron-
resonance experiment 7=11, X'=30, so that a zero-
temperature theory does not apply. However, assuming
thermal equilibrium in the conduction band, the ob-
served transitions were between the n=1 and m=0
Landau levels as would be true also at zero temperature.
Is the semiclassical description of the electron motion
in the MH theory appropriate under the foregoing
experimental conditions)

To answer this question we must review brieQy the
MH theory.

In a uniform, time-independent magnetic field, the
magnitude of the momentum p, of a classical charged
particle remains constant in time. If we consider a
group of such particles and assume they do not interact
with each other, we find that in thermal equilibrium
the probability of finding a particle with momentum p
is proportional to

p' exp (—p'/2mker) . (19)

The cyclotron frequency is eH/mc, independent of p.
In the MH theory, electrons in the conduction band

of CdS behave like the classical particles described
above, except that their mass is assumed to be a func-
tion of p. Thus the cylotron frequency, ie„of an electron
depends upon the value of P with which the electron
moves according to

Cv, = eH/m*(p) c.

The shift in the cyclotron frequency is then

aW =Coo, eIS/mc, —

where m is the band mass of the electron.
To calculate m*(p) according to MH, one first

calculates E,(p), which is the correction to the electron
energy due to electron-phonon interaction in the

An immediate consequence is that electrons of different

p have different resonance frequency in a given field, or
for a given resonance frequency the number of electrons
in resonance varies as a function of the field. This gives
rise to the linewidth predicted by the MH theory, in
view of the distribution of electrons given by (19).Most
electrons will be in resonance when co, is close to Gap„

where
~o, eH/m*((2mker)—'—i')c.
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absence of external fields. ' Then its "(p'') is determined
by

I/~*(p) =1+(1/2P) 7E.(P)/~p= I+fjp',
where I' is independent of p, and proportional to T,
according to MH.

We are interested in examining the validity of this
theory for describing transitions between the m=1 and
as =0 Landau levels. It is easy to show that the smallest
mean-square momentum uncertainty that a wave
packet constructed from the degenerate x=0 Landau
states can have is given by

mi n(Pg'+Py' (Pg)')—0 li'/4——

where the brackets indicate expectation value in any
eigenstate with eigenvalue X'/2. An identical calcu-
lation for wave packets constructed solely from the
degenerate e= j. eigenstates gives an uncertainty in
pi' of 0.75K'. Assigning to P,2 the typical value T/2 for
thermal equilibrium, the total magnitude of momentum
of a typical particle in the m=1 level must have an
uncertainty of the order of

hp = (T/2+0. 75K')'"—(T/2)'"

Inserting X'=30, T=11 we find that Dp is almost as
large as the total magnitude of momentum T'" attrib-
uted to the electron in the semiclassical theory. More
important, the uncertainty in p, gives rise to an un-
certainty in the effective mass

m*(p) (T/2)8i' (T/2+0. 75K')'"

which is larger than the MH correction to the effective
mass, f'j(T)'". Therefore we conclude that the semi-
classical MH theory does not give a consistent inter-
pretation of the BD experiment.

We consider it probable, in view of the extreme
smallness of the piezoelectric correction to the cyclotron
resonance frequency at T=O, X'=30, that the MH
theory overestimates the size of the frequency shift
due to piezoelectric coupling under the conditions of
the BD experiment.

Finally, we remark that since I' is proportional to T
in the MH theory, an important experimental check
would be to measure the cyclotron frequency as a
function of temperature. The MH theory predicts a
1/Ti" dependence of the line shift.

IV. PERTURBATION THEORY AT
FINITE TEMPERATURE

A more fundamental approach to the theoretical
interpretation of the BD experiment would be to extend
to finite temperature the perturbation theory described

' The calculation of E(p), done in MH by treating 3CI of (3) as
a perturbation on the free-electron eigenstates at T)0 and p&1,
has been critized by Y. Osaka, J. Phys. Soc. Japan 19, 2347 (1964)
and by Mahan and Hop6eld themselves in Ref. 1.

earlier. Unfortunately, this is not a straightforward
procedure.

When T&&j. and X'& T, the large majority of electrons
are in states which correspond to unperturbed states
with p,'& 1.These unperturbed states behave in a very
interesting fashion in the presence of piezoelectric
electron-phonon interaction.

Let us examine, for example, the probability of decay
by phonon emission of the n=0 Landau level with

p, &1, T&0. If we apply the "golden rule" expression
(15) using

~
Rir, ['= (4s-n/g) (1/k) e &"'"&'(1+ng) )

Er E;=k—(2 2p, x+—kx'),
ng= )exp(2k/T) —1j ',

(20)

we obtain a divergent integral for the transition proba-
bility because of the rapid divergence of ~Rig;~' as
k ~ 0. This situation is remedied if we replace (15) by
the more fundamental expression'

YJ
—4 Q f ~ R if '

~

' sin' (cvf r/2)/M f, ' (21)

where q is the probability that a phonon has been
emitted at some time between 0 and 7, cof' —Ef E;
given in (16b), and r is a dimensionless quantity pro-
portional to the time, i= (mc'/2k)f. Unlike (15), ex-
pression (21) does not assume that the density of states
and ~Rir, ~' are slowly varying. The sum on final states
in (21) can be replaced by an integral over the wave
vector k of the emitted phonon.

We wish to focus our attention on the behavior of
(21) for small k. To this end we introduce a wave
number ko such that kor))1, ko«1, ko«T/2 and break
the sum in (21) into two parts. If we denote by gi that
portion of the sum in (21) for which the emitted phonon
has wave number greater than ko, then

'Vi+92 &

gi ——27rr pf+ IRU, I28(&of,),
F2=4 Qr "' ~Rig;~' sin'((oI;r/2)/(or, ,

(22)

where Pr "' denotes that the sum is restricted to final
states with emitted-phonon wave number greater than
ko', the meaning of Pr~"' is obvious.

By virtue of the smallness of k in p2 we can simplify
the integrand, writing

(23)

' See, for example, Quue/Nm Mechunics, I . I:. Schiff (McGraw-
Hill Book Company, Inc. , New York, 1955), 2nd ed. , p. 197.

where X is the cosine of the angle between the field
direction and the direction of the wave vector of the
emitted phonon. Changing the summation in (22) to
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TABLE I. Shift Sp of n =0 to I=1 transition energy from its rigid-lattice value due to weak electron —longitudinal
optical phonon coupling (energy shift in units of ap~).

O)c/CO

Sa(~./~)
0.1000

—0.01830
0.2000

—0.04057
0.3000

—0.06823
0.4000

—0.1035
0.5000

—0.1502
0.6000

—0.2153
0.7000

—0.3138
0.8000

—0.4851
0.9000

—0.8903

sin'(I»/, r/2)
dMys

nT
tV

2Ijpz

(ys/+1) kp7. d V v sin2y

o y'

integration we obtain

ko dg 2k( g+ )

n2-
s'pz 0 ~ —2k(yg —1&

At the present time we do not know how to write
down the correct expressions for the line shape and line
shift for this kind of decay. These expressions are
necessary before a complete theory of the cyclotron
resonance of the piezoelectric polaron at finite tempera-
ture can be given.

V. OPTICAL POLARONS

We can write

sin'y sin'V
dy = —— +

y2 V

2~ siny

o

(&/s—1)kp7' d V F sln2y
dy

y2
(24)

(25)
coc co n o chic Go (27)

The energy difference between the perturbed n=1
and 0=0 levels for optical polarons (electrons coupled
to longitudinal optical phonons) in the weak coupling
approximation takes the form (in units of II/c», the longi-
tudinal optical phonon energy)

The integral on the right side of (25) is the well-known
sine integral, which for large V approaches vr/2. There-
fore, for

(p,—1)k,r»1,
(o.T/2p, )r lnr+pr,

(26)

where P is a constant independent of r. Of course a
necessary condition for the validity of the perturbation
theory is that r be small enough so that rr(1.

We find that a decay of the form (26) results for any
level with p, )1, due to those phonon emission or
absorption processes at 6nite temperature which do not
involve a change in the magnetic quantum number, n.

where ~, is the cyclotron frequency of electrons in the
absence of electron-phonon interaction and no is the
dimensionless coupling constant introduced by
Frohlich. '

In I an expansion procedure, valid when c»,/I»«1,
was found to give

So(~ /~) = —[6+(3/2o) (~./~)](~./~)
+0[(~ /~)'] (»)

We have applied the Laplace transform technique
already described to the optical-polaron perturbation
expressions analogous to (6) and (7) [see (42) and (53)
of I].For optical polarons the perturbation expressions
of I reduce to one-dimensional integrals, with So(&»,/I»)

given by
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—
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dT
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where
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FIG. 3. Correction to the energy of the n=0 to n=1 cyclotron-
resonance transition due to weak electron-longitudinal optical
phonon coupling at zero temperature.

s=(r+s ~ 1)»2—
y=1—e ".

The integral in (29) has been evaluated numerically.
Results are tabulated in Table I and are plotted in Fig.
3. Also plotted for comparison is the expansion of Sp

to order (I»,/I»)2 from (28).
We find that an approximation to Sa(&»,/I») good to

within 5% over the range 0«»,/&»(1 is given by

1pB——g, (p)
a-2 ~p —s -~o/~

2[sin—1((/» //»)1/2)/(/» //»)»2 1/(1 I» //»)1/2] (30)
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where E (p) = —a sin 'p/p, which is the energy
RIIRlogolls 'to (5) for op'tlcRl polR1011s.

As suggested by (30) and Fig. 3, the perturbation
result diverges as oi,/oi —+ 1, which means that second-
order Rayleigh-Schrodinger perturbation theory fails
when 1—Io./oi is too small. If one apphes instead the
second-order Srillouin-Wigner perturbation theory one
finds that for ao((1, in the limit &u./oI -+ 1 with ao Axed,
the energy separation between the e=i and m=0
states becomes 1—(ao'/4)"'+O(ao), which is a much
more reasonable result.

The strong nonlinearity of So(o&,/Io) for oI./oi)03
suggests that polaron cyclotron-resonance experiments
at very high 6elds would show relatively marked effects
duc to the electron-phonon coupling. For those materials
Rlld field stleIlgtlls fol' wlllcll ao Rlld aoSo(M,/oI)

sufficiently small that perturbation theory applies,
accurate cyclotron resonance frequency measurements
at two known, large frequencies would enable one to
determine independently the coupling constant no and
the band mass of the electron.

For many interesting materials, however, second-
order perturbation theory is inadequate. Fortunately,
the perturbation result of (29) can be improved upon
by variational techniques to include the intermediate
coupling case without signihcant restriction on the size
of oi,/oi. We intend to discuss one such variational
technique in a future publication.

We have shown in a simpli6ed model how the energy
of transition between thc n= 1 and v=0 Landau levels
of a piezoelectric polaron varies with magnetic field.
The e6ect of the piezoelectric electron-phonon inter-
action at weak 6elds is to decrease the energy sepa-
ration between the 6rst two Landau levels, but at
stronger 6elds the separation increases relative to the

separation in the absence of electron-phonon inter-
action. The strength of the magnetic 6eld is measured
by the ratio hoi, /mc', strong fields corresponding to
hoo, /mc'&)1. In CdS, a typical piezoelectric semi-
conductor, hoi, /mc'=1 for conduction-band electrons
at applied magnetic 6elds of approximately 270 Oe.

At zero temperature the intrinsic linewidth of the
transition is approximately as large as the shift of the
line center from its rigid lattice value except for very
weak or very strong 6elds. However, for weak 6elds,
broadening duc to impurities and imperfections becomes
important, while for very strong 6elds, broadening
associated with spontaneous emission of acoustic
phonons due to deformation-potential interaction may
become dominant.

The results of this paper do not rule out the possi-
bility that the line shift for strong 6elds may grow
faster than the linewidth as the temperature increases
from zero. This possibility must be realized if the results
of the BD experiment are to be understood as a 15%%uz

shift in the transition energy relative to the rigid-
lattice value due to piezoelectric electron-phonon
interaction. However, the semiclassical theory of MH,
which supports the above interpretation of the BD
experiment, cannot be considered reliable under the-

experimental conditions of BD because the experiment
was carried out in the quantum regime of strong 6elds
and low temperatures.

Wc have extended the weak-coupling results of Paper
I for the energy separation of the n= 1 and m=0 Landau
levels of optical polarons to stronger magnetic 6elds.
The results show that relative to its rigid lattice value,
the transition energy decreases markedly with in-
creasing 6eld. This effect may oAer the possibility of
experimentally observing for the 6rst time an electron
self-energy change due to the electron-optical phonon
coupling.


