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An exact expression for the correlation functions (or %'arren short-range order parameters) of an alloy of
arbitrary composition and range of interaction is derived in terms of the Flinn operators. An approximate
method of solution is found by replacing certain operators by their averages. One such choice leads to the
equations formerly deduced by Cowley, and constitutes an alternative derivation of Cowley's theory. A
second choice yields Zernike's equations and provides a method of comparing the approximations inherent
in these two theories. Finally, a third solution is suggested which appears to have the same order of accuracy
as the former two, but which has the advantage of being exactly soluble. It also provides an inversion
formula which, in theory, can be used to infer the form of the two-particle interaction energy as a function
of distance in the crystal. The theory is valid only above the ordering temperature of an alloy, but may be
used with equal facility for a variety of alloys with diBering compositions and ranges of interaction.

I. INTRODUCTION

'HE central problem considered in this paper is
that of determining theoretically the correlation

functions of a binary alloy. The more familiar question
of finding the long- and short-range order parameters
of an alloy is a special case of this general problem. We
confine ourselves to the assumption that the configura-
tional energy of the alloy is adequately approximated
by the following pair Hamiltonian

g +& Q [y, ,AAo. do, A+ P. BB~goB,.

s l «7

+P'. AB(o Ao B+o B.o,A)7. .(1).
where i, j refer to the sites of a regular rigid lattice and
o-,", 0-;~ are the occupation numbers for each site. If, in
a particular state of the crystal, site i is occupied by an
A atom, a,"=-+1,o, =0 and if by a 8 atom, o,"=0,
of=+1. V,;"~ is the energy of interaction between an
A atom on sitei and a 8 atom on site j, and is assumed
symmetric with respect to the interchange of site labels.

The correlation functions we seek are the thermo-
dynamic averages (o.,"of), (o,"o,")etc. , and are defined
as follows:

&~'"oP)=Z.b lo'"ohio '"Iv)/Evh'I& ' l~) (2)

where P=1//kT and k and T are the Boltzmann
constant and temperature. The states of the system

(yl correspond to all possible configurations of N~
A atoms and X~ 8 atoms arranged on X sites. The
total number of diferent states is therefore N!/N~!Nii!
with Ng+Nii= N.

The theory of binary alloys based on the Hamiltonian
given above is mathematically equivalent in most re-
spects to the Ising theory of magnetic systems so that
many of the results obtained for the spin-spin correla-
tion functions in magnetic systems can be translated
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into predictions for the alloy correlation functions. Since
an exact solution for the Ising linear chain with mag-
netic field has been obtained for the case of nearest-
neighbor interactions only, this constitutes an exact
solution for a one-dimensional binary alloy of any
composition with the same restriction on range of
interaction. Similarly, Onsager's exact solution' of the
two-dimensional Ising lattice with nearest-neighbor
interactions in zero magnetic field is equivalent to a
complete description of a two-dimensional binary alloy
of 50—50 composition.

There are no complete solutions for three-dimensional
lattices and so one must resort to either so-called cluster
approximations which give a solution in closed form at
all temperatures or else some form of high- or low-
temperature expansion' which is valid only in a limited
temperature range. Although these expansions have the
satisfying feature of exactness (apart from truncation
errors) they are very tedious to carry out for interactions
which have a range greater than nearest-neighbor dis-
tances. Furthermore, a new expansion must be com-
puted for each correlation function, for each lattice type,
and for each composition. The only high-temperature
expansions for more than first neighbor correlation
functions that we are aware of are contained in the
work of Oguchi. ' Oguchi gives expansions for the correla-
tion functions in the 100 direction of an AB alloy with a
simple cubic lattice. It is clear that a single expression
for the correlation functions would be extremely useful
for experimental analysis if it were reasonably accurate.
For this reason our development will be more akin to
the cluster approach.

Work in this direction on the correlation functions
has previously been done by Zernike4 and Cowley. ' The

' L. Onsager, Phys. Rev. 65, 117 (1944).' See for example C. Domb, Advan. Phys. 9, 149 (1960).' J. Phys. Soc. Japan 6, 31 (1951).
4 F. Zernike, Physica 7, 565 (1940).' J. M. Cowley, Phys. Rev. 77, 669 (1950); 120, 1648 (1960);

138, A1384 (1965).
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CORRELATION FUNCTIONS

recent work of Christy and Hall' is closely related to
Cowley's theory, and the theory of Elliott and Marshalp
as it applies to alloy systems is directly related to
Zernike's work. Although Zernike and Cowley appear
to have approached the problem from quite different
directions, it will be part of our purpose to show that
their approximations are quite closely related.

The above fact will emerge in the mathematical
development presented in Sec. III of a general expres-
sion for the correlation functions of a binary alloy with
arbitrary composition and range of interaction. This
expression is exact and may be solved approximately by
replacing certain operators by their averages, the choice
being guided to some extent by physical arguments. It
will be shown that one choice leads to Cowley's theory
and a second more complex choice to Zernike's theory.
Also, it will be possible to judge qualitatively the con-
ditions under which each of these two theories con-
stitutes a reasonable approximation.

In Sec. IV a third approximation to the exact correla-
tion function equation is proposed which leads to a new
theory of correlations in alloy systems, and which
appears to have the same order of accuracy as the
approaches of Cowley and Zernike. Furthermore, this
theory gives a linear set of equations which Inay be
solved in closed form, unlike the equations of the two
preceding theories. It has, however, the disadvantage
that the theory is valid only above the ordering
temperature.

Section II introduces the operators, the statistics, and
the transformations necessary for Secs. III and IV.

In a succeeding paper' (Part II) it is intended to
apply the theory outlined in Sec. IV of this paper to
current experimental results for Cu3Au and, possibly,
CuZn.

(r;= 2(a;A m—A) =.2(—mB o—;B), —. (3)

where mA EA/X and mB=——lVB/X. These operators
have the property that 0;=2m& if there is an A atom
at i and a.;=—2m~ if a 8 atom is at site i."Introduction
of these operators in Eq. (1) yields

B=+A' Q LVg'+ Vg'(0;+try)+ V,,o.Aj

6 D. 0. Christy and G. L. Hall, Phys. Rev. 132, 1959 (1963).
7 R. J.Elliott and %. Marshall, Rev. Mod. Phys. 30, 75 (1958).' S. C. Moss and P. C. Clapp, Phys. Rev. (to be published).' P. A. Flinn, Phys. Rev. 104, 350 (1956)."Flinn's definition is 0;=+my, —mg.

II. MATHEMATICAL DEVELOPMENT

A. The Grand Canonical Ensemble

The Hamiltonian given in Eq. (1) can be rewritten
in a more compact and useful form by introducing
operators (o,) which are called spin-deviation operators
in magnetism and Flinn operators' in alloy theory.
They are defined here as

N

Since g;=i o; has the same value for all states of the
system (in this case equal to zero), the terms in (4)
containing V, can be dropped. The V;; term may be
eliminated for the same reason and the resulting Hamil-
tonian (5) will give all the essentials of the problem.

&=+A Z VoeA

If V;; is positive the system prefers unlike atoms on
sites i and j, and like atoms if V,; is negative.

Before we attempt to evaluate thermodynamic aver-
ages such as (2), the task will be made simpler by
changing from a canonical ensemble to a grand canonical
ensemble. This will mean changing the set of allowable
states from all configurations of S~ A atoms and S~
8 atoms on E sites to the larger set of all configurations
in which each site has either an 3 atom or a 8 atom
with probability mz and m&, respectively. An average
in the grand canonical ensemble of some arbitrary
function, F(rr, ), of the o s, is defined as

(F(e'))= 2 F(~') ~(~i)~(~2)" ~(~B)e ' /

p ie(o,) co(eN)e e", (6)-
&le=+

where P-„=+ implies summing each of the o ~'s over the
two possible values +2mB and —2mA, and the weight-
ing factors cd(o.,) account for the fact that the + and
—values should occur with the relative frequency
mA and mB, respectively. Hence, co(o;=+2mB) =mA
and co(o.;=—2mA) = mB. We may write ra(o,) as.
(mA) '"(mB) "and

N
~0.; = mg ""mg (7a)

N
—pmAq»~- z~i

P a&(o;)=(mA)"AB(mB) 'B
I I

(7b)
i=1 &mB)

Equation (7b) follows from Eq. (3). Henceforth g
without summation indices will imply a summation over
the E sites of the crystal. Finally, we may write

Eq. (6) as

(F(e,))—Q F(e~)exzrr;e eB/ P ehzir;e BH (g—)'—
where e"—= (mA/mB)'~' and the factor e"z'~ is analogous
to the term e ~~ which often appears in grand canonical

with

V "0=1(V''AA+ V' BB+2V "AB) 1V 'i= (V, .AA V, BB)

and

V. , L(V, .AA+V, BB 2V AB).
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averages and is responsible for making the grand canoni-
cal and canonical averages equivalent in the Hmit of
laxgc Ã.

Oj~ is, in cGect, a projection operator that allows only
those stRtcs fox' which j ls occuplcd by RQ A atom to
coUnt lIl thc summation. Slmllarlyq 0 g sclccts those
states having a 8 atom on O.

We may write expressions analogous to Eq. (9) for
each of thc othcx' thl cc blQRry probabllltlcs Ig '

I'g and I'g It ls apparent that these four proba-
bllltlcs RI'c Qot lndcpcndcnt slQcc thc following I'clRtlons
must hold:

P BA+P .A.A —1

P AB+P BB—1.. .

(10a)

mI I'g;~I'= maI'o;". (10c)

Equation (10c) follows from the fact that mBPp, ~B is
the probability of the simultaneous occurrence of an 3
on 0 and R 8 on j, Rnd m~I'g;~" is the probability of
8 on 0 and A on j.Thus these weighted probabilities
diGer only in an interchange of indices which, because
of the assumed symmetry of the crystal, cannot RScct
thCIX' ValUC,

The three relations among four unknowns allow us
to wrltc Rll four px'Obabllltlcs IQ tcrTQS of One Rl'bltI'Rx'y

parameter, which is customarily taken to be the %arren
short-range order parameter, ngj.

The foux probabilities in terms of O.gj are given by
Cowley' as

Pp;"" 2)2g+2)2Bn p;,——
I'g;~~ =mg —mgngj,

' Igj %g 5$+cgj ~

Pp BB=mB+2)2gng (11d)

Rnd by a simple computation, it may bc discovered that

(0'g0'I) =425g212Bnp) .
Slncc only O,g» ls cxpcllmcQtRIly mcRSUrRblc lt will bc
important to have our 6nal results in terms of ng& alone&

%c sha11 Qow be concerned with finding the correla-
tion between the occupation of some site j and a second
sltc 0 which cRD bc thought of Rs the OllglD of thc
lattice without loss of gencraHty. This will be expressed
ID terms of stRtlstlcRl probabllltles such Rs: thc px'ObR-

bility that site 0 is occupied by a 8 atom, given that
site j is occupied by an A atom. This conditional
plobRblbty ls wrlttcn Ig»+ RDd thc second subscript
and superscxipt wiH always refer to the given condition.
In general, I'g,~~ is not equal to P;g~~. I'g, ~~ may be

itt tly

P BA Q 0 .Bo Ap pHBXZP-~/ Q 0 Ap pHBIZP( —(9)

although it will turn out to be simpler to calculate each
of thc blnRry pI'ObRbllltlcs scpRI'Rtcly.

Equation (9) may be recast in a form which will allow
us to obtain solutions in varying degrees of approxi-
mation. This ls done by replacing rg by Its condltlonal
average (i.e., the average of opB when all other sites in
the system are fixed and og alone is allowed to vary).
This may be seen to be

(«B) .0=— Z «B exp —Z Vg)or 0«""
~0 2

exp ——p Vpyo')( 0 p 0
~0=+ ~ 2

and. performing the sum gives

~
—Bn,g (p80+)t)

(«')--0=- fB(Pp)—(14)
2m' (PBO+—1)+0+2mB (PB0+1)

where Eg= ,' pI Vpy—or—a—nd may be thought of as
the 6eld which the atom at the origin sees as a result of
some particular con6guration of atoms around 0
(specified by the or's).

Wc shRll Rlso Ilccd (0'p )c0n0 and I't Is calculated 'to be

0 g COMl
—=f~(&g) (15)

0 2m'(pB0+) )+—0+2mB(pB0+) )

Using a theorem of statistics (which will be proven in
the Appendix for our particular case), «B may be re-
placed in Eq. (9) by («B)„0 without altering the
exactness of the relation, Therefore, we have

Pg'"= 2 fB(rg)0 "~l 2 0 "u

where p=—8 l 8 ', thc gx'Rnd cRQOQlcal dcQslty opcratol.
It Is ImportRDt to realize whRt hRs bccn RccoInpllshcd

by this txansforInation. The correlation between site j
and the origin has been written in terms of the correla-
tion between j and the sheHS of sites around 0 which
have a direct interaction (Vp~) with 0, and the operator
0-g no longer appears in the expression. In essence, the
CGect of an A atom at site j on the occupancy of the
ox'lgln ls Qow represented 1Q terms of thc CBcct lt hRs

0Q thc shells of sltcs RI'ouDd 0 which ln tulD, pass this
informatioQ on to 0 vlR their dlI'cct lnteI'actions with

FIG. 1.The 4Rslc clUster fol ca,lcU1Rtlng the correlRtlon between
site j and, the origin in terms of the correlations between site j
and the neighbors of the origin, ,
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the origin site. This is represented diagrammatically in
Fig. 1 where the correlation between j and the origin
(shown by a dashed line) has been replaced by the
correlations between j and sites f, f', etc. (shown by
wavy lines) and the direct interactions Voj (indicated
by solid lines) which these sites have with the origin site.

III. APPROXIMATE EQUATIONS FOR THE
CORRELATION FUNCTIONS

In this section two methods will be developed for
obtaining approximate solutions to the exact binary
probability equation [Eq. (16)] which was given in
Sec. II.

The erst method involves the use of a frequency dis-
tribution function for E0 and by making a simple
assumption about the behavior of this distribution
function it is shown that the general equations pre-
viously derived by Cowley' result. Furthermore, if a
somewhat more complex approximation is used for the
distribution function, the theory of Zernike4 is re-
covered. It then becomes possible to compare directly
the basic approximations of these two theories and to
determine under what conditions each should be a good
approximation.

The second method for solving Eq. (16) approxi-
mately uses an exact expansion of the distribution
function in terms of its moments. The theories of Zernike
and Cowley are shown to be equivalent to certain
approximations for the successive moments of this ex-
pansion. In addition, this expansion suggests a third
approximation which would appear to have the same
order of accuracy as the two other theories at tempera-
tures above the ordering temperature, but has the ad-
vantage of yielding a set of linear equations for the
correlation functions which are amenable to exact
solution. This theory for correlation functions in alloy
systems is discussed in detail in Sec. IV.

mB 2 VOW'jj ~

f
(18)

where the last equality follows from Eq. (11).Similarly
the mean with the complementary distribution function

gj=B(E0) is found to be (Eo),=B=+jIAp j Voj((j,. Our
treatment to this point has been exact and we now
introduce an approximation which will yield a closed
form solution to the problem and will be mathematically
equivalent to Cowley's theory.

The approximation is

((Eo)");=A= g—(EO)"g; A(EO)=((EO)j=A)" (19a)
{&o)

and

((EO)")j B= p (EO)"gj-B(EO)=((E,)j B) . (19b)
{Eo}

Since a knowledge of all the moments of a distribution
function is sufficient to determine the distribution func-
tion it can be shown that the form of g(E'0) which
satisfies Eq. (19) is a delta function, i.e.,

,=g(EA)0= ~(EO—(LO);=A)

g- (Eo)=~(E.—(Eo) = ).
Equation (17) is now soluble and we obtain

(20a)

(20b)

three dimensions, is one of the unsolved problems af
lattice statistics and so we content ourselves with
different possible approximations to g;=A(E0).

One fact that can be immediately determined about

g, A(E0) is the mean of Eo((E0), A) with respect
"o gj A(E-0) ~

(Eo)j A=+ Logj A(E=O)= 2 P Voj((jj)j=A
{&0) f

= —-', Q Uo j(+2mBP jjAA 2mA—PjjBA)
f

A. The Distribution Function

Returning to Eq. (16) we may write the right-hand
side in the form of a sum over the set of discrete values

(Eo) which Eo is able to assume:

PO;""= fA((EO);=A),

Po;"'=fA((EO),=B),

Po "=fB((EO),=A),

= fB((Eo) =B)

(21a)

(21b)

(21c)

(21d)

PO,'"= Z g;=A(&-'0) fB(EO),
{@oI

(17)

where

gj A(E0) =g=irp=g ~(EO+ 2 2j VO j(jj)(jj p/Zag=g (jj p

and &(Eo+k Zj Voj(rj)=1 if Lo= —
2 Pj Voj(Tj, and

=0 otherwise.

g; A(E0) is simply the frequency distribution of the
random variable E0 under the condition that site j is
occupied by an A atom, and satisfies the normalization
requirement of p (Bol g;=A(E0) = 1.Complete knowledge
of this frequency distribution would be tantamount to
gn exact solution for the correlation functions. This, in

Po Poj (jBA+'IB((0 )(EBB+jjjAO(0~)'

(1 Qoj) jjjAjjjBpo ~~go ~"

exp( 2l Z Voj+jj) (22)
f

which is the result of Cowley' with the diGerence that
the site indices 0, j are interchanged. Cowley arrived
at Eq. (22) by arguments which, on the surface, appear

Remembering the functional forms of fA and fB from

Eqs. (14) and (15) and inserting the values of (Eo); A

and (Eo), B from Eq. (18), the results of the calculation
can be put in the following convenient combination
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to be quite different from those used here although the
two arrive at the same mathematical endpoint.

We shall now use the present derivation of Cowley's
expression to determine under what conditions Eq. (22)
should give a good 6t to experimental results. In physical
terms we have approached the problem of calculating
the correlation between the origin and j by fixing the
occupancy of site j (to be an A atom, say) and trying
to ascertain how this affects the occupancy of the origin
site. In terms of the operator o-o, before the occupancy
of site j was fixed, the average of 0-0 was zero, but now
this average will be shifted slightly (by an amount
(&0)j=A = 2miino, ') We .have shown that we are able to
calculate the shift in (ao) by another route (see Fig. 1)
since oo is directly affected only by the sites f with
which it has an interaction Vo~ so that the effect of j
on 0must be passed through these sites f. Consequently,
fixing an A atom at j can be imagined to "polarize"
slightly the sites around 0 which then causes a shift in

(ao) from its random value. This second way of calcu-
lating (oo); z was expressed by Eq. (16).The condition
that the value of (oo),=~ be the sa,me in both cases gives
the set of equations for the no s. The approximation of
replacing g(Eo) by a delta function means in physical
terms that we have assumed that the origin "sees" its
neighbors frozen in their average polarized configuration
and does not follow their Quctuations about this average.
There are two cases in which this makes good sense.
The first is at temperatures well below an ordering
temperature in which we know that the atoms really
are frozen into a few highly ordered states. In the case
of an AB alloy in a simple cubic lattice two states pre-
dominate, A on n sites with 8 on P sites or A on P sites
with Bonn sites. Choosing j to be an A site resolves this
twofold degeneracy and makes the occupancy of the
neighbors of 0 determinate. Consequently site 0 will

see on the average essentially one con6guration of its
neighbors with decreasing fluctuations about that con-
figuration as the temperature decreases.

The second case in which the distribution function
can be well represented by a delta function is at tem-

peratures above the ordering temperature when a large
number of sites have an interaction with the origin.
This will be the situation when Uo~ is a long-range
interaction and the dimensionality of the lattice is high.
This may be seen by regarding the operators o.

y in
PQ g Q f Vof0 f as random variables capable of
taking each of two values with a certain probability.
At temperatures well above the ordering temperature
these variables will be only weakly correlated and it is
known from the theory of independent random variables
that a distribution function of a sum of such variables
peaks more and more sharply about (Eo) as the number
of variables increases and reaches a delta function form
in the limit of an indefinitely large number of variables.
Consequently, we suggest that Cowley's expression will

and similarly

P(&r 1
&i=+1)=5(1+~res)

P(~rI~ = —1)=2(1—~i~r ).

(23c)

(23cl)

Using Zernike's assumption that each neighbor f of the
origin is independently correlated with j, one may write
that the probability of any of the 24 configurations of
the neighbors of 0 is

1
P(~i~2~3~4I~, = +1)=—II (1~~r~r;). (24)

24 y=&, 4

Equation (24) provides the necessary information to
calculate the frequency distribution

gi=&(+o k Zf Vof+f)

in terms of the nr, 's and it is apparent from Eq. (24)
that since products of the nr, 's occur, g, ~(Eo) will be
nonlinear jn the o.~; s. We have drawn the distributiog.

be worst for lattices of low coordination numbers and
short-range interactions and best for the converse.

In view of the foregoing, one of the chief criticisms
that can. be made of Cowley's approximation is that it
takes no account of the Quctuations in Eo about its
average value, which can be expected to cause appreci-
able effects near the ordering temperature. It is natural,
therefore, to try to incorporate these fluctuations into
the theory and give a finite width to g(Fo). Zernike's
theory' and the closely related theory of Elliott and
MarshalP do just this by using a different approxima-
tion to g(Eo) which we will now discuss.

Zernike makes the assumption that the operators
occurring in Eo may be regarded as stochastically inde-
pendent of each other so that if the relative probability
of the two values which each operator is able to assume
were known the probability of any configuration of the
neighbors would be given by a simple product of the
individual probabilities. In this way he is able to obtain
a first approximation for the fluctuations in Eo about its
average value and arrives at a distribution function
with a finite width.

For the case of an AB alloy with nearest-neighbor
interactions (which is the only case given by Zernike),
any operator 0& can take on the values +1 or —1. Let
us further assume we are dealing with a square lattice
(as in Fig. 1) and the neighbors f, f', f", and f" of 0
are labeled from 1 to 4. If there were no constraints Oy

would assume the values +1 and —1 with equal proba-
bility, but if the constraint that j be occupied by an
A atom (i.e. , 0;=+1) is introduced then these proba-
bilities are no longer equal. From the de6nitions of
Eq. (11) we have

Pr j""=P(0 r +1 I 0;=+—1)= 2 (——1+nI;), (23a)

Pr "=P(up —1Ie—=+1)——=-', (1—n") (23b)

which may be condensed to
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functions g;=A(Eg) and g; B(Eg) obtained from the
Cowley and Zernike expressions in Fig. 2 for purposes
of comparison. O.J; has been taken as 0.1 independent of

f for the sake of illustration although it is unrealistic
that the ey s would be equal at unequal distances. The
last step is to use Eq. (17) to obtain Zernike's equation
relating no; to the o.y, 's and VOJ by performing the sum
over Eo. The final result is

1
ug; ——(t—4+2tm 2t—2 t-—4)(Qlj+A2j+&3j+Q4~)

24

1
+ (t4 2—t2+2—t 2 L4)—

24

X(&lj~2j&4j+&lj~2j~4j+~lj 4j~4j+~2j aj~4j)1 (25)

where t„=tank( —nPV/2) and V is the common value
of the nearest-neighbor interaction (i.e., V= Vgl —Vg2,
etc.).

Since jin Eq. (25) maybe taken as any of the S sites
of the lattice (except the origin), Eq. (25) is, in fact,
E—1 nonlinear equations in 1V—1 unknowns which
must be solved by some further approximation. Zernike
treats this problem in detail for the cubic simple, body-
centered and face-centered lattices in his original paper. 4

B. Moment Expansion for the
Correlation Function

We will now give an expansion for the correlation
functions which will put the theories of Cowley and
Zernike in clearer perspective with respect to each other
and will indicate where possible improvements can be
made in the calculations.

Equation (17) can be written exactly in terms of the
successive moments of the distribution function by using
a Maclaurin expansion for fB(Eg) in the variable pEg
as follows:

P2E 2

P() BA Pg, A(Eg——) fB(0)+PEgfB'(0)+ fB"(0)+
(~oI 2t

=fB(0)+PfB'(0)(Eg)j=A+—fB"(o)(Eg'),=A+ . +—fB'"'(o)(Eg"&,=A+
2i e~

(26)

where fB(")(0) is 8"fB(EO)/8"(pEg) evaluated at pEg=0
We may write analogous expansions for the other binary probabilities and by grouping terms obtain:

P .AA+PBB PAB
p,

BA, ,

='LfA'(0) —fB'(o)]L(Eg) =A —(Eg) =B]+—(fA"(0)—fB"(0)]DEg')j=A—(Eg')j=B]+".
2l

pn

+—[fA'"'(0) —fB'"'(0)]L((Eg) )j A ((Eg)"),=B]+ . (27)
e!

From Eqs. (14) and (15) we have
I.O

Cowley Cowley

g.(Ep)
j=AfA(Eo) fB(Eo)=-

B2mB(PBO+")+B 2nsA(PBO+X)-
g.(Epi

J=e

=tanh(PEg+X)

and so we may write Eq. (27) as

2ug, = Q —T (X)DEg"),=A —(Eg"),=B], (29)
0=1 n1

tp I I I I I

-2V -V & +V 42V
—.2V

.8 -.

Zernike
g.(E

4-

~ 2

I I I I I

-2V -V & +V +2Y
+.2V

,8-
Zer nike

g (Ep)
j=e

where we de6ne I I
-2V -V 0 +V +2V

Ep

p I I
-2V -V 0 +V +2V

Epa. tank(X+&)
r„(x)—=

X=0
FIG. 2. Probability distribution of the Geld at the origin site as

predicted by the Zernike and Cowley theories for the two cases
of an A atom or a 8 atom at site j.The correlation between j

This again is an exact expression for the correlation and the neighbors of the origin has been taken as 0.1.
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functions, the only unknowns being the moments
(Eo"); ~,~ and we can gain some understanding of the
theories of Zernike and Cowley by comparing their
moment expansion with the exact series. First, it should
be realized that since (Eo); ~ j4 is a sum of two particle
correlations, the higher moments (Eo"); ~,g are, in
general, combinations of n+I particle correlations. In
order to obtain a closed form solution to the problem
these higher moments which occur on the right-hand

side of Kq. (29) must be broken up in some approximate
way into products of two particle correlations. %e have
already seen that Cowley accomplished this by the
breakup scheme (Eo")z g,jj=(Eo)"j g, jj. ZerIllke, on
the other hand, allows the individual operators in Kq.
(29) to fluctuate about their mean value but assumes
they move independently of each other. This leads to
the following type of decomposition which is equivalent
to Zernike's approximation.

(Eo )j A, B (( 2 Q VOj&j) )j A, B
f

+!( i)~
((Voiox)"'

(Vouch~)"')

=~ s
»pg!p"g! .pI, !

j4)( 1)n
((Voto~)"'}j=~,a ((Vo~o4)») j=~,s,

m" 44 pg! p4,.!

where the sum P„,...„,. is taken over all combinations
of the p s which satisfy the condition

i »

p 4
—j4 ~

k is the number of sites which directly interact with O.
This is the mathematical statement that the correlations
with j of each of the f sites surrounding 0 are to be
retained and the correlations between sites f and f' are
to be discarded, which is Zernike's assumption.

It may be seen that both Zernike and Cowley give
the first term in Eq. (29) correctly but use different
approximations for the second and higher terms. In
breaking up a multiparticle correlation function
(o~ o ), it is reasonable to expect that the best ap-
proximation would be obtained by retaining the
strongest pair correlations. That is, if o» is strongly
coupled to 02, but not to the rest, and 03 is strongly
coupled to 04, but not to the rest, etc., then one could
guess that a sensible decomposition of the multiparticle
correlation would be (oio2)(o4o4) . (o~~oo). Let us
then consider the multiparticle correlation which occurs
in the second term of Eq. (29), ((Pj Vojo j)'}j=~,j4 A.
particular operator gy will be most strongly correlated
with itself and next most strongly with operators gI. of
those sites which are closest to f Cowley ignore. s aH

these correlations and effectively writes ((oj)'}j=~,o
=(47j}j=A,B(0f)j=A,B and ('ojoj')=(oj)j A', B'(4rj''}j A, B
Zernike also ignores the second type of correlation (i.e.,
(o jo j )~ (o j)(oj )) but does keep the self-correlation so
that ((oj)') is retained intact. Similar comparisons can
be made between these two theories for higher moments
as well.

%e may now draw some qualitative conclusions about
the usefulness of Zernike's and Cowley's approximations

and the possibilities for improved dosed form calcula-
tions. At erst glance it would appear that since Zernike
retains the self-correlation and so is able to include a
rough estimate of the fluctuations of the distribution
function g(Eo) about its mean value, it should be
superior to Cowley's theory in all cases. This conclusion
1s true when the number of opelatol8 1n Eo ls small) the
most striking case being the linear chain with nearest-
neighbor interactions. For this problem, Zernike's result
is very close to the exact expression for the correlation
functions and Zernike correctly predicts no cooperative
transition. Cowley's theory, on the other hand, is
signi6cantly poorer and incorrectly predicts a 6nite-
ordering temperature. This defect may be traced directly
to the fact that fluctuations have been ignored. How-
ever„as the dimension of the lattice increases, Ashkin
and Lamb" have pointed out that Zernike's result
becomes steadily poorer. This can be understood from
the fact that the neighbors of the central site 0 are
becoming more and more correlated with each other via
the increased number of coupling paths present in
lattices of higher coordination. Increasing the range of
interaction has the same eBect, and this undoubtedly
places Zernike's independent neighbor calculation of
g{Eo) in increasingly greater error. On the other hand,
the increased correlation between neighbors and the
inclusion of more neighbors with a longer range of inter-
action tends to narrow g(Eo) and so Cowley's estimate
of g(Eo) becomes more accurate.

In addition, there is the pragmatic feature that
Zernike's calculation becomes extremely difficult to
carry out as the coordination number increases and to
our knowledge has never been attempted for more than
nearest-neighbor interactions. This places it in the same

» J. Ashkin and W. K. Lamb, Phys. Rcv. 64, 159 {1943).



area of problems which it is feasible to treat with exact
high- Rnd 10%-temperature cxpRQsions. If one could give
a good. 6t at the ordering temperature, it wouM still
hRvc RQ RdvantRgc over exRct expansions~ but lt Is clcRr
thRt this is Just thc region in which the independent
neighbor assumption will be worst since short-range
order builds up quite rapidly in the neighborhood of the
transition point.

Cowley's theory is best, however, for those problems
for which exact expansions become increasingly tedious,
if not impossible to do with any accuracy (i.e., increasing
coordination of the lattice and increasing range of inter-
action). In addition, the mathematical difFiculty in
solviQg Cowley 8 indnitc sct of QoQlincaI' equations to
some approximation does not increase appreciably for
these more complex cases, so that it is likely that such
a theory will continue to remain useful for some time.
Fortunately, it is possible to And a set of simultaneous
linear equations for the correlation functions which have
the same order of accuracy as Cowley's nonlinear set
chow the ordering temperature and are capable of being
solved exactly for RQ RrbItrary I'ange of Interaction RQd

arbitrary coordination.

IV. LINER ZgU&T&0&s Fo»HE CORRE-
LATIGÃ PUNCTIGNS ABGVE THE

GRDEMNG TEMPERATURE

Both Zernike and Cowley obtain Rn infinite set of
coupled nonlinear equations in the 0,0 s which must be
solved in some approximate way to obtain values for
the separate 0.0,'s. It will be the purpose of this section
to show that at temperatures above the ordering tem-
perature a much more practical set of linear equations
for the o,o 8 may be used which have the same degree
of accuracy as either of the nonlinear forms of Zcrnike
and Cowley. Moreover, this linear set of equations may
be solved exactly for each of the o.o, '8 and for any range
of Interaction. Thc Solution ls such thai thc palrwlsc
interaction energy can be derived as a function of inter-
atomic distance directly from the experimental data.

Returning to the exact expansion for no; LEq. (29)j,
we have already seen that Cowley aIld Zernike have
accounted for the 6rst term on the right-hand side
exactly but their expressions correspond to some ap-
proximation for the higher terms. Cowley'8 approxima-
tion for these higher terms is probably quite bad since
the dominant contributions in these higher order cor-
relations can be expected to come from self-correlations
of site f, and correlations of site f with sites near to f.
These terms arc ignored by Cowley's theory and only
the correlation between fand j (which is usually distant
from f) is retained. However, Cowley's theory does give
quite good results for the 0.0,'s when compared with
experiment"*" from which it can probably be concluded

» g. Paskin, Phys- Rev &&4 A246 (&9~)
i3 S C Moss I, happ]. Phys, $g, 3547 (1964)-

l.o .9

FIo. 3.First-neighbor order parameters as a function of tempera-
ture above the transition point, computed by the linear approx-
imation and by Zernikes approximation for an AB alloy on a
body-centered cubic lattice (Cu-Zn). Only nearest-neighbor
interactions are assumed to be nonzero-

that the higher order terms in the expansion are negli-
gible at most temperatures above the ordering tempera-
ture. Consequently, the particular approximation used
for these higher terms wiB likely have bttle effect on the
6nal result. It is then reasonable to suggest that the
higher order terms be entirely neglected and Eq. (29)
be approx1mated as follows

' o =PT' P)E«o) -.—«o); .j. (3I)
Using Eq (&g) and the definition of g= i~ in(~„/~s)

gives

no;= —2~gmsp Q~ p'o~ii~; (32)
A particular case of this general formula has previously
been used by Walker and Kcating" and Paskin'2 in R
calculation for P Cu-Zn, and Clapp" has indicated the
justi6cation of this linear approximation for 3-8 alloys
generally, using arguments similar to those presented
here. Walker Rnd Keating found that a calculation of
the nearest-neighbor correlation in p Cu—Zn at 10%
above 7, gave —0.182, —O. I80, Rnd —O.ifi using the
Elliott-Marshall theory, the Zernike theory, Rnd the
llncRr RpproxlI11atlonq respectively.

PoI' R xnore dctallcd quantltatlvc compax'ISGQ of thc
linear approximation, Fig. 3 gives the nearest-neighbor
correlation in P Cu—Zn above the ordering temperature
as calculated by the Zernike and linear forxnulas. It may
be noted that the two calculations differ at most by
about 8% at T,/T~O. S. They are in perfect agreement
at 7"=T, and have the same asymptotic behavior as
T ~00

As a test of an A 38 alloy wc have compared the linear
theory with the Monte Carlo calculations of Fosdick"
for two choices of the second-neighbor interaction in
Fig. 4. The Monte Carlo calculations were performed on
R lattice containing 5&SX5 unit cells and periodic

i4 C. B.%'alker and D. T. Keating, Phys. Rev. 1M, 1726 (1963)."P.C. Clapp, Phys. Letters D, 3{)5 (1964)."I.. D. Fosdick, Phys. Rev. 116, 565 (1959).
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no, =— d'k n(k)e '""'~
&I

(33a)

Vor ——— d'k V(k)e *'~"'&,
&I

(33b)

where r, is the vector from the origin to site j.
The integration is taken over one unit cell of the

reciprocal lattice, the volume of which is ~~. Inserting
(33) in (32) yields equations in terms of n(k) and U(k)
which give the following solution for any value of k:

n(k) =
1+2m~msPV(k)

(34a)

1+2mgmeP V(k)
(34b)

where C has been chosen to satisfy the condition

1
noo= — d'k n(k) =1.

boundary conditions were assumed. At temperatures
well above the critical point, Fosdick's results are
probably quite close to the exact correlations of an
infinite lattice, but at temperatures near the critical
point (say T,/T) 0.9) his values will be a much cruder
approximation because of the long-range cooperative
effects which are now becoming important in an infinite
lattice. Since this is also the region of greatest inaccuracy
for the linear theory it is a moot point as to which calcu-
lation is closer to the truth here. For T,/T(0. 9, the two
calculations do not differ seriously.

Ke have not made a quantitative comparison be-
tween the Cowley and linear approximations because of
the inherent diffi. culty in solving Cowley's nonlinear

equations to sufFicient accuracy to make a close numeri-

cal comparison meaningful.
The set of equations (32) can be diagonalized by

introducing the Fourier transforms of no, and Vo~, i.e.,

since strong Bragg reflections completely obscure the
x-ray diffuse scattering in certain regions of k space. To
make matters worse these regions usually occur where
n(k) has its minima and hence where the maximum
values of V(k) would lie Lv.i. Eq. (34)j.

One can proceed in another direction by making some
specific guess as to the form of V(r), either assuming
that V(r) is essentially short range and has a finite value
only for the first few neighbors or assuming a particular
long-range form such as the V(r) proposed by Harrison
and Paskin" for Cu—Zn. The undetermined constants
and the validity of the assumed form of V(r) are then
determined by fitting Eq. (34) to the data.

Some preliminary restrictions on the form of V(r) can
be deduced from the observed distribution of n(k) be-
cause of the relation between the symmetry of V(k) and
n(k) implied by Eq. (34). This restriction gives a mini-
mum range which V(r) must have to account for the
shape and symmetry of n(k) and it is possible to con-
clude for instance that current data on Cu3Au" imply
an interaction at least as far out as third nearest neigh-
bors, so that the agreement which Moss obtained with
the Cowley theory using V& and V2 alone represented
something more of a forced 6t than had originally been
thought. This is not a reflection on the accuracy or
inaccuracy of the Cowley theory but means that V3 is
not negligible in Cu3Au and should be included in any
theoretical fit to the Cu3Au data.

A second restriction on V(r) may be obtained from a
knowledge of the ordered state of the alloy since the
maxima of n(k) fall at those points in k space which
correspond to the wave vector of the ordered state even
at temperatures above the critical temperature. This
implies Lvia Eq. (34)] that V(k) must have absolute
minima at these points. For example, Cowley' fitted his
data on Cu3Au with values for the first three nearest-
neighbor interactions of V~ ——358k, V2= —34k, and
V&

———19k. These values yield minima for V(k) at
positions in k space which are incompatible with the
ordered structure of Cu3Au by the above criterion.

~
—i2~& rgC

o,op= — d'k
vg 1+2mgmePV(k) I

Finally, one has as the general solution for no,".

(35)
—.20

—.I5

Equations (34) and (35) can be used for experimental

analyses in a number of ways. The most direct way in

principle, since n(k) (which is actually the appropriately
reduced x-ray intensity) rather than no; is the quantity
directly measured in the x-ray diffuse scattering by the
sample (see Moss"), would be to insert the experimental
values of n(k) in Eq. (34) and thus calculate V(k). The
nature of V(r) would then be obtained by Fourier in-

version. This inversion, however, requires a complete

map of n(k) in k space which, in general, is not possible

—.IO

—.05

I.O .5
Tc/T

Fzo. 4. The linear approximation compared with Fosdick's
Monte Carlo calculations for the 6rst-neighbor order parameter in
Cu3Au. The second-neighbor interaction V2 was given the two
values —0.25 V~ and zero.
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In conclusion it may be said that the linear theory
should prove useful in determining the strength and
range of the pairwise interactions in alloys from the
high-temperature data on short-range correlations, since
the mathematics involved in making such a determina-
tion is quite tractable regardless of crystal symmetry,
alloy composition, or range of the pairwise interaction.
The theory should be particularly useful for testing the
validity of long-range interaction models.

It should be remembered that the linear theory is
valid only above the ordering temperature and that its
accuracy improves as the temperature increases. A
rough guess based on the few comparisons made with
three dimensional alloys (to be reported upon in Part
II) is that the linear theory probably is accurate enough
for most purposes to within 10/o of the ordering tem-
perature. The range of validity for a particular system
can be crudely estimated by comparing the temperature
variation of the measured values of n(k) with the tem-
perature behavior predicted by Eq. (34) Lassuming

V(k) temperature-independent].
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APPENDIX

where

(~o')--d—= Z « ~~'P( Z ~r"P
&o=k

and p=e—P(l '~ ' ~&e'~"

The sum g;„d. implies summing each of the 1Vo

operators in the lattice (including oo) over its two
allowed values +2m& and —2m~. We proceed by first
imagining the sum over 0-0 to be performed first in the
numerator on the r.h.s. of Eq. (A1), i.e.,

(«)cond+i P Z («)aond&j P y (A2)

where P-,„+' implies a summation for all operators
other than 0.0. It will be noticed from the definition of
(o'o~)a.nd above or Eq. (14) of the text that it contains
no dependence on the operator 00 since a summation
over 0.O has removed this dependence. Therefore the
order of P;o + and («n)„„d in Kq. (A2) can be inter-
changed. This gives (putting in the definition of

&0 cond

2 &~o')"-« "p

= 2'( 2 «'~, "pl 2 ~2"p) 2 ~9"p (A3)

and now the factors P-,o=+ o;"p can be cancelled

The theorem to be proven is that the operator 00
occurring in Kq. (9) of the text may be replaced by the
conditional average, i.e., Eq. (A1) below is exact.

2 («')--«~"p= Z'( Z «'~~"p)

= Z «'~, "p (A4)

P «~;p/2 ~,"p
which is the required equality.

B ~,A
The proof depends upon the use of a grand canonical

ensemble and the property that the o operators commute.
&k=6 0'k=6


