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The dc mobility of electrons is considered for scattering by acoustical and optical phonons. It is shown that
the vertex terms (ladder diagrams) in the mobility integral can be partially summed to all orders of pertur-
bation theory. These vertex terms are shown to be important for acoustic-phonon scattering. The sum of the
ladder diagrams yields an effective energy width (inverse lifetime) with the 1-cosf term, in agreement with
transport theory. For polar coupling to optical phonons, the ladder diagrams can still be summed but are

shown to be unimportant at low temperatures.

I. INTRODUCTION

MANY-body calculation of most transport phe-

nomena requires the evaluation of a two-particle
correlation function.! This, in practice, separates into
finding a one-particle Green’s function and the vertex
function. The one-particle Green’s function is typically
obtained by finding the lowest order terms in the self-
energy. But finding the vertex function has been an
enigma. In some cases, it is approximated by its lowest
corrections, such as in Fig. 1(b). In other cases, one has
to sum the ladder diagrams of Fig. 1 in order to find the
correct result.

The calculation of polaron dc mobility limited by
acoustical-phonon scattering is an example of when the
ladder diagrams must be summed.*~* The purpose of the
present study is to actually calculate and sum parts of
the ladder diagrams of Fig. 1. In Sec. II, a prescription
is derived whereby a vertex correction of any con-
figuration of phonons may be written down by inspec-
tion. This allows one to take any vertex term and im-
mediately sift out its largest contribution. In the low-
temperature (7' — 0) and weak-coupling limit, the im-
portant terms in the ladder diagram can then be
summed.

This procedure is applied to acoustical-phonon inter-
actions in Sec. III. Starting from the Kubo® equation
for the mobility, and by making several approximations,
the most important terms in the ladder diagram are
summed. This summation yields the #ransport equation
result for the mobility; the transport form has the
(1—cosf) term in the scattering integral. This result
establishes the connection between the Kubo and
transport forms of the mobility evaluation. The ap-
proximations, which are introduced to relate the trans-
port and Kubo formulations, provide insight into the
areas of applicability of the transport result.
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The vertex corrections to the dc mobility for scatter-
ing by optical phonons is examined in Sec. IV. Langreth
and Kadanoff® recently calculated the low-temperature
mobility of electrons in polar crystals. They found that
the diagram of Fig. 1(a) gave a mobility contribution
~a~t, while Fig. 1(b) gave one ~a and rightly pre-
dicted that other diagrams were either ~a™! or un-
important. We have calculated the mobility terms of
order ! and a° from all of the diagrams in Fig. 1 and
Fig. 3. These additional vertex terms, which may be
summed to all orders, add correction terms ~ (7'/wq)Y/2
and are unimportant at low temperatures.

II. VERTEX TERMS

The dc mobilities will be calculated using the Kubo
formalism. It is easiest to use the Matsubara® Green’s
functions. Following Abrikosov, Gorkov, and Dzyalo-
shinski,! the mobility at finite temperatures is found by
evaluating the current-current Green’s function:

Ple—r', r—)=¥(Tj(r7) i)  (2.1)

In Fourier transform space, this means evaluating

P(k)= c / L k k
= 3Bm2pzn (2%)3g(p)9(?+ )p'F(P’ )’ (2°2)

where p and % stand for four-vectors p= (p,ip.), etc.,
and 8=1/ksT. The Green’s function and self-energy are

9(?) = D:Pn" Gp"'z(p)]_l ) (2.33)
Z(p)=—TZL / 7 S+9D(QT(pg), (2.3b)
an (2r)? 25 ’

-

{a) (b F1G. 1. Vertex dia-

grams discussed in
the text. These are

the ladder diagrams.
+ ooy oo + .o

(c) (d)

¢ T. Matsubara, Progr. Theoret. Phys. (Kyoto) 14, 351 (1955).
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and the vertex functions are defined in the usual way.
The retarded Green’s function is obtained by the ana-
lytical continuation ip, — e+16:

G (pﬂ?n) ;n—'_t-l'i; Gr (p7e) ) (243)
P(kjicon) > Pr(kw) . (2.4b)

The spectral function is
A(p,e)=—2ImGr(p,e) . 2.5)

The density of the electrons is assumed small enough
that they do not affect the phonons, and D(g) can be
replaced by D@ (g).

The mobility is found by using the above definitions
to evaluate P (k). This immediately gives the retarded
function Pg(kw), and the dc mobility is given by

= (eng)™ _)Iim . wlImPrkw), (2.6)

0,k —
where 7 is the density of electrons. The limit k— 0
presents no problem and will be taken in the starting
equation (2.2).

In actually calculating a mobility for a given electron-
phonon interaction, the self-energies are usually evalu-
ated by considering just the lowest order diagrams. This
hopefully gives a reasonably accurate Green’s function
to use in (2.2). Assuming that a Green’s function is
known, the vector vertex term in (2.2) still has to be
found. One method is to approximate I' by its first
term, T'@=p, The Matsubara sum over P, can be
evaluated, giving

e [ dp

© () =— ep?A (p,e)nr(e

PoGod= [ 2 aepa 0,90
X8 @ye-Hion)+Gpre—ivn)].

The analytical continuation of P(iw.) to Pgr(w) just
changes G to Gg. The lowest order contribution to the
mobility is

2.7

p (W)=

/ O A (504 (5, )
@y

X[np(e)—%r(e+w)

w

6n om2
:I . (2.8a)

For nondegenerate systems, this reduces to (w— 0)

eB d*pde
A (p,e)nr(e).
6nom? / (21r)“i)2 (,0me (e

p@= (2.8b)

This is a well-known result.2? The above derivation of
(2.8) is very efficient. More importantly, the derivation
of u(™ for an arbitrary number of phonons (#) in the
vector vertex I'(® is no more complicated than this
derivation of the zeroth term.
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When actually evaluating (2.8b) it is convenient to
use the “quasiparticle approximation”

0(e—E
A (P,€)2z 47!'——(-—-—&Z(ﬁ) ) (29)
T'(p)
where
I'(p)=—2Im 3>z (p,E(p)), (2.10a)
Z(p)= (1—3 Re zR@,e))_l , (2.100)
Je e=E(p)

and where Y_r is the retarded self-energy and E(p) is
the quasiparticle energy. Since I'(p) is proportional to
the electron-phonon coupling constant g, then p@~g=1,
For g«1, one can write the mobility as a power series
ing:

a—
p=—taogtargt- . (2.11)
g

A perturbation theory is only useful if the mobility
can be found after evaluating a few terms. One asks the
question whether, after evaluating u©, all terms of
order g have been evaluated. Unfortunately, the
answer to that question is “no.” This is demonstrated
below by evaluating the major vertex corrections, which
are the ladder diagrams indicated in Fig. 1.

A generalized vertex diagram is indicated in Fig. 2,
where the various phonon lines can be connected in all
possible combinations For # phonons, the vector vertex
is
prw=(—)g" 3

Qn92n .-

dqu. . .dsq”

(271")3"'
XV(g1): - V(ga)p: (Pt -an)
X g (P; P+qu P+‘]1+92,' : ')

XD®(g1)D®(g))—D®(ga), (2.12a)
FW=G(p+k)G(p+k+q) -+
Xg(@®)g(p+g)---. (2.12b)

Terms in the mobility proportional to the density of
electrons are ignored. When the Matsubara sum is taken
over phonon frequencies ¢», there are terms proportional

Ptk+gi+g2

F1G. 2. A general-
ized vertex diagram
used in deriving
(2.14). The phonon
lines can be con-
nected in  any
fashion.
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to the phonon occupation numbers #, and #,+1, and
also terms proportional to the electron density. Ignoring
the latter terms, the vector vertex becomes

p-Im= / TPy
(27[')3"‘
X[N N g+ N JF™,
F™W =G(p+k, ipatiwn)
XG(p+k+q', ipntiontwy) -
XG(0,ipn)G (P+as, ipakwg )

In (2.13), Ng=mn, or n,+1, corresponding to =wg,
where all possible combinations of == signs are taken,
representing all possible combinations of phonon ab-
sorption and emission.

By inserting (2.13) in our prescription (2.6) for
finding the mobility, the #-phonon combination is

V(g): -V (ga)p: (p+a1- - qn)

(2.13)

2 ¢ B [dde
M=——— | —np(e
3nom?J (2m)*
dsql///dsq”
X/——V( )V (ga)p
Q2n)n 71 (g
c(p1+-@)Fr™WNqiNgs- - - Ngn, (2.142)
FR‘")={ImGR(p,e)GR(p—|—q', ed:wq) v '}
X{ImGr(p,e)Gr(p+4q, ewg) -} . (2.14b)

In (2.14b), all of the G for one electron line of Fig. 2
are in one bracket, the other line in the other bracket.
By using these equations, the vertex correction to the
mobility for any configuration of phonons can be
written down by inspection. For the ladder diagrams of
Fig. 1, this reduces to

Fr™={ImGr(p,e)Gr(p+4a1, etwg): -}
The form (2.14c) is clarified by listing the lowest terms:
FrO=314(p,e), (2.15a)

Fr®O=2%{—A(p,e) Re Gr(p+q, extw,)
—Re GR (P,G)A (P‘[“L é:’:"’-’q)}2 ’

Fr®=1{—A(p,e) Re Gr(p+q, exw,)
XRe Gr(pt+g+¢, etwtwy)
—Re Gr(p,9)4 (p+4q, exw,)
XRe Gr(p+q+q', etwotwy)
—Re Gr(p,e) Re Gr(p+4q, ew,)
XA (p+q+4q, efwotwy)
+'}A (p,é)A (p+q> E:l:wq)
XA(p+q+q, etw o)) (2.150)

The term F© just gives the lowest order term p© in
(2.8). The one-phonon term (2.15b), Fig. 1(b), was pre-

(2.14¢)

(2.15b)
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viously given by Langreth and Kadanoff. The prescrip-
tion (2.14) for writing down the contribution of an
arbitrary ladder diagram is quite simple. This will allow
the important terms in the ladder diagram to be
summed to all orders. This is done in the following
sections for both acoustical and optical phonons.

It was noted above that the quasiparticle approxima-
tion would be used for evaluating A4 (p,e)?. A similar
approximation must be used for [Re Gr(p,e) ]*. Noting
the identity

[Re Gr(p,e) P=—+A4(p,)/T(p)— 1A (p,ef, (2.16)

it is clear that (Re Gg)? has the property of a delta
function. But there is an additional nonsingular
property which is important. This leads to the
approximation

2m3(e—E(p))Z(p)

[Re Gr (P; 5)]2 = T (p)

+P—Z(p)2.
Le—E(p)T

The notation P? means ‘“‘principle part squared”; the

singular behavior of the denominator, which causes the

first term, is ignored in the second term.

(2.17)

III. DC MOBILITY; ACOUSTICAL PHONONS

The zeroth-order term for the mobility is obtained
by combining (2.8) and (2.9):

o B [T P
K= i | Gyt @@ G

As pointed out by Baumann and Ranninger,? this is
usually a bad approximation to the electronic mobility
from acoustic scattering. This form has the wrong
energy width. From a transport equation analysis, one
knows that the usual energy width integral should have

a factor of
1—cosf=—p-q/p* (3.2)

for scattering from p — p-+q. It is convenient to define
a transport self-energy and the corresponding energy
width

dyq
1) =
D013 [ Zre
X 0/PSG+HIDOE) , (.30
Ta(p)=—2Tm Sr QER)>0. 6.3b)

Setting the un-normalization factor Z(p) equal to unity,
the mobility from the transport equation is

e @¢p P
(2r)*Tr(p)

The two forms u©@ and ur® are quite different since
T'(p) and T'r(p) are different. For example, for piezo-
electric electron-phonon scattering, I'z(p) is well be-

(34)

nr(E(p)) .

,UT(O) =
37Lom2
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haved on the mass shell (E(p)— ¢p), while I'(p)
diverges logarithmically in this limit.”

It will now be shown how one can derive the transport
result (3.4) from the Kubo formalism. Under certain
conditions, one can get (3.4) by summing the ladder
diagrams of Fig. 1. The first two conditions are (1) that
the phonon energy is neglected (w,=0, elastic scatter-
ing), and (2) that only induced phonon terms are im-
portant (Ng+1~Ng>1). Both of these conditions are
also assumed in deriving (3.4) from the usual transport
equation. The third condition (3) is that the quasi-
particle approximation (as defined in Sec. II) is valid.

Assuming these three conditions, the important terms
in the ladder diagrams will now be summed. The first
term is (2.15b)

Fr®=3{4(p,e)* Re Gr(p+q,¢)
+ReGr (pse)zA (p+q) 5)2
+24(p,9A(p+4q, €
XRe Gz (p,e) Re Gr(pt+q, €)} .
Since our interest is in vertex terms of order unity, only
the 4% and Re Gg? terms are important. Also, Z(p) will

be set equal to unity. In Re Gz?% only the singular part
of (2.17) is used. Considering only these terms gives

8(e—E(p+q))
T(p+q)

Using this form in (2.14a) gives for the first ladder
diagram

(2.15p")

FrO~1A(p,e)2r (2.15b")

p-TL®=pA,(e) (3.5a)
1 dq
Ay(e)=—" V(q)2Nq2w
O [ ooy

d(e—E(p+

(—(wp- (p+4q), (3.5b)
I'(p+q)

A,,(e)= [T (e)—Tr(e)]/T(e) . (3.5¢)

The notation I'(e) and I'r(e) mean (2.10a) and (3.3b)
for e= E(p). Similarly, the two-phonon ladder diagrams

give (
3(e—E(p+
Fa® =14 (g2 2T D)
I'(p+q)

8(e—E(p+9q+4"))
X 27 .
I'(p+4q+4q")

In evaluating this and other higher order diagrams, the
chain rule must be used. This integration rule, valid
for [p|=|k]|, is that
d’q 3(e—E(k+q))
/ V(g)2Ng2r———
(2m)? I'(k+q)
Xp- (k+q)=p-kAa(e) .

(3.6)

(3.7)
7 See Appendix.
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(a) (b)

+ 4 eee

(d)
FiG. 3. Vertex diagrams discussed in Sec. IV.

From this rule it can be seen immediately that the im-
portant vertex term from the two-phonon diagram
(3.6) is

p-TL®=pA,(e)?. (3.8)

When one evaluates the equivalent terms from higher
order ladder diagrams, there results the series

p-T=p[14+AAALHAS+--]  (3.92)

p-T=p*/(1—A,) . (3.9p)
The integrand for the mobility integral now has the

form
# 2mb(e—E@)

1—Ae ~ Tz(p)

This is the desired result. Starting from the Kubo
formalism, the contributions to the vertex of order
unity have been summed for the ladder diagram. Under
the three conditions listed above, the Kubo formalism
does give the transport equation form of the mobility.

or

A(p,e€)? (3.10)

IV. DC MOBILITY; OPTICAL PHONONS

The Kubo formalism is very suited to evaluating
mobilities limited by optical-phonon scattering. At low
temperatures and for weak coupling, the correct mo-
bility is given by the first few terms indicated in Fig. 1.
Because the phonon scattering is inelastic, the transport
equation derivation of the mobility is far more difficult.®

There have been many past calculations of mobilities
in polar crystals.®* Langreth and Kadanoff® have
recently calculated the mobility using a Green’s-
function approach. In terms of the polar coupling con-
stant «, they found that the diagram of Fig. 1(a) con-
tributed u©@~q1, while the one-phonon term Fig. 1(b)
contributed p®™~a®. This is generating a series of the
type (2.11), for g=a. The present investigation shows
that Fig. 1(c) has two terms of order o®. However, these
two contributions cancel in the important leading term,
so that the net correction is of order (7'/wo)2. The
optical-phonon frequency is wo. The diagram Fig. 3 also
contributes a mobility term of o° which is of order
(T/wo)2. There are also vertex corrections of order
unity arising from each ladder diagram. These terms are
of order (7'/wo) as T — 0 and are not important. This
analysis examines every ferm in the vertex which con-

8D. J. Howarth and E. H. Sondheimer, Proc. Roy. Soc.
(London) A219, 53 (1953).
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tributes a mobility correction of order a! or . Our

optical-phonon results, which are briefly outlined

below, confirm the Langreth-Kadanoff (LK) result.
The term u@~a! comes directly from (3.1). This

gives®
pO@=(er®/m)ym*Z(0)*, 4.1
where the quasiparticle lifetime is
71(0)=T(0,E(0))Z(0) . 4.2)

The lifetime has been evaluated to order o? by LK.

We now consider the effect of the ladder diagrams,
Fig. 1, on this result. Since only vertex corrections of
unity are desired,! just the singular part of (Re Gg)?
are now considered. The first correction to (4.1) comes
from the two-phonon diagram Fig. 1(c). The important
term in Fg® (2.15¢) is

Fr®s A (p,0)'N (N+1)4 (p+4q, etowp)?
X4 (P+(l+q ) 5)2 ’

where N is the thermal occupation number for phonons.
When this is integrated over phonon coordinates, the
vertex contribution is

pT®=pAo(e), 0<e<wo,
[1 e+wo/2 ln(6+wo)]’2+\/ e:r
((ea) (o) e
(etwo) 2+ €
[ (e+wo)2—V e:|
For small energies, this goes as

lim Ao(e)= (4/9) (e/wo)

(4.3)

(4.4a)

Ao(e)= (4.4b)

4.5)

Considering the sum of all even-phonon ladder diagrams
generates the series, valid for 0< e<w,

P T=p(I+HActAS+HAS )= $7/1—-4°(9) -

Because of the low-energy limit of Ao(e), (4.5), this
vertex correction is only of order (7/wo), and does not
change the main result (4.1). This behavior contrasts
sharply with the acoustic-phonon scattering derived in
Sec. ITI, where the vertex caused a major change in the
results.

The one-phonon vertex gives the term p®~a? From
(2.15b), the relevant vertex term is

(4.6)

p-TO(p,e)= 2/(—27 )

Xp- (p+4q) Re Gr(p+4q, e—wo)?.
9 In this section, the definitions of m*, Z(p),

those of Langreth and Kadanoff, Ref. 3.
10 This means that we also set Z(p)=1.

4.7

N, etc., parallel

G. D. MAHAN

142

This is most easily evaluated by noting the identities

)
p-TO(p,e)=2p—Re ZW (p,e)
3

€
”a 4.8)
= —ZPZa— Re [Z0(p,0) =2 (p,6)] -
€
This gives the LK result for the leading term
21
p-T®(pe) =P225(1+0(e/wo)) . 4.9)

There are additional corrections to this result arising
from other ladder diagrams. Summing all ladder dia-
grams of odd number of phonon terms, the additional
factor is (1—Ao(e))™* as in (4.6), which is a negligible
contribution to (4.9).

The two-phonon terms, Fig. 1(c), are now examined
for mobility contributions of order «°. The two im-
portant terms are

A +q'
FR(2) = .}A (p’e)2_(w
T'(p+q+q’e)

X[Re Gr(p+4q, e—wi)*+Re Gr(p+q, etwo)?] .

The contribution of these terms to the mobility may
be found exactly in the quasiparticle approximation.
The first term gives a vertex term of pa(w/6)
X[14+0((¢/wo)*2)]. In evaluating the second term, the
double principle part definition of (2.17) is used. The
singular part of this term has already been included in
the u© vertex correction (4.3). After doing the inte-
grals, the leading term is — p%ar/6, which just cancels
the first term. The additional terms ~ (e/wo)*? are of
order (7'/wo)? and may be neglected. The diagram of
Fig. 3(a) also provides a term smaller by (7'/wo)** and
is unimportant when 7'— 0. The remaining vertex
terms of Figs. 1 and 3 just add a (1—A(e))~2 factor to
these (7'/wo)Y2 corrections.

This accounting of vertex terms includes all ferms in
the mobility of order o and of. All of the ladder dia-
grams which contribute terms of order o or a® have
been evaluated and havebeen shown not to be important
as T— 0. This confirms the Langreth-Kadanoff result

u=-er(0) (m*/m?)Z (0)*(142/3e) .

V. DISCUSSION

The above results shown that the important parts of
the ladder diagrams in the polaron mobility calculation
can be summed to all orders. An important part of
summing these diagrams is being able to easily write
down the vertex correction for any particular diagram.
This turns out to be quite simple when one uses the
Matsubara method as developed by Abrikosov et al.
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The ladder diagrams are very important for acousti-
cal-phonon interactions. When the phonon scattering
can be treated as elastic, and when the quasiparticle
approximation is justified, the transport result is valid.
The quasiparticle approximation (I'K7") should gen-
erally be valid for piezoelectric electron-phonon inter-
actions."=¥ The width of the spectral function is given
in the Appendix as '~ g7 (e;/ €5)"/2, so the approximation
is valid for thermal electrons when 7> g%e. This is
about 0.5°K in CdS, which has one of the strongest
piezoelectric electron-phonon interactions. Neglecting
the phonon energy is not a serious error, since these
energies are less than the spectral width for g>1.

Note added in proof. Green’s-function methods have
also recently been applied to electron mobility in metals
by T. Holstein [Ann. Phys. (N.Y.) 29 (1964)] and
G. M. Eliashberg (Zh. Eksperim. i. Teor. Fiz. 41, 1241
(1961) [English transl.: Soviet Phys.—JETP 14, 886
(1962)7).

APPENDIX

The analytical forms for the lowest order self-energy
and vertex diagrams are listed below. Results are given
for optical phonons, polar coupling, and for acoustical
phonons, piezoelectric coupling. Some of the results are
well known, but are included for completeness.

A. Optical Phonons: Polar Coupling

The lowest order self-energy* is

d’q
20@=-F [ vp@eet), @y
an (27,.)3
w2 € 12
30— )
Ve €p—wo—1Pn
€ 12
+(V+1) sin—’(——————) ’ (A2)
eptwo—1ipn

The transport self-energy is
d’q
(2m)?

%00)= 5 [ V(q)%q—n<°><q>c<p+q>, (a3)

2100 =2(2) ] Cetonmipays

€p

€ 172
e — )]
€p—Wo—1Pn
+<N+1)[<ep<wo—¢pn))lﬂ—(ep+wo—ipn>

Xsin™ (——ep———->”2j| ] (A4)
eptwo—ipn .

11 A. R. Hutson, J. Appl. Phys. Suppl. 32, 2287 (1961).
(1;’ 6% D. Mahan and J. J. Hopfield, Phys. Rev. Letters 12, 241
Y, Osaka, J. Phys. Soc. Japan 19, 2347 (1964).
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B. Acoustical Phonons: Piezoelectric Coupling

The lowest order self-energy is

g &
SO (p)= —2
w=—2x [ o=

R 3D<°’ (@G@p+q) . (AS)

In this form, the piezoelectric interaction has been
assumed to be isotropic, with

DO (g)=— , (A6a
! gnito )
FP=4ngh?Cs®, (A6b)

¢
g= (K?), (A6c)
eohC S

where (K?) is the average of the square of the electro-
mechanical coupling constant. The dimensionless con-
stant g is a convenient coupling parameter for the piezo-

electric interaction. After doing the Matsubara sum g,
in (AS),

(O] - g2
0= /

1
&g —

2w,
N, N+t
x[. - ] (A7)
ipn—e(@+a)tw, ipa—e(p+q)—w,

This can be evaluated in the high-temperature limit,
N +1=T=w,, which is valid even at helium tempera-
ture. Defining e,=mCs?/2, this becomes!?13

zw (p)=§ \/ (:—) ‘Sin_l<%)

_Vee
+sm (m)} o (A8)

The transport self-energy (A3) evaluated in the high-
temperature limit, is

—gVe
zT<n<p>=——{(ep—ip,.>

28 €2
X|: C NetVe vV ep—V es:l
n! ~+sin™!
¥ (e,,—ip,,)”z 1 (ep—iﬁn)m

— (V e&5+V &) (ep—ipn— (V ep—V €)2)2

— WV &=V &) (ep—ipa— (V e+ 63)2)”2} .
(A9)



