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A semiquantitative explanation of the observed distribution of magnetism in the transition metals and
alloys is made based on a highly simplified quasiparticle band model. It depends on only two parameters, the
valence (number of d electrons) of the metal and the ratio of quasiparticle interaction strength to hand-
width, Co/E". The quantity Co/E" increases with valence and also increases as one goes from the 5d tran-
sition metals to the 3d transition metals. Ferromagnetism is found to be most likely for those metals with
large Co/E" and a valence well away from five. Antiferromagnetism is found to occur for a valence of around
five, as do the more complex states such as the ferrimagnetic and spiral-spin-density-wave states, which
are explicitly described. It is suggested that the peak in the specific heat of the transition-metal alloys that
occurs as one alloys across the 3d transition series is closely related to changes in the band structure caused

by ordering, at least for the Cr-Mn system.

I. INTRODUCTION

T has been known for some time that the d electrons
in the transition metals should be treated as itinerant
rather than localized electrons. This is most clearly
evidenced by the large linear specific heats, the non-
integral magnetic moments in the magnetic metals,
and the fact that band calculations indicate the d band-
width to be substantial. More recently, Fermi surface
studies have given still more direct and unequivocal
support to theitinerant model. Itinerant electron models
have been proposed to explain the ferromagnetism found
in the transition metals, e.g., those put forward by
Bloch,! Slater,? Van Vleck? (not purely itinerant), Mott
and Stevens,* Kanamori,® and Herring.® Similarly, it
has been possible to treat the phenomenon of antiferro-
magnetism within the itinerant electron model, and
work in this field has been done by Slater,” des
Cloizeaux,? Overhauser,® Tachiki and Nagamiya,!® and
others. Up to this point no band treatment of ferrimag-
netism has been developed despite the fact that it has
been observed in CrPt; and in more complicated alloys
such as Mn,Sb, Mn;As, and others. Furthermore, an
ordered ferromagnetic alloy will have a spatial distri-
bution of magnetic moments such that it should be con-
sidered as ferrimagnetic.

The observed distribution of magnetism in the transi-
tion metals is remarkably simple. With reference to the
part of the periodic table that comprises the transition
elements, one finds ferromagnetism in the upper right-
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hand corner and more complex magnetic behavior in
the upper center of the table. The purpose of this
paper is to study the incidence and distribution of
magnetism in the transition metals and their alloys on
the basis of a simple model that is capable of describing
ferromagnetic, antiferromagnetic, ferrimagnetic and
even more complex states. Simple as the model is, the
particular numerical values of the parameters of the
model can still be put into a rough correspondence with
position in the periodic table.

In Sec. IT we describe the simple model. In Sec. III
we introduce the concept of a phase diagram defined
relative to the parameters of the model. We use the
phase diagram to indicate the relative stability of vari-
ous magnetic phases and so correlate the copious numeri-
cal results obtained from the model. The methods used
to construct the phase diagram are discussed; they in-
volve calculation of appropriate response functions and
an actual calculation of the energies of various magnetic
states. The correspondence of the model to actual transi-
tion metals and alloys is discussed semiquantitatively.
In Sec. IV it is shown how various types of magnetic
states may be constructed and their energies calculated
within the framework of the model. Of these, the para-
magnetic, ferromagnetic, antiferromagnetic, ferrimag-
netic, and spiral-spin-density-wave states are chosen for
explicit study. In Sec. V the method used in constructing
the response functions is discussed. In Secs. VI through
X those states described above are studied individually
and a number of phase diagrams are constructed. In
Sec. XI the question of local moment formation is
studied within the context of our model using the
theory developed by Wolff!! and numerical results are
presented.

II. MODEL

We shall now describe the model used to treat the
transition metals and alloys. The electrons are divided
into two classes, s like and d like. The magnetic polariza-
tion of the s like electrons is induced by that of the

1 p, A. Wolff, Phys. Rev. 124, 1030 (1961).
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electrons and can, in principle, be treated by perturba-
tion theory, thus our primary concern shall be with the
d electrons which are treated within a simplified version
of the Landau quasiparticle picture at zero temperature.

In the paramagnetic state, the quasiparticles occupy
a single band appropriate to the tight-binding ap-
proximation for a crystal of cubic symmetry. The atomic
wave functions used in the tight binding scheme are
assumed to have s like symmetry and next-nearest-
neighbor overlap is neglected. We shall indicate which
results depend essentially on this choice of band struc-
ture and attempt, as well, to point out permissible
generalizations. Within the approximations described
above, the band part of the energy appropriate to a
particle of wave number k is

ex=—E"'(coskza+ coskya-+cosk.a), (2.1)

where a is the nearest-neighbor distance in the crystal
and the components of k satisfy

—w/a<lki<m/a; j=ux,v,z. (2.2)

The function e is plotted in Fig. 1 for k in the [111]
direction. The density of states corresponding to e is
also shown in Fig. 1 and is in only very rough agreement
with the actual density of states found in the transitions
metals; the present curve falls off too slowly at the ends
and the shape is otherwise too simple.

The particle-particle interaction is treated in the self-
consistent-field (SCF) approximation and consequently
is described by

Hiy= CO[ZZU(<ClvTCla>Ch}TCl5_ <61a"61:7)613‘\61aj (2-3)

in second quantization. Here ci,'(ci,) represents the
creation (destruction) operators of an electron in a
Wannier state of spin ¢ on site /; Cy is to be interpreted
as the interaction strength between quasiparticles.
The quasiparticle screening serves to eliminate inter-
actions between particles on different sites. The total
energy of the system is given by

Ei=2 ks &x{0kottxo)+3Co 2. 10({c1otc10){c15Tc13)
- (ClaTClE><Cl§TCla>) )

axe=(1/2/N)X1 exp(—ik-R})ci,

(and similarly ax,) is the destruction (creation) opera-
tor of an electron in a Bloch state ko; IV is the number of
unit cells in the crystal. We shall see shortly that in the
case of a ferromagnetic state the model reduces to the
usual Slater? band theory of ferromagnetism in which
the spin-up and spin-down electron bands are identical
in shape but separated from each other by an energy
difference referred to as the exchange splitting, and the
total energy of the system contains a term proportional
to the square of the magnetization.

Within the model which we have described, the
Hamiltonian is specified by only two parameters; the
total number of particles » and the strength of the

(2.4)
where
(2.5)
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F1G. 1. The energy band ex=cosk,a-cosk,a-+cosk.a in the [111]
direction and the density of states corresponding to ex.

electron interaction C, measured relative to E”. An
insulator may be described by only one parameter,
Co/E", since the band is totally filled; this represents a
crucial difference between the two states. The param-
eters Cy and E” being quasiparticle parameters should,
in fact, depend on the state of magnetization of the
system but we shall neglect this effect and take them to
be the same for all states. Within the quasiparticle model
we shall investigate the energetic stability of one state
with respect to another, but it should be borne in mind
that the model is not strictly valid for calculating the
actual cohesive energy of a state.

III. PHASE DIAGRAM

For a given Co/E" and # there may be more than one
type of state which are self-consistent eigenstates of our
Hamiltonian. We are specifically interested in the state
of lowest energy for each Co/E” and ». For different
values of Co/E" and #, states of different character may
correspond to states of lowest energy. Thus, we can
construct a phase diagram in which the total number of
particles # is given by the abscissas, and the relative
interaction strength Co/E" is given by the ordinates;
different regions in this phase diagram will correspond to
stability of different phases. The problem we set for
ourselves in the present paper is to establish by direct
quantitative calculation at least some of the phase
boundaries in this phase diagram.

There are two methods at our disposal for constructing
the phase diagram: (1) we can compare the total energies
of each of the various states that exist at a given point
of the phase diagram, or (2) we can assume that a state
is stable at some point of phase space and then test this
assumption by computing the response function of the
state to a time-independent, spin-dependent external
potential. A negative value of the response function
would indicate thermodynamic instability with respect
to a spontaneous spin distribution corresponding to
that induced by the external field. This response func-
tion method is by far the easier of the two employed
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here: it requires only a knowledge of the wave function
of the state whose stability we are examining; it does
not require a detailed knowledge of the other states that
may exist at the same phase point. Unfortunately this
method has a disadvantage which stems from the fact
that the response function is calculated by means of
perturbation theory or its equivalent. The method tests
only for stability against an infinitesimal external per-
turbation which can be misleading in the case of a first-
order phase transition where the phase transition occurs
while the state is still stable against infinitesimal
perturbations.

Having constructed a phase diagram, it is necessary
to establish, at least roughly, the manner in which a
given transition metal or alloy corresponds to a given
point on the diagram. The correspondence between the
average valence of the metal or alloy and the number of
electrons in the model is immediate, apart from the un-
certainty with respect to s electrons. In addition, it is
possible to establish a qualitative correspondence be-
tween position in the periodic table and C,o/E”. One
would expect that for a given row of the periodic table,
C, will increase as the d shell is filled since the electrons
become more tightly bound as the nuclear charge in-
creases. A Hartree-Fock calculation by Watson® for
the 3d transition atoms indicates that the Slater F
Coulomb integrals increase by approximately 50% as
one goes from Ti to Ni. The bandwidths of the 3d transi-
tion metals have been calculated by Mattheiss!® who
finds that they decrease by more than a factor of 2 on
going from Ti to Ni so that we may expect Co/E" to
increase by a factor of about 3 as one moves from Ti to
Ni. A similar variation in Co/E" is to be expected in
going from Zr to Pd and from Hf to Pt. Also, for a
given valence, we may expect a large increase in Co/E"
as we move from the 54 transition series to the 3d series
because of the decrease in the radius of the d electrons.

IV. CONSTRUCTION AND SELECTION
OF STATES

The states whose properties we wish to examine in
detail will now be discussed. The simplest of these are
the paramagnetic and ferromagnetic states. Further-
more, various authors have pointed out the feasibility
of describing the antiferromagnetic state within the
Bloch itinerant-electron framework. The antiferro-
magnetic state is characterized by a spatially changing
component of magnetization which varies in such a way
that the net magnetization of the system is zero. We
shall show explicitly that this state and more com-

e+ Ap—Ex Aoty

_ Ao ex+Ao—Ex
IEI=||  4q Ao
Agn Aq

1 R, E. Watson, Phys. Rev. 119, 1934 (1960).
B8 L, F. Mattheiss, Phys. Rev. 134, A970 (1964).
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plicated states (e.g., ferrimagnetic) can be made eigen-
functions of the SCF equations.

Let us assume that the SCF Hamiltonian is diagonal-
ized by the transformation

Bi=Axais+ Biai+ Cuticpat+ Dty ,  (4.1)

where @y, is defined in (2.5). Because of higher order
Bragg reflections, the Hamiltonian will not be expressi-
ble as a sum of number operators B8 unless terms of
the form @iynqo are added to Bx. Thus, while one may
readily investigate the stability of a uniform (ie.,
paramagnetic or ferromagnetic) state, the actual self-
consistent construction of the energy and wave func-
tion of a stable state of arbitrary q is prohibitively
difficult. To avoid this difficulty in the explicit construc-
tion of states we may restrict ourselves to the case

q=Q where
Q0=G/2 (4.2)

and G is a reciprocal lattice vector. Thus, the operator
transformation is given by

vi=Biaxt+ Battis+ Bsaxrot+Badiroi,  (4.3)

since k4-2Q =k in the reduced zone.

The various thermodynamic averages that result from
the self-consistent part of the Hamiltonian are de-
noted by

Aoty =—Co L tanr), (4.4a)
Ap=Cy > (s taw ), (4.4Db)
Au=Co Llanrtan), (4.4¢)

Agtv=—Co L {axraitan), (4.4d)

Aqr=Co Lx(axrqiiaw), (4.4¢)

Aq=Cy Tx(axrottaxt). (4.4f)

The use of Eqgs. (4.3) in (4.4) yields

Agy=—(Co/N)Xx Fu(B1Bs+B;3Bsy), (4.5a)
Ap=(Co/N)Lx Fx(Bs+B¢), (4.5b)
Aou=(Co/N)XZx Fu(BL+By), (4.5¢)
Agv=—(Co/N)L« Fx(B1Bi+B:Bs), (4.5d)
Aqp=2(Co/N)2« FiB2Bs, (4.5¢)
Aqu=2(Co/N)Xk FxB1Bs, (4.5f£)

where Fy is the occupation number of the state de-
fined by yx. The single-particle energy Ey correspond-
ing to the transformation vy is found from the condition
[yx!,H] = Exyx! which is equivalent to diagonalizing the
matrix

Aqt Aqte

Aoty Aq 4
arotAn—E  Am (4.6)

Aoty exrotAou—Ex
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Diagonalization of E will give both Ey and the B; in
terms of the matrix elements 4, 4 ¢ of Eq. (4.5). Hence,
Eqgs. (4.5) represent a set of simultaneous equations
(self-consistency equations) for the matrix elements 4.

The magnetization and the number of particles of a
state are given by

M(q)=(1/N)X: exp(iq- R)M, (4.7a)
n(q)=(1/N)2: exp(iq- Ri)m (4.7b)

as functions of wave number ¢, where
Mi=us Y. oo {lo|ostJo,+20.| 1o’ Xerstcrs), (4.82)
m=23_c1'c15), (4.8b)

and |lo) denotes a Wannier function. On using Egs.
(4.3) and (4.5) in conjunction with Eq. (4.7) one obtains

M (0)=—(2us/Co)A o, (4.92)
Ma(Q)=—(2us/Co)don, (4.9b)
M(0)=(us/Co)(An—4ot), (4.9¢)
M Q)= (us/Co)(4qt—Aqs) (4.9d)
n(0)=n, (4.9¢)
n(Q)=(1/Co)(Aart+Aq). (4.9f)

The quantity M, is found to be zero due to the fact that
we may choose the B; to be real for the special values Q
of q used here. The nonzero value of #(Q) implies a non-
uniform charge distribution which should, in fact, be
screened. However, in the interests of making actual
numerical calculations, we shall not complicate the
theory further but shall bear in mind that such screen-
ing would reduce the energy of a state with non-
zero #(Q).

The total energy is found from Eq. (2.4) to be given by

Epor=2x FxEx—(AnAda+Aadq
— A=A (V/Co). (4.10)

The concern will now be with a limited number of the
infinitely many possible SCF eigenstates. We shall only
consider states whose properties show no spatial varia-
tion (paramagnetic and ferromagnetic states) or states
which have properties that exhibit spatial variation
characterized by Q (e.g., the antiferromagnetic state).
We limit ourselves to the case Q=7/a(1,1,1); thus ¢Q'r
changes sign as we move from one lattice site to the
next with the result that the crystal symmetry is trans-
formed from simple cubic to face-centered cubic. We
shall further limit our study to the following states with
their corresponding nonzero A’s:

paramagnetic: Ap=Ay, (4.11a)

ferromagnetic: Aoty Aoy, (4.11b)

antiferromagnetic: Ag=Anq, Agn, (4.11¢)
or

Ap=An, Agp=Aq, (4.11d)
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TasLE I. The magnetization and number of particles of the
states listed in Egs. (4.11).

Para  Ferro Anti1® Anti2* Ferri SSDW
M.(0) 0 Al 0 0 Al Al
M.(Q) 0 0 0 A2 A2 0
M, (Q) 0 0 43 0 0 A3
7(0) A4 A4 A4 A4 A4 A4
7n(Q) 0 0 0 0 A5 0

A1=[4,(0)—41(0)1/Co A2=[A4,(Q)—A1(Q)]/Co
43==2411(Q)/Co A4=n/N A5=[4:(Q)+41(Q)1/Co

a The states Anti 1 and Anti 2 differ only in the direction of quantization.

spiral-spin-density
wave (SSDW):

ferrimagnetic:

Ao, Au, Ao, (4.11e)
Ao, Aoy, Agt, Ay (4.11f)

Table I gives the magnetization and the number of
particles of these states. The two antiferromagnetic
states differ only in the choice of the axis of spin quan-
tization. In Table IT we have indicated which states may
transform into one another by means of a second-order
phase transition along some boundary line of the phase
diagram. The remaining transitions will be first order.

We discuss in detail in Secs. VI to X each of the states
under consideration after presenting in Sec. V the
necessary preliminary material on response func-
tions x(q). Although we have restricted ourselves to
the explicit construction of states containing only
Q=n/a(1,1,1) it will be feasible to construct x(q) for
arbitrary wave number for at least the paramagnetic
and ferromagnetic states. The greater ease of the re-
sponse function method for testing the relative sta-
bility of different phases thus permits us to test the
stability of the paramagnetic state against general
antiferromagnetic states. We may thus check, within
the limitations of our model, the currently common ideas
about the close relationship between spin wave number
and special features of the Fermi surface.

V. RESPONSE FUNCTIONS

We shall now concern ourselves with calculating the
linear response of a state to an external potential. The
application of an external magnetic field having a poten-

TasLE I1. States which may transform into one another through
a second-order phase transformation along a line in phase space
are indicated by X’s. The remaining transformations will be
first order or absent and are indicated by zeros. The states are
those listed in Eq. (4.11).

Para  Ferro Anti1* Anti2e Ferri SSDW
Para
Ferro X
Anti 1 X 0
Anti 2 X X 0
Ferri 0 X 0 X
SSDW 0 X X 0 0

a The states Anti 1 and Anti 2 differ only in the direction of quantization.
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- J u de/u/ w \Oe/,
We see from Egs. (5.4), (5.5), and (5.6) that Vg is
6 — .
linearly related to H'.
o ] Fie. 2. The phase The change in the magnetization at site / due to H is
boundaries determined .
C,/E” a\ \b b fa by an infinite value of &IVEN by
a- 4 the paramagnetic sus- M;=ugp 3 .{lo|op:1|lo). (5.7)
ceptibility for the cases e find
s | q=0 (line ¢) and q=Q
(hne b). 5le= (MB/CO)
2 1 XU Ve|2)—=Ct|VR[IT), (5.8a)
I~ B OM i +i0M 1= -Z(MB/CO)GH Ve I lT) ’ (S-Sb)
PR SR | I S 5Ma;l—i5Myl= _Z(ﬂB/C0)<lTI VRIll>. (5.8C)
[o] 2 4 6 8 1o

+(n/N)

tial H’ will cause a change Hy in the SCF Hamiltonian
Hy=H'+Vg, (5.1)

where Vg is due to the induced change in the particle
distribution. A corresponding change p; is induced in the
one-particle density matrix (it is convenient to use first
quantization in this section). The response V' is related
to py by

(o |Vr|loy= X (ms|p1|ns'Yns'lo|O|Vd ms),

msns’

(5.2)

where |l'c’) denotes a Wannier function of spin ¢’

located at site / and O the operator representing the
quasiparticle interaction. From Eq. (2.3) we have

<’nS/,l0'lOll’O”,mS>=Coan,l,l',m(sa,s'smc"—68’,6’58,w) . (5-3)
Equation (5.2) becomes

(lo| Ve|Va')=Cobr,u (84,0l | p1|15)
— 85,5l |p1|05)),

where & represents the opposite spin state of .

It is shown in the Appendix that the matrix element
of p; taken with respect to wave functions which
diagonalize the unperturbed Hamiltonian H, is given by

(u]p1|v)=(u| H1|v)
X (F(ew) —F(€n))/ (eu—€0); uv

(u|py|uy=((u| Hy|u)—u1)(9F/3€)u,
where ¢, is an eigenvalue of H,,
Fle)={ 1+eXPE3(eu_l‘0)]}-—l ’

wo is the unperturbed Fermi energy, and u, is the change
in Fermi energy induced by H’. The quantity g, is de-

(5.4)

(5.5a)
(5.5b)

14 M. H. Cohen, Phys. Rev. 130, 1301 (1963).

If Vg is known [from Egs. (5.4) and (5.5)] in terms of
H’, we immediately can determine the change in mag-
netization 6M;. The response functions X; are now
defined by

Xi(q)=0M(a)/H{(q) (5.9)

where H;/(q) is the qth Fourier transform of H/(r).
Thus X;(q) is evaluated by relating 6M; to H,'.

1=%7,3%,

VI. PARAMAGNETIC STATE

The operator transformation [Eq. (4.3)] reduces to
the identity transformation

(6.1a)
(6.1b)

for the paramagnetic state. The one-particle energies
are (Fig. 1)

Yit =Gkt ,

Yid =0axi ,

exe=€ext+Ao, 6.2)
where
Ao=3Cn/N; (6.3)
the total energy is
E=3x¢ Froext+ AN /Co, (6.4)
and, of course, we have
Fk1=Fkl . (65)

To test the stability of the paramagnetic state against
transformation to the antiferromagnetic phase we need
only examine the sign of the z component of the para-
magnetic susceptibility X.(q) for all q. The other com-
ponents of x, because of the rotational invariance of the
paramagnetic state, give nothing new. The suscepti-
bility X.(q) is found from (A15) to be given by

X.(q)=—2u5°T'(q)/(14+C,I'(q)), (6.6)
where
I'(q)=(1/N)X«(Fxrq—Fi)/(exrq—e).  (6.7)
The susceptibility X.(q=0) is from (A16)
Xz(O) = ZﬂB 2"70/(1 - CO"O) ) (68)
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where 7, is the density of states at the Fermi energy of
electrons of either spin. The q=0 susceptibility changes
sign at the line in phase space determined by

1 = C0770 ) (6'9)

which is shown in Fig. 2 as line ¢ and is the standard
condition for ferromagnetism (see for example Friedel
et al.’5). Below the line we have X,(0)>0 so that the
paramagnetic state is stable with respect to the ferro-
magnetic state, whereas above the line X, (0)<0 and
the ferromagnetic state has lower energy.

In the particular case of Q=m/a(1,1,1), we have

€x+Q= — €k, (610)
from which it follows that
F nole)
Q)= de, (6.11)
—3E €

where e is the Fermi energy of the paramagnetic state
as measured from the center of the band. The line in
phase space determined by

14-CoI'(Q)=0 (6.12)

is shown in Fig. 2 as line b. Above the line 3, X,(Q) is
negative, meaning that the antiferromagnetic state
with Q=m/a(1,1,1) has a lower energy than the para-
magnetic state in that region.

The value of Cy at which the paramagnetic state be-
comes unstable for a given # is

(Co)cric= - 1/P(Qc) ’

where q, is the value of q for which I'(q) is maximum.
We note that (Co)eris — 0 as er — 0, i.e., in the middle
of the band I'(Q) — — «. This is a specific feature of
the band structure. In the case of a more general band
structure, the smallest value of (Co)eris Will occur for
the valence at which the Fermi surface most nearly co-
incides with a magnetic zone boundary (in our case the
q=0Q zone boundary is determined by the condition
€= €extq). As Overhauser has repeatedly emphasized,
one may expect a continuous variation of the q for
which antiferromagnetism occurs. In general, this q will
be such as to maintain a maximum coincidence between
the magnetic zone boundary and the Fermi surface. To
explore this important point we can study x(q) for more
general g’s. Clearly, for given valence, the paramagnetic
state becomes unstable, for smallest Cy, for that q for
which T'(q) is maximal. Because we are dealing with a
very simple band structure, I'(q) varies smoothly with
q. Phillips'® has argued on topological grounds that
under such circumstances it is often sufficient to search
only along symmetry lines for critical points in such
functions, which is all we shall do here.

(6.13)

15 T, Friedel, G. Leman, and S. Olszewski, J. Appl. Phys. 32,
3258 (1961).
16 J. C. Phillips, Phys. Rev. 104, 1263 (1956).
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Fic. 3. The phase
boundary above which
the paramagnetic state
is unstable. For #n/N
>0.14 the quantity q.
of Eq. (6.13) may be
obtained from the upper
portion of the figure;
q.=0 for n/N <0.14.

+(n/N)

The search for q. can be carried out by numerical
evaluation of T'(q). The lower curve of Fig. 3 shows the
line determined by x(q.)~'=0. The value of q. corre-
sponding to a point on that line may be found from the
upper portion of the figure. From Eq. (6.7) one might
expect that the largest contribution to I'(q.) will come
from those points in momentum space for which k lies
just inside the Fermi sphere and k+-q. lies just outside
or vice versa. If, for example, we choose g to be of the
form (x/a)(1,1,§) with 0<¢<1, the quantity I'(q) is
then a sharply peaked function of q; so at least in this
case certain sections of the Fermi surface may be re-
garded as being responsible for the instability of the
paramagnetic state. For this restricted range of q.
the quantity exq— e does not depend on % or &, if k
is required to lie on a constant energy surface so that
one expects that a relatively large portion of Fermi sur-
face will contribute to the instability. In the case of
n/N=1 the whole Fermi surface contributes; as n/N
decreases the contributing portion of Fermi surface
decreases until at /N = 0.42 the critical q,is (r/2)(1,1,0)
and only that part of the Fermi surface near £.=0
is important. Figure 4 shows cross sections of the
Fermi surfaces corresponding to#/N =1and »/N =0.42,
and the related vectors q. are also indicated. For
0.14<7n/N<0.42 we find that q. has the form w/a(1,£,0);
¢ decreases from one to zero as #/N goes from 0.42 to
0.14. For n/N<0.14, we find q.=0 which means that
the paramagnetic is unstable with respect to the ferro-
magnetic state.

It has been stated by Friedel ef al.15 that magnetism
in the transition metals originates when the first local
moments are formed on the individual atomic sites;
subsequently, these moments are coupled through a
sort of Ruderman-Kittel interaction involving the d
electrons themselves to give magnetic ordering. The
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R r R

Fi1c. 4. Sections of the Fermi surface of the paramagnetic state
in the [111] direction for the cases /N =1 and #n/N=0.42. The
arrows represent g, of Eq. (6.13).

condition for local moment formation is given as
Cono(er)>1 which then becomes the condition for
magnetism itself. As stated by Friedel ef al. themselves,
it would be difficult with such a theory to explain the
antiferromagnetism of Cr, which has a low no(er);
furthermore, Fig. 2 shows clearly that the condition
Cono(er)>11sin general too restrictive. In the particular
case of a half-filled band our model predicts magnetism
for all Co. For a more general band structure, the cri-
terion involves, as we have stated above, a near cor-
respondence between the magnetic zone structure and
the unperturbed Fermi surface, rather than simply the
density of states. The point of view adopted here is
closer to those of Slater,2 of des Cloiseaux,® and of
Overhauser.?

VII. FERROMAGNETIC STATE

The ferromagnetic state has the operator transforma-
tion [Eq. (4.3)] given by

Vit =it , (7.1a)
Vb = it - (7.1b)
The one-electron energies are [see Fig. 5(a)]
at=e+Ao, (7.2a)
ay=etA4An, (7.2b)
where
Ag=Cou/N, (7.32)
Au=Con/N, (7.3b)
and
nv=Zk Fko- (7.4)
The total energy is
E=3 k¢ Froex At AuN/Co (7.5)

and the condition that the Fermi energy of the up-spin
and down-spin bands be equal is

a—a=Ap—An, (7.6)
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where ¢, is the Fermi energy of the spin-o band as meas-
ured with respect to the center of that band. Equation
(7.6) tells us that the ferromagnetic state exists only
above the line given by Eq. (6.9). The line along which
the magnetization M ,(0) is a fraction £ of the maximum
possible value is plotted in Fig. 6. Above the line ¢=1,
the ferromagnetic state is maximally polarized.

Both the paramagnetic response function and the
actual energy comparison give the result that the ferro-
magnetic state lies lower in energy than the paramag-
netic state in the region where both states exist. The
additional kinetic energy necessary to form the ferro-
magnetic state is more than compensated for by the re-
duction in the repulsive energy between states of
opposite spin. In the present model, and in the present
case, the only role played by exchange is to cancel out
the direct energy between parallel spins and, conse-
quently, the exchange plays no role in determining the
relative stability of the para- and ferromagnetic states.
This remark, in fact, applies to all states except those
containing spiral configurations where the exchange
does play a different role.

The x component of the ferromagnetic susceptibility
evaluated at q=0 is identically zero, reflecting the de-
generacy of a ferromagnetic state quantized in the z
direction with any similar state quantized along a dif-
ferent axis. The susceptibility X,(0) is given by (A16)
and is infinite if

(1/n0)+(1/n70)—2Co=0,

N /IN

(7.7)

8

(2)
m

(2)

m

) d)
R r R R r R

Fi1c. 5. The energy bands in the [111] direction for the following
states: (a) ferromagnetic, (b) antiferromagnetic, (c) ferrimagnetic,
(d) spiral-spin-density wave. The dashed line of (c) indicates the
Fermi energy of a special ferrimagnetic state.
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Fi1G. 6. The lines along
which the magnetization
of the ferromagnetic
state is a given fraction
of the maximum possible
magnetization. The fer-
romagnetic state does
not exist below the line
indicating zero magneti-

zation and is maximally 3F 7
magnetized above the PARR MAGRETIC
line that indicates maxi- oL |

mum magnetization.

o 2 4 6 8 10
é- (n/N)

where 79, is the density of states of the spin ¢ band at
the Fermi energy. The line determined by (7.7) is line
a of Fig. 2.

The response function Xz(Q) is found by using the
method described in Sec. V

Xo(Q)=—2us’Tn (Q)/(1+CoTne(Q)),  (7.8)

where

' (Q)=1/N)Xx(Frrot—Fui)/(exrot—ew) . (7.9)

The quantity I'ty(Q) can be rewritten as
eFp
I(Q)= f de no(e)/[2e-+Colm—m)]
EF"
—I—/ de no(e)/[2e— Co(my—m1)]. (7.10)

The line 1/x,(Q)=0 is shown in Fig. 7 as line a. The
susceptibility is negative in the region enclosed by the

lines labeled @ and c.
The condition 1/X,(Q)=0 is from (A15)

eFy eFp
1—C02/ de no(e)/e/ de no(e)/e=0 (7.11)

and thisline is labeled & in Fig. 7. Inside the small region
bounded by the lines 4 and ¢ we have X,(Q) <0, and there
the ferrimagnetic state lies lower in energy than the
ferromagnetic state. The susceptibility becomes nega-
tive when the Fermi surface of one of the spin bands
approaches the magnetic zone boundary. We recall that
an instability in the paramagnetic state occurs when the
Fermi surface of that state approaches the magnetic
zone boundary; the present situation is a simple analog
of the paramagnetic case.
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VIII. ANTIFERROMAGNETIC STATE

The antiferromagnetic state, quantized such that
M,(Q)0, is defined by

An=Au=4,, (8.1a)
Ag=—Aq=Aq. (8.1b)

Diagonalizing the energy matrix of Eq. (4.6) yields two
sets of operator transformations and one-electron
energies

Yt = aaxt+baxiot , (8.2a)

Ex=A4ot3 (et ero) [ Gecro—e)*+ 4012, (8.2b)

a=—Aq/[A*+ (ex— Eir)*]'2, (8.2¢)
and

b= — 00k +daxtqi (8.2d)

By = Ey=Ey. (8.2¢)

The energy band Ey is shown in Fig. 5(b). The total
energy is, from (4.10),

E=Y o FroFx—(AoP— 4 (V/Cy),  (8.3)

where Fy, is the occupation number of the eigenstate ke
defined in (8.2). Equations (4.5) yield

Ao=(Co/N)Zx Fuu=(Co/N)2x Fir, (8.4a)

Aeq=—2(Co/N)X_x Fyab. (8.4b)
Because ex= — €xt0, We have

Ex=Aox(al+A4eH)1? (8.5)

and we see that the constant energy surface of the anti-
ferromagnetic and paramagnetic states coincide. Equa-
tion (8.5) implies that the magnetic zone boundary is
given by e=0. For a half-filled band in the paramag:

8
7
6
Fic. 7. The phase
boundaries determined 5
by an infinite value of c/E"
the ferromagnetic sus- %’E
ceptibility x for the 4f-
cases x=X;(Q) (line a),
X=XH(Q) . (hne b); 3 .
x=X,(0) (line ¢).
2r- 4
I~ J
1 ] 1 ] 1 1 1 1

o 2 4 6 8 10
Lo
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a- 4
7 J
Fic. 8. The lines
6 4 along which the mag-
netization M,(Q) of
the antiferromagnetic
5F 4 state is a given frac-
c/e" tion of the maximum
© possible  magnetiza-
4 b tion. The antiferro-
magnetic state does
3k 4 not exist below the
line corresponding to
M,(Q)=0.
2k 4
L 4
o 10

+(n/N)

netic case, ez=0, the Fermi surface coincides with the
magnetic zone boundary, the inner magnetic zone is
completely filled, and consequently, the antiferro-
magnetic state is insulating for this particular valence
even for vanishingly small interaction strength C,. Of
course, this extreme result is a special feature of the
present model; for a more general band structure, how-
ever, particular valences can be expected to exist for
which there is a maximal reduction of the area of the
Fermi surface upon transition from the paramagnetic
to the antiferromagnetic state when the theoretical
strength of interaction is reached. For still larger values
of Cy, one may expect the antiferromagnetic state to
become insulating. In this connection, it is interesting
to note the remarks of Griffith and Coles!” concerning
a-Mn and those of Lomer!® concerning Cr which support
the present point of view strongly.
Equations (8.3) and (8.4) take the form

E=2 / [Ao= (244 ) ¥ no(e)de
—(4P=4¢")(N/Co), (8.6)

Ay=3%Cwm/N, 8.7)
Aam oG [ dem(/[F UG+ ©9)
The nontrivial solution for 4 determined by
1=(eym [ dento/TF GG+ ©9)
gives the size of the band gap and the magnitude of
1D, Grifith and B. R. Coles, Proc. Phys. Soc. (London)

82, 127 (1963).
18 W. M. Lomer, Proc. Phys. Soc. (London) 80, 489 (1962).
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M .(Q). The antiferromagnetic state exists in the region
above the line given by (6.12) (see Fig. 2); (8.9) reduces
to (6.10) in the limit 4o — 0. In Fig. 8 we have drawn
lines of constant ¢ where ¢ is defined as the ratio of
actual magnetization of the antiferromagnetic state to
maximum possible magnetization for a given #.

The antiferromagnetic state has a lower energy than
the paramagnetic state in the region of the phase dia-
gram in which both states exist, as may be seen directly
from (6.4), (8.6) and (8.9). In Fig. 9, we have indicated
the state of lowest energy among the paramagnetic,
ferromagnetic, and antiferromagnetic states. The solid
lines indicate a second-order transformation. The dashed
lines indicate a first-order transformation and are de-
termined by a calculation of the appropriate energies.
At a point in the phase diagram where all three states
exist, the energies of the states satisfy

E.B.)para<E.B)anti<E.B)Ferro,  (8.10a)

E.L)para> E.L)anti> E.L) Ferro, (8.10b)
where E.B. represents the band energy, and E.I. repre-
sents the total spin-dependent interaction energy.

The quantity X,(0), the x component of the anti-
ferromagnetic susceptibility, is found using the method
outlined in Sec. V:

X2(0)=—2up%(A+B)/(1+Cod+C,B), (8.11)
where
A= erno(er)/[F(er’+A40%)"7], (8.12)
and

B=Ag / de no(Q)/[(e+A0D7].  (8.13)

The susceptibility X;(0) is positive in regions 2 and 3 of

©0

L

I
1
8- | 4
: 1
1
!
7= 1 .
! Fic. 9. The phase
! diagram for the para-
6| ; b magnetic, antiferromag-
! netic, and ferromagnetic
5 ! |  states. The region of
Y phase space in which
C,/E each state is stable is
4 E indicated. Solid lines
indicate  second-order
phase transformations
3 7 and dashed lines indi-
cate first-order trans-
ok formations.
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TasLE III. States which may transform into one another at
the second-order phase boundaries shown in Fig. 11.

Phase boundary line

paramagnetic, antiferromagnetic
paramagnetic, ferromagnetic
antiferromagnetic, ferrimagnetic
ferromagnetic, ferrimagnetic
antiferromagnetic, SSDW
ferromagnetic, SSDW

S Y

Fig. 10 and is negative in region 1. Thus, in region 1, the
antiferromagnetic state is unstable. The quantity
1/X,(Q) is identically zero indicating that the anti-
ferromagnetic state with M ,(Q) nonzero is degenerate
with any antiferromagnetic state obtained from it by
rotation of the direction of magnetization.

The quantity X,(0) can be shown to be

X,(0)=—2u*(2+C)/[(2+C)(Cot+D)—F], (8.14)

where

C=Cod ¢ f " ae no(e)/[£(e+4¢)*?], (8.15a)

(8.15b)
(8.15¢)

D= ex/[F(er®+ 4% *no(er)],
F=Cod¢*/(er*+44q%).

We find that X,(0) is positive in region 3 and negative
in regions 1 and 2 of Fig. 10.

We have summarized the information contained in the
expression (1/x)=0 in Fig. 11 and Table III. Each
entry in the table corresponds to a second-order phase
boundary in Fig. 11 and indicates which two states
co-exist on the boundary.

©

8 .
7 i
6 4
Fic. 10. The sign of

the » and z components s )

of the q=0 antiferro- o

magnetic susceptibility: G/E

X, is negative in region 1 4 2

and positive in regions
2 and 3; X, is positive
in region 3 and negative 3
in regions 1 and 2.

L
2 (n/N)
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Fi6. 11. The phase
boundaries determined
by 1/x=0 where x is
the g=Q or the q=0
paramagnetic suscepti-
bility (line ¢ and line b,
respectively), the g=0
z component of the
antiferromagnetic sus- G/E
ceptibility (line ¢), the
¢=Q z component of
the ferromagnetic sus-
ceptibility (line d), the
q=0 x component of
the antiferromagnetic
susceptibility (line ¢),
the q=Q x component
of the ferromagnetic
susceptibility (line f).

é—(n/N)

IX. FERRIMAGNETIC STATE
The ferrimagnetic state is defined by

An#=An, (9.1a)
Agp#—Aq. (9.1b)

Equations (4.9) give
M 0)=(us/Co)(Au—An), (9.2a)
M, (Q)=(us/Co)(Aau—Aat), (9.2b)
7(Q)=(1/Co)(Ada+Aq). (9.2¢)

The charge fluctuation indicated by (9.2c) implies a
nonzero net charge within an atomic cell which would
create a large perturbation on a neighboring cell. In
this case, the neglect of interactions on different cells is
not justifiable. To include them would, however, greatly
complicate the calculations; we shall leave the problem
for future study, bearing in mind that the present re-
sults are subject to quantitative revision. The diago-
nalization of the energy matrix of (4.6) leads to the
operator transformation and eigenvalues

Vit =Ctaxt+draxiot , (9.3a)
Exry=Ap(a’+A )2, (9.3b)
a=—A4 Qt/[Asz‘*‘ (ek'—Ekf)zjll"’. (93(:)

The plus sign of (9.3b) is chosen when &> 0. There are
exactly analogous expressions for vy, Fiy, and ¢;. The
energy bands described by Eq. (9.3b) are shown in Fig.
5(c). One can imagine the bands as being formed by the
application of periodic potentials of strengths 4 ¢ and
A g to the ferromagnetic state depicted in Fig. 5(a).
There is a particular ferrimagnetic state of great
importance because it is the state of lowest energy over
a wide region of the phase diagram, whereas the general
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Fi1c. 12. The ferri-
magnetic state exists
only within the region
- bounded by the dashed
curve. The special fer-
rimagnetic state exists
everywhere in that re-
gion while the general
ferrimagnetic  state
does not exist in the
region bounded by the
E curves ¢ and d.

'%'(n/ N)

ferrimagnetic state is never a state of lowest energy. This
particular state, which we shall refer to as the special
ferrimagnetic (S.F.) state is described in the case #<1,
€p<0 by

n=1%; (lower half-band of spin-down filled) (9.4a)
Ep_<Epn<Epts. (9.4b)

The Fermi level of such a S.F. state is indicated by the
dashed line in Fig. 5(c). There is, of course, a similar
S.F. state with »> 1. Notice that in the case =1, the
S.F. state becomes identical to the antiferromagnetic
state.
In general, for all ferrimagnetic states, (4.6) and (9.3)
lead to
A o= C 12} / N y

Au=Con/N,

(9.5a)

(9.5b)
and

eF}
AQ1=C0AQl/ de no(e)/[E(2+A@)V?], (9.6a)

eFt
Aa=Codar f de 1o() /[ (@4 Aar?)117],  (9.6b)

where ep, corresponds to the Fermi energy of spin-o
electrons. In the case of the S.F. state, we have ex+ =0.
The condition that the actual Fermi energies be equal,
Epf =Em, gives

Ax(em® +AgH) P =Aut(er?+ A2, (9.7)

while in the case of the S.F. state, (9.4) replaces (9.7).
Equations (9.6) and (9.7) constitute three equations
which for a given C, and # are sufficient to determine
Aqt, Agi, Aoty Ao, ert and epy, the last three quantities
being determined by the first three, since Ag =Con—Ant
and et is determined by 7.
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The most convenient method for solving the simul-
taneous equations (9.6) and (9.7) is as follows. First
eliminate Cy from equations (9.6) with the result

A f " den/ T (e Aaut]
~da " den /I (@ Aoy, (08)
The integral I(er,4) defined by
e ) =2 " denl /[ (@4 ] (99)

is then plotted as a function of er for various values of
A. We now specify values for Agt and ey instead of
specifying Co and #. Equation (9.8) then defines a set of
possible combinations of values for epy and Ag. One
pair from this set is picked, and then C, is determined
from Eq. (9.6a). We then can see whether (9.7) is satis-
fied, if it is not, we try a different pair of values for ept
and 4 ¢t. In the S.F. case, we follow the same procedure
except that we must choose ert =0, and, after we have
found ery and A g, we check to see if (9.4b) is satisfied.

The S.F. state exists everywhere within the region
bounded by the dashed curve of Fig. 12. The spikes,
labeled S in the figure, were put in by hand as they are
too narrow to be found by the numerical procedure but
are indicated by the fact that the z component of the
q=Q ferromagnetic susceptibility is negative in that
region. The lines ¢ and d of Fig. 12 are the lines ¢ and d
of Fig. 11. The general ferrimagnetic state exists outside
the closed region bounded by the lines ¢ and d and
within the region bounded by the dashed curve. On the
dashed curve of Fig. 12, the S. F. state becomes a
limiting case of the ferrimagnetic state in the sense that
the Fermi level just touches the top of the down-spin
sub-band.

The S.F. state and the antiferromagnetic state have
nearly the same energy near the region where n~ 1 with
the S.F. state always having a slightly lower energy.
Thus, the line determined by Eferro= Es.r. lies very close
to the line Eterro=Fan, particularly for large C,
(i.e., for n~1). Figure 13 indicates the state of lowest
energy among the paramagnetic, ferromagnetic, anti-
ferromagnetic, and ferrimagnetic states. The dashed
lines indicate first-order phase transformations and the
solid lines indicate second-order phase transformations.

X. SPIRAL-SPIN-DENSITY-WAVE STATE
AND FINAL-PHASE DIAGRAM

The spiral-spin-density-wave state is defined by
A=A, (10.1a)

Ao =470, (10.1b)
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and Eqs. (4.9) give
Mz(0)= (F'B/CO)(AN_A ot) ’
M(Q)=—(2us/Co)4a,

together with no charge density fluctuation. The eigen-
values and operator transformation determined from
diagonalizing the energy matrix are

(10.2a)
(10.2b)

eV =eWay+ fDayior, (10.3a)
Ex®=Aoyk[(a—A0-)*+40* ], (10.3b)
e®=—Aq[ (et Au—Ex®) 4" 12, (10.3¢)
Y@= fPgu+eParior, (10.3d)
Ex®=Ap [ (et 40)+ 4" ], (10.3¢)
f®=—Aq[ (et At —Ex®)?+ 42112, (10.3f)
where

Au=3An+40), (1042)

Ao-=3(An—4n), (10.4b)
the minus sign in (10.3b) is chosen if ex—A4,-<0, and
the minus sign in Eq. (10.3¢) is chosen if ex+4,-<O0.
The one-electron energy versus k curves are shown in
Fig. 5(d). The form of the energy bands in the figure
may be imagined as the result of applying to a ferro-
magnet a periodic potential’of strength 4o that mixes
states of opposite spin.

Equations (4.5) give

2
Ap=(Co/N) 2= FixD(e™)?, (10.5a)
k,i=1

Au=(Co/N) i P (f@)2) (10.5b)

,i=1

2
Aq=—(Co/N) 25 F@Pe®f®, (10.5¢)
1

k,i=
where Fy® is the occupation number of the state k(z)

defined by (10.3). Note that the number of electrons of
spin-up is given by

2
m= 2 FD(f9)?,

k,i=1

(10.6)

so that
Au=Comt/N (10.7)
as usual, but that the number of electrons in band (7)
is given by
n@W=3"y Fy®, (10.8)
which is not the same as the number of spin-down or
spin-up electrons in band (z). With the help of (10.3c)

THEORY OF MAGNETIC PHASES

361

Fic. 13. The phase
diagram for the para-
magnetic, ferromag-
netic, antiferromag-
netic, and ferrimag-
netic states. Solid lines
indicate second-order
phase transformations
and dashed lines indi-
cate first-order trans-
formations.

and (10.3f), (10.5c) can be put in the form

er()
1=1C, f de no(e)/{FL(e— Ao )+ 4?17}

er(2)
G, / de no(€)/ (FL(e+ A0 )+ A1) . (10.9)

The condition EM=Er® yields

e (er®— Ao ) Aot
= (e + Ao )+ AT,

On using Egs. (10.3c), (10.3f), and (10.5c) to evaluate
Ay, we find that

(10.10)

er()
Ao=1Co / de no(e)(e—Ao.)/
er(2)
{£[(e—A4,-)2+4 02]‘,’2}-—%6'0/ de no(e)

X (e+A4o-)/{FE[(e+ 40 )+ A*]12} .
Combining Egs. (10.9) and (10.11) yields

(10.11)

er(1)
0=/ de no(e)e/{E[(e—Ao)?+A4¢%]1%}

er @)
=" dent@e/ et e g 012)

Equations (10.9), (10.10), and (10.12) are the three
simultaneous equations that must be satisfied by the
spiral-spin-density- state. The use of Egs. (4.10),
(10.3b), (10.3c), and (10.7) results in an expression for
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F16. 14. The ferromagnetic susceptibility X,(Q) is infinite on
line f. The antiferromagnetic suscepbility X, (0) is infinite on line
e. The special spiral-spin-density-wave state exists in the region
bounded by lines f and g. The general spiral-spin-density-wave
state exists in the region bounded b)r line ¢ and line g above CME"’
=5.1 and lines ¢ and f below Co/E"” =5.1. The dashed curve indi-

cates the first-order phase boundary separating the ferromag-
netic and the antiferromagnetic states.

the total energy of the state

er(1)

E=/ de no(e){£[(e—Ao_)*+4¥]1%}

€r(2)
—l—/ de no(e){ [ (e+A40-)2H4o%]12}

+3Con2/N—Conymy/N+A4¢%/Co. (10.13)

There is a special case of the spiral-spin-density-wave
state (SSSDW) that is analogous to the S.F. state. Like
the S.F. state, the SSSDW is the state of lowest energy
in some regions of phase space but the genéral SSDW
state never is. The SSSDW state can exist only when the
quantity A4 is sufficiently large and consists of all the
electrons being in one band. When 24 is larger than
the band width (i.e., 4o->3), the periodic potential
does not split the bands so that if #<1 then all the elec-
trons will be in one band. Further, it is possible to have
a band splitting and still have all the electrons in one
band. The condition for this to happen is found from
(10.3b) and (10.3€) to be

<4, <3, (10.14)

where band (1) holds all # electrons.
The self-consistency equations for the SSSDW state
are

1=%Co

eF(1)

de no(e)/
P (1) {FL(e—4o-)*+4e"]%}, (10.15a)
0=/ de no(e)e/{TF[(e— Ao )+ A4o2]/2}. (10.15b)

In the limit 4¢— 0, the SSSDW state will be de-
generate with the maximally saturated ferromagnetic
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state along the line determined by 1/X,(Q)=0 where x
is the ferromagnetic susceptibility. Equations (10.15)
are easily solved numerically by specifying values of
Ao and Aq and then by using (10.15b) to determine
erD, ie., n. The quantity C, is found by means of
(10.15a) and a further check insures that ep<A,_.
For a given 4,_, we can vary the value of 4 ¢ and gener-
ate a set of points on the phase diagram; as we increase
Aq both Cy and # will increase.

As we have already noted, a SSSDW state with
Aq@=0 corresponds to a maximally saturated ferro-
magnetic state; the line of such states is shown as line f
for Co>5.1in Fig. 14. If A¢_> 3, then ez < A for all
Aq. On the other hand, if 4,_<3, there will be some
critical value for 44 such that the quantity e gener-
ated by that A4 satisfies e =A4,_. These points will
lie on a line that corresponds to the set of solutions of
(10.9), (10.10), and (10.12) solved under the assumption
nM=n,n® =0, This line is denoted by g in Fig. 14. The
SSSDW state exists in the region bounded by the lines
fand g in Fig. 14 above Cy=5.1. As is expected from
the fact that the ferromagnetic susceptibility is nega-
tive in this region, the energy of the SSSDW state lies
below that of the ferromagnetic state.

We now take up the problem of constructing the more
general SSDW state. The three simultaneous equations
(10.9), (10.10), and (10.12) can be dealt with as follows.
We first choose values for z and #»®, and then use
Eq. (10.10) to find 4o.. Next Aq can be determined
from (10.12) via a trial and error procedure. Finally,
Cy is found from Eq. (10.9).

The case nW=n®=n/2 corresponds to a point at
which this SSDW state is degenerate with the antiferro-
magnetic state, which occurs along the line ¢ of Figs.
11 and 14. This line is determined by the condition
1/Xz(0)=0 where X,(0) is the antiferromagnetic sus-
ceptibility. For a fixed value of %, as #()—#(® increases

Fi1c. 15. The phase
diagram for the para-
magnetic, ferromagnetic,
antiferromagnetic, ferri-
magnetic, and spiral-
spin-density-wave states.
Solid lines indicate sec-
ond-order phase trans-
formations and dashed
lines indicate first-order
transformations.
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the SSDW state exists towards lower values of Co. In
the case of » sufficiently large (Cy>5.1), we can increase
the difference #®—#»® until it is equal to » and still
find a solution of the three simultaneous equations. As
already discussed, the values of our parameters also
satisfy (10.15) and can alternatively be constructed by
using the method previously employed in constructing
the SSSDW state, thus providing a check on the
accuracy of the numerical procedures.

For Cy<5.1 there will be some maximum value of
nM—gn® such that it is smaller than » and still satisfies
the simultaneous equations. This line of maximum
n—n® is represented by the line f below Co=35.1 in
Fig. 14. The SSDW state exists in the region between
lines e and g for Cy>5.1 and between lines ¢ and f for
Cy<5.1. This state always has an energy greater than
the antiferromagnetic state. The dashed line in Fig. 14
indicates the line at which the energy of the antiferro-
magneticstateis equal to the energy of the ferromagnetic
tsate.

The final-phase diagram is shown in Fig. 15. The state
of lowest energy is indicated, and second-order phase
transformations are denoted as before by solid lines,
while first-order transformations are indicated by dashed
lines. We see that for the case of a half-filled band the
special ferrimagnetic state is the state of lowest energy.
As the number of electrons increases or decreases, the
paramagnetic, antiferromagnetic, and ferromagnetic
states become possible ground states depending on the
value of Cyo/E”. Finally, when the band is almost full
or almost empty, only the paramagnetic state exists for
not too large values of Co/E".

XI. LOCAL MOMENTS

When an impurity atom is placed in a paramagnetic
metal a local magnetic moment may be formed at the
impurity site. This phenomenon has been treated by
Wolff!! and Clogston et al.® within the context of a
model that is similar to ours. The Hamiltonian for the
system of metal plus impurity potential takes the form

(00| H|00"y= 84,0 ((0c | Ho|0c)+ V1

+Co Z,(OS[Apl()S)
—C(00|Ap|00)),

(lo|H|Vo")= 51,081 o(0c | H|0c")
+ (1= 81,080 0)lo | Ho|l'o"),

in first quantization, where |lo) denotes a Wannier func-
tion of spin o, V1 represents the impurity potential, Ap
is the change in the density matrix induced by V1, and
H, is the unperturbed Hamiltonian. Equation (11.1)
can be solved exactly for (Oc| Ap|Oc) and a local moment
is obtained when (01]Ap|01)5%(0}|Ap|0}). On solving
for (0o | Ap|Oc), one finds that for a given valence of the

(11.1a)

(11.1b)

1 A. M. Clogston, B. T. Matthias, M. Peter, M. J. Williams,
E. Corenzwit, and R. C. Sherwood, Phys. Rev. 125, 541 (1962).
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Fic. 16. The phase
diagram describing the 8
properties of the para-
magnetic state with
respect to local mo- 7+ -
ment formation. Below
the lower dashed curve
no local moment can 6
be formed independent
of the strength of the
impurity potential. Be-
tween the two dashed GC/E
curves local moment a-
formation is possible
depending on the
strength and sign of 3F "
the impurity potential.
Above the upper
dashed curve local mo- 2
ments form in the ab-
sence of an impurity.

NO LOCAL NO LOCAL

The solid line indicates | MOMENT- MOMENT

tlﬁe phase boundary of .

the paramagnetic state ot L L
(see Fig. 3). o 2 4 6 8 10

FO/N)

host material there is a critical value of Cy, C¢’, such that
if Cy< Cy’ no local moment is formed, independent of the
size of V1. For Cy>Cy/, there is a range of values of V;
such that a local moment is formed. The line Cy'=Cy' (%)
has been plotted on the phase diagram and is the lower
dashed line of Fig. 16. The line is meaningful only in
those regions of phase space in which the ground state is
paramagnetic as this was taken to be the state of the
host metal when Eq. (11.1) was solved.

For sufficiently large C, a local moment is formed in
the case V;=0; this indicates an instability of the host
metal. The condition for this instability to occur may
be found by examining the sign of the local susceptibility
Xay=Mz/Hz. This quantity is easily evaluated by
means of the method described in Sec. V and is

Xar=—2u5" 24 T(Q)/(1+-Co 224 T'(q)), (11.2)

(@) =1/N)Zw(Frrq—Fi)/(expq—ex) . (11.3)

The line in phase space corresponding to 1/X;=0 is
found from 0=1+C, >_4 I'(q) which may be put in the
form

where

0=1+42C, / ” I(2)no(2)dz, (11.4)
where -
I(z)= P/ dz'no(2)/(z—2") (11.5)

and P indicates that the principal part is to be taken.
The line 1/X;=0 is shown in Fig. 16 as the upper of the
two dashed lines. The entire line is seen to lie within a
region in which the paramagnetic state is unstable, as it
should be since stability against a spontaneous local
moment is less stringent than stability against an arbi-
trary polarization.
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XII. CONCLUSION

We have given a semiquantitative explanation of the
incidence and type of magnetism observed in the transi-
tion metals and alloys based on a SCF band model. The
model contains two parameters; the number of electrons
per atom #/N and the strength of interaction between
electrons compared to the bandwidth Cy/E”. The cor-
relation between the values of the parameters and the
position of a metal in the periodic table has been dis-
cussed; #/N is directly related to the average atomic
valence apart from the number of s electrons and
Co/E"” is a quantity which is expected to increase
strongly as one moves upward and to the right in the
periodic table. For given values of the parameters there
will be one or more types of magnetic states that may
be constructed within the context of the model and we
have been .specifically interested in determining the
state of lowest energy.

The region of phase space in which the paramagnetic
state is stable against a second-order phase transforma-
tion to an antiferromagnetic or ferromagnetic state has
been determined by a calculation of the paramagnetic
susceptibility x(q). Figure 3 shows the phase boundary
at which the paramagnetic state becomes unstable and
the upper portion of the figure gives the wave-number
q. for which the instability occurs. For n/N=1 the
whole Fermi surface contributes to the instability, as
n/N decreases the area of the Fermi surface that con-
tributes to the instability decreases until at #/N=0.42
only a narrow ring of the Fermi surface contributes as
is shown in Fig. 4. As n/N decreases still further, it is
less justifiable to associate the instability with a par-
ticular portion of the Fermi surface. For /N <0.14, we
find q.=0. ‘

Our primary concern has been in determining for a
given n/N and Co/E" the state of lowest energy among
a limited number of the infinitely many states that
may exist. The states chosen for study were the para-
magnetic, ferromagnetic, antiferromagnetic, ferrimag-
netic, and spiral-spin-density-wave states [the latter
three states are characterized by a spatial variation of
magnetization corresponding to q=(w/a)(1,1,1)]. The
phase diagram associated with these states have been
constructed by means of the response function method
and by actual energy comparison (in order to determine
the first-order phase transformations).

The phase diagram is shown in Fig. 15. Keeping in
mind the correspondence between the transition metals
and the parameters #» and Co/E”, one sees that the
phase diagram is in reasonable semiquantitative agree-
ment with the observed incidence of magnetism in
transition metals and their alloys in that ferromagnetism
occurs in the upper right-hand portion of the phase
diagram and complex magnetic states occur towards
the center of the band. Ferromagnetism is seen to be
possible when Co/E’”>3.5. If it is assumed that the
effect of the five d bands is simply to increase the density
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of states by a factor of 5 over that found in our one
band model, and if we further assume a bandwidth of
about 4.5 eV, then one finds Cy~% eV which may be
compared to the values of roughly 1 eV in Ni% and
0.7 eV in Fe.2

The possibility of a nonparamagnetic ground state for
very small values of Co/ E” as occurs in the center of the
band is directly related to the coincidence of the Fermi
surface and the magnetic zone boundary. In the case of
a more realistic band structure where this coincidence
cannot occur, one would expect to find only the para-
magnetic state for small Co/E" as is observed in the 4d
and 5d transition series. As Co/E" is increased above
some critical value, the antiferromagnetic state would
be attainable for some restricted range of valence and as
Co/E" is further increased, the ferrimagnetic state
might become stable. The special ferrimagnetic state
occupies a large region in phase space compared to the
antiferromagnetic state while, in fact, antiferromag-
netism is usually observed to occur; this failure of the
model may be due to the one band approximation which
does not take account of intra-atomic exchange or to the
rather simplified treatment of electron correlation.

We note that the phase transformation of the para-
magnetic state to the antiferromagnetic or ferromag-
netic states is second order. This result leads one to
believe that the actual region of stability of the para-
magnetic state has, in fact, been determined from the
calculation of the paramagnetic susceptibility x(q) for
general q. All phase transformations that do not involve
the paramagnetic state (with the exception of the ferro-
magnetic to SSDW transformation) are first order; thus,
the response function method has been useful for de-
termining the boundary lines denoting phase trans-
formations only in those special cases.

The question of whether or not a local magnetic mo-
ment can be formed at an impurity site of a transition
metal has been investigated and the results are sum-
marized in Fig. 16. For a given #/N there is a mini-
mum value of Co/E” (indicated by the lower dashed
line of the figure) below which no moment formation is
possible and above which moment formation is possible
depending on the value of V;. For sufficiently large
Co/E"” (indicated by the upper dashed line of the
figure) local moment formation takes place in the case
Vr=0 indicating an instability in the host metal. It is
to be emphasized that any condition for local moment
formation that is independent of ¥; must, in fact, refer
to an instability of the host metal itself.

Beck ef al.? have measured the linear specific heat y7°
of a number of bee 3d alloys, and they found a sharp
peak in v in several alloy systems when the electron to
atom ratio is about 6.5. We suggest that part of the peak
is due to the presence of a magnetic zone structure at
least in the case of Cro.sMno s which exhibits the largest

® J, C. Phillips, Phys. Rev. 133, A1020 (1964).

% C. H. Cheng, C. T. Wei, and P. A. Beck, Phys. Rev. 120, 426
(1960).
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peak. Such a peak is exemplified in our model; in the
case of the ¢g=m/a(1,1,1) antiferromagnetic state the
density of states is porportional to 7o(e)(e2+4¢?)!?/e
which peaks as e — 0.
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APPENDIX A

In order to derive Eq. (5.5) we introduce the re-
solvents R and R, defined by

R(z)= (z+pu—H)™, (A1)
Ry(2)=(z+po—Ho) ™, (A2)

where p and H are the Fermi energy and SCF Hamil-
tonian in the presence of an external magnetic field and
uo and H, refer to the case of no magnetic field. The
relation

R=Ro+Ro(H1—u)R, (A3)

where Hy=H—H, and pui=u—u, leads to the first-

order approximation
R=R¢+Ro(Hy—p1)Ro. (A4)

The density matrix p=po+p1 can be expressed as

p=(1/2ni) f Gz RE) (1)1, (AS)

where the contour of integration includes all the eigen-
values of H. Equations (A4) and (AS) yield

or=(1/273) f ds Ro(Hr—p)Ro( e 1) (A6)

Upon taking the matrix element of p; with respect to
eigenfunctions of H, and carrying out the complex in-
tegration we obtain Eq. (5.5).
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In order to illustrate the procedure used in calculating
a response function we shall evaluate the ferromagnetic
susceptibility X.(q). Equation (5.2) yields

@t velin =X (ko |p:|[ Ko )K", O] I1.ko), (A7)

where | ko) denotes a spin-o eigenfunction of the unper-
turbed ferromagnetic state and |lo) denotes a Wannier
function of spin ¢. The relation (k'e’| =3y (k'e’|lc")
{l’| in conjunction with Egs. (2.5), (5.3), and (A7)
gives

(] VzellT>=(Co/N)ka(lepllk’U

Xexp[i(k'—k)-Ri], (A8)
hence
Ver(@)=(Co/N)Zi(kl|p1| k+ql), (A9a)
similarly,
Ve @=(Co/N)Zi(kt|ps|k+qt).  (A9D)

From (5.5) and H;,(q) = (ko| H1| k+qo), we obtain

V(@) =T () (H1 (q)— 8q,041) (A102)
V et (@)= T'(q) (H1t (q) — 8q,011) (A10b)

where
To(@)=1/N)Xx(Fitqo— Fxo)/ (€xtqo— €xs) . (Al11)

Equation (5.6) yields

(g (2) )/ (5(2),)-

which can be rewritten as

p1=(Hyu (0)T1(0)+Hx(0)T+(0))/(Iy(0)+T+(0)), (A13)

where

T'(0)=lim I'(q). (A14)

The quantity —I'x(0) is just the density of states of
the spin-o band at the Fermi surface. Recalling that
Hy(q)=Vzr(q)+H'(q) where H'(g)=—pzo-B(q) and
making use of Egs. (5.8a) and (A10) we obtain
X.(q) = us*(— T4 (q)— Tt () +2CoT+ (@ T4 (q))/

(1—Co?Ty ()T (q))

for ¢>0. In the case of g=0 we find
X2(0)=—4uz?/[2Co+(1/T1(0))+(1/T:(0))]. (A16)

(A15)



