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A semiquantitative explanation of the observed distribution of magnetism in the transition metals and
alloys is made based on a highly simplified quasiparticle band model. It depends on only two parameters, the
valence (number of d electrons) of the metal and the ratio of quasiparticle interaction strength to band-
width, Co/8". The quantity Co/I;" increases with valence and also increases as one goes from the Sd tran-
sition metals to the 3d transition metals. Ferromagnetism is found to be most likely for those metals with
large C0/E" and a valence well away from five. Antiferromagnetism is found to occur for a valence of around
five, as do the more complex states such as the ferrimagnetic and spiral-spin-density-wave states, which
are explicitly described. It is suggested that the peak in the specific heat of the transition-metal alloys that
occurs as one alloys across the 3d transition series is closely related to changes in the band structure caused
by ordering, at least for the Cr-Mn system.

I. INTRODUCTION
' 'T has been known for some time that the d electrons
~ ~ in the transition metals should be treated as itinerant
rather than localized electrons. This is most clearly
evidenced by the large linear specific heats, the non-
integral magnetic moments in the magnetic meta]s,
and the fact that band calculations indicate the d band-
width to be substantial. More recently, Fermi surface
studies have given still more direct and unequivocal
support to the itinerant model. Itinerant electron models
have been proposed to explain the ferromagnetism found
in the transition metals, e.g. , those put forward by
Bloch, ' Slater, ' Van Vleck' (not purely itinerant), Mott
and Stevens, 4 Kanamori, ' and Herring. ' Similarly, it
has been possible to treat the phenomenon of antiferro-
magnetism within the itinerant electron model, and
work in this field has been done by Slater, ' des
Cloizeaux Overhauser, ' Tachiki and Nagamiya "and
others. Up to this point no band treatment of ferrimag-
netism has been developed despite the fact that it has
been observed in CrPt3 and in more complicated alloys
such as Mn~Sb, Mn3As, and others. Furthermore, an
ordered ferromagnetic alloy will have a spatial distri-
bution of magnetic moments such that it should be con-
sidered as ferrimagnetic.

The observed distribution of magnetism in the transi-
tion metals is remarkably simple. With reference to the
part of the periodic table that comprises the transition
elements, one finds ferromagnetism in the upper right-
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hand corner and more complex magnetic behavior in
the upper center of the table. The purpose of this
paper is to study the incidence and distribution of
magnetism in the transition metals and their alloys on
the basis of a simple model that is capable of describing
ferromagnetic, antiferromagnetic, ferrimagnetic and
even more complex states. Simple as the model is, the
particular numerical values of the parameters of the
model can still be put into a rough correspondence with
position in the periodic table.

In Sec. II we describe the simple model. In Sec. III
we introduce the concept of a phase diagram defined
relative to the parameters of the model. We use the
phase diagram to indicate the relative stability of vari-
ous magnetic phases and so correlate the copious numeri-
cal results obtained from the model. The methods used
to construct the phase diagram are discussed; they in-
volve calculation of appropriate response functions and
an actual calculation of the energies of various magnetic
states. The correspondence of the model to actual transi-
tion metals and alloys is discussed semiquantitatively.
In Sec. IV it is shown how various types of magnetic
states may be constructed and their energies calculated
within the framework of the model. Of these, the para-
magnetic, ferromagnetic, antiferromagnetic, ferrimag-
netic, and spiral-spin-density-wave states are chosen for
explicit study. In Sec. V the method used in constructing
the response functions is discussed. In Secs. VI through
X those states described above are studied individually
and a number of phase diagrams are constructed. In
Sec. XI the question of local moment formation is
studied within the context of our model using the
theory developed by Wolff" and numerical results are
presented.

II. MODEL

We shall now describe the model used to treat the
transition metals and alloys. The electrons are divided
into two classes, s like and d like. The magnetic polariza-
tion of the s like electrons is induced by that of the d

"P.A. Wolff, Phys. Rev. 124, 1030 (1961).

350



142 STAB ILITY THEORY OF MAGNET I C P HAS ES

electrons and can, in principle, be treated by perturba-
tion theory, thus our primary concern shall be with the
d electrons which are treated within a simplified version
of the Landau quasiparticle picture at zero temperature.

In the paramagnetic state, the quasiparticles occupy
a single band appropriate to the tight-binding ap-
proximation for a crystal of cubic symmetry. The atomic
wave functions used in the tight binding scheme are
assumed to have s like symmetry and next-nearest-
neighbor overlap is neglected. We shall indicate which
results depend essentially on this choice of band struc-
ture and attempt, as well, to point out permissible
generalizations. Within the approximations described
above, the band part of the energy appropriate to a
particle of wave number k is

e~———E"(cosk,a+cosk„a+cosk, a), (2.1)

where a is the nearest-neighbor distance in the crystal
and the components of k satisfy

—tr/a(k (tr/a j=x y s. (2.2)

The function eq is plotted in Fig. 1 for k in the [111]
direction. The density of states corresponding to ~k is
also shown in Fig. 1 and is in only very rough agreement
with the actual density of states found in the transitions
metals; the present curve falls off too slowly at the ends
and the shape is otherwise too simple.

The particle-particle interaction is treated in the self-
consistent-field (SCF) approximation and consequently
is described by

H; t=Co[Z&, ((ct,tct, )ct,tc&, (c-~,tc-t;—)c~,tc& ] (-2.3)

in second quantization. Here ~,tc( )ctrepresents the
creation (destruction) operators of an electron in a
Wannier state of spin 0 on site l; Co is to be interpreted
as the interaction strength between quasiparticles.
The quasiparticle screening serves to eliminate inter-
actions between particles on different sites. The total
energy of the system is given by

+tot= Qk~ elt(asm acr)+sCO Zl~((cia cl~)(cli ciij)
-(c 'c.-)(c.-'c.)), (2 4)

where

as, ——(1/QE)gt exp( —ik R~)ct, (2.5)

(and similarly a&,t) is the destruction (creation) opera-
tor of an electron in a Bloch state kfT, E is the number of
unit cells in the crystal. We shall see shortly that in the
case of a ferromagnetic state the model reduces to the
usual Slater' band theory of ferromagnetism in which
the spin-up and spin-down electron bands are identical
in shape but separated from each other by an energy
difference referred to as the exchange splitting, and the
total energy of the system contains a term proportional
to the square of the magnetization.

Within the model which we have described, the
Hamiltonian is specified by only two parameters; the
total number of particles e and the strength of the

R n(~)

Fxo. 1.The energy band eq= cosk, a+cosk„a+cosk, a in the I 111j
direction and the density of states corresponding to ~p.

electron interaction Co measured relative to E". An
insulator may be described by only one parameter,
Co/E", since the band is totally filled; this represents a
crucial difference between the two states. The param-
eters Co and E"being quasiparticle parameters should,
in fact, depend on the state of magnetization of the
system but we shall neglect this effect and take them to
be the same for all states. Within the quasiparticle model
we shall investigate the energetic stability of one state
with respect to another, but it should be borne in mind
that the model is not strictly valid for calculating the
actual cohesive energy of a state.

III. PHASE DIAGRAM

For a given Cs/E" and n there may be more than one
type of state which are self-consistent eigenstates of our
Hamiltonian. We are specifically interested in the state
of lowest energy for each Cs/E" and n. For different
values of Co/E" and n, states of different character may
correspond to states of lowest energy. Thus, we can
construct a phase diagram in which the total number of
particles e is given by the abscissas, and the relative
interaction strength Cs/E" is given by the ordinates;
different regions in this phase diagram will correspond to
stability of different phases. The problem we set for
ourselves in the present paper is to establish by direct
quantitative calculation at least some of the phase
boundaries in this phase diagram.

There are two methods at our disposal for constructing
the phase diagram: (1)we can compare the total energies
of each of the various states that exist at a given point
of the phase diagram, or (2) we can assume that a state
is stable at some point of phase space and then test this
assumption by computing the response function of the
state to a time-independent, spin-dependent external
potential. A negative value of the response function
would indicate thermodynamic instability with respect
to a spontaneous spin distribution corresponding to
that induced by the external field. This response func-
tion method is by far the easier of the two employed
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here: it requires only a knowledge of the wave function
of the state whose stability we are examining; it does
not require a detailed knowledge of the other states that
may exist at the same phase point. Vnfortunately this
method has a disadvantage which stems from the fact
that the response function is calculated by means of
perturbation theory or its equivalent. The method tests
only for stability against an inhnitesimal external per-
turbation which can be misleading in the case of a first-
order phase transition where the phase transition occurs
while the state is still stable against infinitesimal
perturbations.

Having constructed a phase diagram, it is necessary
to establish, at least roughly, the manner in which a
given transition metal or alloy corresponds to a given
point on the diagram. The correspondence between the
average valence of the metal or alloy and the number of
electrons in the model is immediate, apart from the un-

certainty with respect to s electrons. In addition, it is
possible to establish a qualitative correspondence be-
tween position in the periodic table and Co/E". One

would expect that for a given row of the periodic table,
Cp will increase as the d shell is IIilled since the electrons
become more tightly bound as the nuclear charge in-

creases. A Hartree-Fock. calculation by Watson" for
the 3d transition atoms indicates that the Slater F
Coulomb integrals increase by approximately 5o%%uo as
one goes from Ti to Ni. The bandwidths of the 3d transi-
tion metals have been calculated by Mattheiss" who

Gnds that they decrease by more than a factor of 2 on

going from Ti to Ni so that we may expect Co/E" to
increase by a factor of about 3 as one moves from Ti to
Ni. A similar variation in Cp/E" is to be expected in

going from Zr to Pd and from Hf to Pt. Also, for a
given valence, we may expect a large increase in Co/E"
as we move from the 5d transition series to the 3d series
because of the decrease in the radius of the d electrons.

IV. CONSTRUCTION AND SELECTION
OF STATES

The states whose properties we wish to examine in
detail will now be discussed. The simplest of these are
the paramagnetic and ferromagnetic states. Further-
more, various authors have pointed out the feasibility
of describing the antiferromagnetic state within the
Bloch itinerant-electron framework. The antiferro-
magnetic state is characterized by a spatially changing
component of magnetization which varies in such a way
that the net magnetization of the system is zero. We
shall show explicitly that this state and more com-

plicated states (e.g. , ferrimagnetic) can be made eigen-

functions of the SCF equations.
Let us assume that the SCF Hamiltonian is diagonal-

ized by the transformation

Pk =Ak&k~+A&k~+Ck&k+qi+Dk&k+e& ~ (4 &)

where ak, is de6ned in (2.5). Because of higher order

Bragg reQections, the Hamiltonian will not be expressi-

ble as a sum of number operators pktpk unless terms of
the form uk~„~, are added to pk. Thus, while one may
readily investigate the stability of a uniform (i.e.,
paramagnetic or ferromagnetic) state, the actual self-

consistent construction of the energy and wave func-

tion of a stable state of arbitrary q is prohibitively
difficult. To avoid this difhculty in the explicit construc-
tion of states we may restrict ourselves to the case

q=Q where
Q=6/2 (4.2)

and 6 is a reciprocal lattice vector. Thus, the operator
transformation is given by

Jk Bl+kt++2+kk++3ok+Qt++4~k+Qk y (4 3)

since k+2Q=h in the reduced zone.
The various thermodynamic averages that result from

the self-consistent part of the Hamiltonian are de-

noted by
(4.4a)

(4.4b)

(4.4c)

(4.4d)

(4.4e)

(4.4f)

AoW = —Co Pk(akgta»),

Ao~ = Co Zk(~k~'~k~),

Ao~ = Co Zk(~e "~kt),

Aspic= —Co pk(ak+ogtakg),

A ot = Cp pk(Gk+Qg GlA) l

A « =Co Zk(ok+o& t&») .
The use of Kqs. (4.3) in (4.4) yields

A,gg = —(Co/V)gk &k(+1B2+B3B4) (4'5a)

Aot= (Co/$)gk Fk(&a'+&4'), (4 5b)

Apg = (Co/E)pk &k(&2+&3 ), (4 5c)

Aqgg = —(Co/1V)Q~ Ek(%&4+&k&3), (4 5d)

A ot =2(CO/-V)gk &k&2+4, (4.5e)

A«=2(C, /X)gk EkB~~3, (4.5f)

where I'~ is the occupation number of the state de-

6ned by 7&. The single-particle energy E& correspond-

ing to the transformation yi, is found from the condition

[yk&,H] = Elk& which is equivalent to diagonalizing the
matrix

kk+A OY Ek
~p~~

Aqg

Appal

~ R. E. Watson, Phys. Rev. 119, 1934 (1960).
'~ L. F. Mattheiss, Phys. Rev. 134, A970 (1964).

Aping

~k+A(u —Ek

Appal

Agg

Agg

Appal

&k+e+A ot —Ek
~ox

Aggg

Agg

~(e~
8k+Q+A 0) Ek

(46)
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Diagonalization of E will give both E~ and the 8; in
terms of the matrix elements A p, A q of Eq. (4.5).Hence,
Eqs. (4.5) represent a set of simultaneous equations
(self-consistency equations) for the matrix elements A.

The magnetization and the number of particles of a
state are given by

M(q) = (1/X)g, exp(iq R,)M,

n(q) = (1/Ã)gg exp(iq R()n)

as functions of wave number g, where

(4.7a)

(4.7b)

M( ——pe P..(l~
~
9o.+pa„+so.

~
l~')(cg. tc(. ), (4.8a)

no= g.(c(.&c,.), (4.8b)

n(0)=n, (4 9e)

n(Q) = (1/Cp)(A qua+A qp) . (4.9f)

The quantity 3f„is found to be zero due to the fact that
we may choose the 8; to be real for the special values Q
of q used here. The nonzero value of n (Q) implies a non-
uniform charge distribution which should, in fact, be
screened. However, in the interests of making actual
numerical calculations, we shall not complicate the
theory further but shall bear in mind that such screen-
ing would reduce the energy of a state with non-
zero n(Q).

The total energy is found from Eq. (2.4) to be given by

&p.p= Z~ ~pE~—(A otA op+A qtA qp

—A ptg' —A qtp') (X/Cp) . (4.10)

The concern will now be with a limited number of the
infinitely many possible SCF eigenstates. We shall only
consider states whose properties show no spatial varia-
tion (paramagnetic and ferromagnetic states) or states
which have properties that exhibit spatial variation
characterized by Q (e.g. , the antiferromagnetic state).
We limit ourselves to the case Q = n./c', (1,1,1); thus e'q'
changes sign as we move from one lattice site to the
next with the result that the crystal symmetry is trans-
formed from simple cubic to face-centered cubic. We
shall further limit our study to the following states with
their corresponding nonzero A' s:

and ~lo) denotes a Wannier function. On using Eqs.
(4.3) and (4.5) in conjunction with Eq. (4.7) one obtains

M (0)= (2p'&/Cp)A ptg (4.9a)

~*(Q)= —(2'/Co)A q1p, (4.9b)

M, (0)= (pe/Cp) (A g —A pt), (4.9c)

~.(Q) = (ne/Cp)(A —Aq ) (4.9d)

TAaLz I. The magnetization and number of particles of the
states listed in Eqs. (4.11).

Para Ferro Anti 1' Anti 2' Ferri SSDW

M(0) 0 A1 0 0 A1 A1
u, (g) 0 0 0 A2 A2 0
m (q} 0 0 AS 0 0 A3
@{0) A4 A4 A4 A4 A4 A4
e(Q) 0 0 0 0 A5 0
A1=LAp(0) —Ap(0))/Cp A2=$Ap(Q) —Ap(Q)g/Co
A3= —2Atp(Q)/Cp A4=n/N AS=LA&(Q)+At(Q)g/Cp

The states Anti 1 and Anti 2 differ only in the direction of quantization.

spiral-spin-density
wave (SSDW): App, Aop, Aqtp, (4.11e)

V. RESPONSE FUNCTIONS

We shall now concern ourselves with calculating the
linear response of a state to an external potential. The
application of an external magnetic 6eld having a poten-

TAsLz II.States which may transform into one another through
a second-order phase transformation along a line in phase space,
are indicated by X's. The remaining transformations will be
first order or absent and are indicated by zeros. The states are
those listed in Eq. (4.11).

Para Ferro Anti 1' Anti 2' Ferri SSDW

ferrimagnetic: Apt, Ag, AQg, AQ$. (4.11f)

Table I gives the magnetization and the number of
particles of these states. The two antiferromagnetic
states di8er only in the choice of the axis of spin quan-
tization. In Table II we have indicated which states may
transform into one another by means of a second-order

phase transition along some boundary line of the phase
diagram. The remaining transitions will be first order.

We discuss in detail in Secs. VI to X each of the states
under consideration after presenting in Sec. V the
necessary preliminary material on response func-
tions x(q). Although we have restricted ourselves to
the explicit construction of states containing only
Q=pr/u(1, 1,1) it will be feasible to construct x(q) for
arbitrary wave number for at least the paramagnetic
and ferromagnetic states. The greater ease of the re-
sponse function method for testing the relative sta-
bility of diferent phases thus permits us to test the
stability of the paramagnetic state against general
antiferromagnetic states. We may thus check, within

the limitations of our model, the currently common ideas
about the close relationship between spin wave number
and special features of the Fermi surface.

paramagnetic:

ferromagnetic:

Ag =A(g,

Apt~ ApJ, ~

antiferromagnetic: Apt =Apg A Qtg,

or

(4.11a)

(4.11b)

(4.11c)

Para
Ferro
Anti 1
Anti 2
Ferri
SSDW

X
X
X
0
0

0
X
X
X

0
0

X
X
0 0

Apt=A(g, AQg=AQg) (4.11d) pp The states Anti 1 and Anti 2 differ only in the direction of quantization.
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where po is the density of states at the Fermi energy of
electrons of either spin. The q =0 susceptibility changes
sign at the line in phase space determined by

1=Cogo, (6.9)

which is shown in Fig. 2 as line a and is the standard
condition for ferromagnetism (see for example Friedel
et al.").Below the line we have X,(0))0 so that the
paramagnetic state is stable with respect to the ferro-
magnetic state, whereas above the line X, (0)&0 and
the ferromagnetic state has lower energy.

In the particular case of Q=~/a(1, 1,1), we have

(6.10)

from which it follows that

FIG. 3. The phase
boundary above which
the paramagnetic state
is unstable. For e/E
&0.14 the quantity g,
of Eq. (6.13) may be
obtained from the upper
portion of the 6gure;
q, =0 for e/E(0. 14.

--0

l
$ I

& Pl C.I))(

otl, l, t) y

F(Q) = np(p)
(6.11)

I I I I

.2 .4 ,6 .8 I.O

where e& is the Fermi energy of the paramagnetic state
as measured from the center of the band. The line in
phase space determined by

1+CpI'(Q) =0 (6.12)

is shown in Fig. 2 as line b Above . the line b, X,(Q) is
negative, meaning that the antiferromagnetic state
with Q=n/a(1, 1,1) has a lower energy than the para-
magnetic state in that region.

The value of Co at which the paramagnetic state be-
comes unstable for a given n is

(Cp)-.~= —1/F(q.), (6.13)

where q, is the value of q for which F(q) is maximum.
We note that (Cp)„;&~ 0 as ep —+ 0, i.e., in the middle
of the band F(Q) ~ —pp. This is a specific feature of
the band structure. In the case of a more general band
structure, the smallest value of (Cp)o 'g will occur for
the valence at which the Fermi surface most nearly co-
incides with a magnetic zone boundary (in our case the
q=Q zone boundary is determined by the condition
e&= p&~o). As Overhauser has repeatedly emphasized,
one may expect a continuous variation of the q for
which antiferromagnetism occurs. In general, this q will

be such as to maintain a maximum coincidence between
the magnetic zone boundary and the Fermi surface. To
explore this important point we can study z(q) for more
general q's. Clearly, for given valence, the paramagnetic
state becomes unstable, for smallest Co, for that q for
which F(q) is maximal. Because we are dealing with a
very simple band structure, I'(q) varies smoothly with
q. Phillips" has argued on topological grounds that
under such circumstances it is often sufhcient to search
only along symmetry lines for critical points in such
functions, which is all we shall do here.

"J.Friedel, G. Leman, and S. Olszewski, J. Appl. Phys. 32,
325S (1961)."J.C. Phillips, Phys. Rev. 104, 1263 (1956).

& (n/N)

The search for q. can be carried out by numerical
evaluation of F(q). The lower curve of Fig. 3 shows the
line determined by z(q.) '=0. The value of q, corre-

sponding to a point on that line may be found from the

upper portion of the figure. From Eq. (6.7) one might
expect that the largest contribution to F(q,) will come
from those points in momentum space for which k lies

just inside the Fermi sphere and k+q, lies just outside
or vice versa. If, for example, we choose g, to be of the
form (pr/a)(1, 1,$) with 0&)&1, the quantity F(q) is

then a sharply peaked function of @; so at least in this
case certain sections of the Fermi surface may be re-
garded as being responsible for the instability of the
paramagnetic state. For this restricted range of g,
the quantity p&+p

—
p& does not depend on k, or k„ if k

is required to lie on a constant energy surface so that
one expects that a relatively large portion of Fermi sur-

face will contribute to the instability. In the case of
n/N=1 the whole Fermi surface contributes; as n/N
decreases the contributing portion of Fermi surface
decreases until atn/N =0.42 the critical q, is (n./a) (1,1,0)
and only that part of the Fermi surface near k, =0
is important. Figure 4 shows cross sections of the
Fermi surfaces corresponding to n/N = 1 and n/N =0.42,
and the related vectors q, are also indicated. For
0.14&n/N& 0.42 we find that q, has the form pr/a(1, $,0);
$ decreases from one to zero as n/N goes from 0.42 to
0.14. For n/N&0. 14, we find q,.=0 which means that
the paramagnetic is unstable with respect to the ferro-
magnetic state.

It has been stated by Friedel e$ al."that magnetism
in the transition metals originates when the first local
moments are formed on the individual atomic sites;
subsequently, these moments are coupled through a
sort of Ruderman-Kittel interaction involving the d
electrons themselves to give magnetic ordering. The
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Fzo. 4. Sections of the Fermi surface of the paramagnetic state
in the $111jdirection for the cases e/X=1 and n//=0. 42. The
arrows represent q, of Eq. (6.13).

condition for local moment formation is given as
Cotto(etr)) 1 which then becomes the condition for
magnetism itself. As stated by Friedel et al. themselves,
it would be dif5cult with such a theory to explain the
antiferromagnetism of Cr, which has a low tto(es);
furthermore, Fig. 2 shows clearly that the condition
Co'go(ep) )1 is in general too restrictive. In the particular
case of a half-61led band our model predicts magnetism
for all Co. For a more general band structure, the cri-
terion involves, as we have stated above, a near cor-
respondence between the magnetic zone structure and
the unperturbed Fermi surface, rather than simply the
density of states. The point of view adopted here is
closer to those of Slater, ' of des Cloiseaux, ' and of
Overhauser. '

(1/ttot)+ (1/tt&) 2Co =0— (7.7)

where e, is the Fermi energy of the spin-0. band as meas-
ured with respect to the center of that band. Equation
(7.6) tells us that the ferromagnetic state exists only
above the line given by Eq. (6.9). The line along which
the magnetization M, (0) is a fraction ( of the maximum
possible value is plotted in Fig. 6. Above the line )=1,
the ferromagnetic state is maximally polarized.

Both the paramagnetic response function and the
actual energy comparison give the result that the ferro-
magnetic state lies lower in energy than the paramag-
netic state in the region where both states exist. The
additional kinetic energy necessary to form the ferro-
magnetic state is more than compensated for by the re-
duction in the repulsive energy between states of
opposite spin. In the present model, and in the present
case, the only role played by exchange is to cancel out
the direct energy between parallel spins and, conse-
quently, the exchange plays no role in determining the
relative stability of the para- and ferromagnetic states.
This remark, in fact, applies to all states except those
containing spiral configurations where the exchange
does play a diferent role.

The x component of the ferromagnetic susceptibility
evaluated at q=0 is identically zero, reQecting the de-
generacy of a ferromagnetic state quantized in the z

direction with any similar state quantized along a dif-
ferent axis. The susceptibility X,(0) is given by (A16)
and is in6nite if

VII. FERROMAGNETIC STATE

(7.1a)

(7.1b)

The one-electron energies are Lsee Fig. 5(a)]

The ferromagnetic state has the operator transforma-
tion (Eq. (4.3)] given by

Pkt ~kt )

b)

R R

where

and

The total energy is

ekt = ok+ A ot I

eQ = ok+A(H, ,

A st Cora/N, ——

A ot =Cottt/N,

(7.2a)

(7.2b)

(7.3a)

(7.3b)

(7 4)

eg —eg=Apg —Ag, , (7.6)

&=Eke ~k.e +AotA(eN/Co (7 5)

and the condition that the Fermi energy of the up-spin
and down-spin bands be equal is

d)

8 R

FIG. 5. The energy bands in the $111j direction for the following
states: (a) ferromagnetic, (b) antiferromagnetic, (c) ferrimagnetic,
(d) spiral-spin-density wave. The dashed line of (c) indicates the
Fermi energy of a special ferrimagnetic state.



Fxo. 6.The lines along
vrhich the magnetization
of the ferromagnetic
state is a given fraction
of the maximum possible
magnetization. The fer- C,lE
rom agnetic state does
not exist below the Hne
indicating zero magneti-
zation and is maximally
magnetized above the
line that indicates maxi-
mum magnetization.

PARA MAGNETIC

~ot =~~=~o,

Agf =—Aqg=Aq. (8.1b)

Diagonalizing the energy matrix of Eq. (4.6) yields two
sets of operator transformations and one-electron
energies

(8.2a)

&» =Ao+k(~»+ "+o)~[(2"+o—")'+Ao'j"', (8 2b)

o= —Ao/[A o'+(~» —&»)'3"', (8.2c)

VIII. ANTIPERROMAGÃETIC STATE

The antiferromagnetic state, quantized such that
M, (Q)WO, is de6ned by

0 .2 .4 .5 8 I.O

-(nlNj2

V»s =—+As+~+»+os,

~x4 —~lrt —+k ~

(8.2d)

(8.2e)

vrhere
'(Q) =-2" F ~(Q)/(1+C.F«(Q)), (78)

1'«(Q) = (1/&)Z»V'»+of —F»~)/(~»+o~ —"~) (7 9)

where qo, is the density of states of the spin 0- band at
the Fermi energy. The line determined by (7.7) is line
u of Fig. 2.

The response function X,('Q) is found by using the
method described in Sec. V

The energy band E» is shown in Fig. 5(b). The total
energy is, from (4.10),

Z= P„F„F.,—(A, —A, )(X/C, ), (8.3)

where F», is the occupation number of the eigenstate kr
defined in (8.2). Equations (4.5) yield

A0= (Cg/$)p» F»g = (Co/1V)g» F», (8.4a)

Ao= —2(CO/E)p» Fggab.

Because ek ———ok+a, we have

The quantity F«(Q) can be rewritten as E»= Ao+ (e»'+A o')'I' (8 5)

1'«(Q) = de go(e)/[2&+Co(eg —Ng) j

9
~

1 t ~ l I l I l

and we see that the constant energy surface of the anti-
ferromagnetic and paramagnetic states coincide. Equa-
tion (8.5) implies that the magnetic zone boundary is
given by ok=0. For a half-6lled band in the parainag-'

Z~ g, (e)/[2e —C,(mg —mt)). (7.10)

The line 1/x, (Q) =0 is shown in Fig. 7 as line a. The
susceptibility is negative in the region enclosed by the
lines labeled a and c.

The condition 1/X, (Q) =0 is from (A15)

&e go(e)/e de go(e)/e=O (7.11)

and this line is labeled b in Fig. 7. Inside the small region
bounded by the lines b and c we have X,(Q) (0, and there
the ferrimagnetic state lies lower in energy than the
ferromagnetic state. The susceptibility becomes nega-
tive when the Fermi surface of one of the spin bands
approaches the magnetic zone boundary. We recall that
an instability in the paramagnetic state occurs when the
Fermi surface of that state approaches the magnetic
zone boundary; the present situation is a simple analog
of the paramagnetic case.

FzG. 7. The phase
boundaries determined
by an in6nite value of
the ferromagnetic sus-
ceptibility y, for the
cases x=x, (Q) (line u),:

x=X,(Q) {Hne b),
X=X,(0) (line c).

.2 .4 .6 .& I.o
-'(nlN)I
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ALE III. States which may transform into one another at
the second-order phase boundaries shown in Fig. 11.

Phase boundary line

paramagnetic, antiferromagnetic
paramagnetic, ferromagnetic
antiferromagnetic, ferrimagnetic
ferromagnetic, ferrimagnetic
antiferromagnetic, SSDW
ferromagnetic, SSDW

Fig. 10 and is negative in region 1.Thus, in region 1, the
antiferromagnetic state is unstable. The quantity
1/X, (Q) is identically zero indicating that the anti-
ferromagnetic state with M, (Q) nonzero is degenerate
with any antiferromagnetic state obtained from it by
rotation of the direction of magnetization.

The quantity X,(0) can be shown to be

X,(0)= —2''(2+C)/[(2+C)(Cp+D) —F), (8.14)

Fzo. 11. The phase
boundaries determmed
by 1/x=O where x is
the q=Q or the q=O
paramagnetic suscepti-
bility (line a and line b,
respectively), the q=O
z component of the
antiferromagnetic sus-
ceptibility (line c), the
q=o z component of
the ferromagnetic sus-
ceptibility (line d), the
q=O x component of
the antiferromagnetic
susceptibility (line e),
the q=Q x component
of the ferromagnetic
susceptibility (iine f)

C /E

f e

2 4 .6 .8 I.O

—,
' {n/g

where
IX. FERRIMAGÃETIC STATE

The ferrimagnetic state is defined by
de tip(e)/[~(e'+Aq')'I'j (8.15a)C= CoAq' (9.1a)

(9.1b)

Ao~&A~,

D= e,/[W(ep'+Aq')"'np(e~) j,
F=CpA q'/(es'+A q') (8.15c)

M (0)= (»/Cp)(Apg Apt) (9.2a)

(8.15b)
Apt& —Agg.

Equations (4.9) give

~e ftnd that X,(0) is positive in region 3 and negative

in regions 1 and 2 of Fig. 10.
e have summarized the information contained in the

expression (1/x)=0 in Fig. 11 and Table III. Each
entry in the table corresponds to a second-order phase

boundary in Fig. 11 and indicates which two states
co-exist on the boundary.

(9.2b)

ts(Q) = (1/Cp) (A qua+A qt) (9.2c)

The charge fluctuation indicated by (9.2c) implies a
nonzero net charge within an atomic cell which would
create a large perturbation on a neighboring cell. In
this case, the neglect of interactions on diGerent cells is
not justi6able. To include them would, however, greatly
complicate the calculations; we shall leave the problem
for future study, bearing in mind that the present re-
sults are subject to quantitative revision. The diago-
nalization of the energy matrix of (4.6) leads to the
operator transformation and eigenvalues

'yet =ctost+dtolr+ot, (9.3a)
FIG. 10. The sign of

the x and z components
of the q=O antiferro-
magnetic susceptibility:
X, is negative in region 1
and positive in regions
2 and 3; x, is positive
in region 3 and negative
in regions 1 and 2.

- ~ f t 1

Q g 4

-{n/N)2

A pt ~ (eks+ A qt s) 11s (9.3b)

"q'/[Aqt'+(" —E»)'j"' (9 3c)

The plus sign of (9.3b) is chosen when eq) 0. There are
exactly analogous expressions for y~g, E&p~ and c& The
energy bands described by Eq. (9.3b) are shown in Fig.
5(c). One can imagine the bands as being formed by the
apphcation of periodic potentials of strengths A@g and
A qt to the ferromagnetic state depicted in Fig. 5(a).

There is a particular ferrimagnetic state of great
importance because it is the state of lowest energy over
a wide region of the phase diagram, whereas the general
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Fyo. 12. The ferri-
magnetic state exists
only within the region
bounded by the dashed
curve. The special fer-
rimagnetic state exists
everywhere in that re-
gion while the general
ferrimagnetic state
does not exist in the
region bounded by the
curves c and fg.

=Apt'
&Ff

dc t/0(e)/[+(e'+A qt')'/'] (9.8)

The integral I(e/, A) defined by

I(e/;, A ) =A' d$ t/o(g)/[~($2+A2)t/2] (9 9)

The most convenient method for solving the simul-
taneous equations (9.6) and (9.7) is as follows. First
eliminate Co from equations (9.6) with the result

.4 -6 .8 I.P
—,
'

(niN)

I'-Ft-&~~~ &I'-'s~+ (9.4b)

The Fermi level of such a S,F. state is indicated by the
dashed line in Fig. 5(c). There is, of course, a similar
S.F. state with n&1. Notice that in the case n=1, the
S.F. state becomes identical to the antiferromagnetic
state.

In general, for all ferrimagnetic states, (4.6) and (9.3)
lead to

and

Aot =Cong/1V,

A Ot
=Cont/E,

(9.5a)

(9.5b)

A~=CpAgg de t/0(e)/[~(e'+Aqg')'/'] (9.6a)

Aq& = CpA gt

where ep, corresponds to the Fermi energy of spin-o.
electrons. In the case of the S.F. state, we have t.~q ——0.
The condition that the actual Fermi energies be equal,
Ept =Fpq, gives

Aot+(6 t2+/Aot2)1/2 A ok~(&/'42+A o42)1/2 (9 7)

while in the case of the S.F. state, (9.4) replaces (9.7).
Equations (9.6) and (9.7) constitute three equations
which for a given Cp and n are sufficient to determine
A~ Aqg Apt Apg cpt and lpga the last three quantities
being determined by the first three, since A g =Con —A Ot

and, .opt is determined by nt.

ferrimagnetic state is never a state of lowest energy. This
particular state, which we shall refer to as the special
ferrimagnetic (S.F.) state is described in the case n(1,
~«0 by

n=~~; (lower half-band of spin-down filled) (9.4a)

X. SPIRAL-SPIN-DENSITY-WAVE STATE
AND FINAL-PHASE DIAGRAM

The spiral-spin-density-wave state is defined by

Apt/A(g,

A gag =Ay&0,

(10.1a)

(10.1b)

is then plotted as a function of ep for various values of
A. We now specify values for Agt and apt instead of
specifying Co and n. Equation (9.8) then defines a set of
possible combinations of values for epg and Aqg. One
pair from this set is picked, and then Cp is determined
from Eq. (9.6a). We then can see whether (9.7) is satis-
fied, if it is not, we try a diferent pair of values for eF&

and A gt. In the S.F. case, we follow the same procedure
except that we must choose Cent =0, and, after we have
found e/q and A oq, we check to see if (9.4b) is satisfied.

The S.F. state exists everywhere within the region
bounded by the dashed curve of Fig. 12. The spikes,
labeled 5 in the figure, were put in by hand as they are
too narrow to be found by the numerical procedure but
are indicated by the fact that the s component of the
q=Q ferromagnetic susceptibility is negative in that
region. The lines c and d of Fig. 12 are the lines c and d
of Fig. 11.The general ferrimagnetic state exists outside
the closed region bounded by the lines c and d and
within the region bounded by the dashed curve. On the
dashed curve of Fig. 12, the S. F. state becomes a
limiting case of the ferrimagnetic state in the sense that
the Fermi level just touches the top of the down-spin
sub-band.

The S.F. state and the antiferromagnetic state have
nearly the same energy near the region where n~1 with
the S.F. state always having a slightly lower energy.
Thus, the line determined by Ef„„——L.'p. p. lies very close
to the line Ef„,.=E,„&&, particularly for large Cp

(i.e., for n~1). Figure 13 indicates the state of lowest
energy among the paramagnetic, ferromagnetic, anti-
ferromagnetic, and ferrimagnetic states. The dashed
lines indicate first-order phase transformations and the
solid lines indicate second-order phase transformations.
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and Eqs. (4.9) give

~.(0)=(v~/cp)(Api —Apt),

3f.(Q) =—(2ps/Cp)A q,

(1O.2a)

(10.2b)

I
t8-

yp"'= ('"~ pi+ f'"(ilr+Qt

Ep"'= Ap+~[(pp —A Q-)'+A q']'"

(10.3a)

(10.3b)

s(() =—Aq[(Pp+Api —E (»)'+A '7—')' (10.3c)

together with no charge density fluctuation. The eigen-

values and operator transformation determined from

diagonalizing the energy matrix are

Fxe. 13. The phase
diagram for the para-
magnetic, ferromag-
netic, antiferromag-
netic, and ferrimag- c,/E"
netic states. Solid lines
indicate second-order
phase transformations
and dashed lines indi-
cate first-order trans-
formations.

6-

Vv(P)= f(P)(i'+&(P)(it+oh

E„(P)=A~~[(„+.A~)P+AqP]»P

(10.3d)

(10.3e)
t

'

p 1 p

f(&)——Aq[(p~+Apt —Ep(&))P+A P]—&IP (10.3f)

where

4 .6 .8 LO

—(n/N)

Ap+ ———',(Apt+Api),

Ap ——-,'(Apt —Api),

(10.4a)

(10.4b)
1=-',Cp dp qp(p)/{~[(p Ap —) +Aq ] ) )

and (10.3f), (10.5c) can be put in the form

the minus sign in (10.3b) is chosen if pp —Ap (0, and
the minus sign in Eq. (10.3e) is chosen if p&+A Q (0.
The one-electron energy versus k curves are shown in

Fig. 5(d). The form of the energy bands. in the 6gure
may be imagined as the result of applying to a ferro-
magnet a periodic potential'of strength A@ that mixes
states of opposite spin.

Equations (4.5) give

+QCQ «np(p)/{ ~[(p+A p-)'+A q']"') (10.9)

The condition Ez&'&=Ep&2& yields

~[(pp, (»—A )P+AqP]))P
= ~[(p~(»+A~)p+Aqp]((p (10 10)

Api = (Cp/ll)') p Fp(i)(( (i))&

k, i=1.

Api=(CQ/1V) Q F),(')(f('))',
k, i=1

(10.5a)

(10.5b)

On using Eqs. (10.3c), (10.3f), and (10.5c) to evaluate

Ap, we find that

dp p)p(p)(p —Ap )/

Aq — (Cp/~) g Fp(i)( (i)f(i)
k, i=1

(10.5c) {~[(p—A ~)'+A q']»P) —lC « i)p(P)

where F),(o is the occupation number of the state k(i)
dined by (10.3). Note that the number of electrons of

spin-up is given by

)((p+Ap )/{~[(p+Ap )p+Aq&]»p) (10.11)

Combining Eqs. (10.9) and (10.11) yields

so that
k, i=1

F (o(f(i))P (10.6) 0= « ~p(')'/{~[(' —A~)'+Aq']"')

A(s = Cpnt/cV (10.7)

as usual, but that the number of electrons in band (i)
is given by

(10.s)

which is not the same as the number of spin-down or
spin-up electrons in band (i). With the help of (10.3c)

Equations (10.9), (10.10), and (10.12) are the three
simultaneous equations that must be satisfied by the
spiral-spin-density state. The use of Eqs. (4.10),
(10.3b), (10.3c), and (10.7) results in an expression for
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2 (n/N)
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FIG. 14. The ferromagnetic susceptibility X, (Q) is inflnite on
line f. The antiferromagnetic suscepbility x, (0) is inflnite on line
e. The special spiral-spin-density-wave state exists in the region
bounded by lines f and g. The general spiral-spin-density-wave
state exists in the region bounded by line e and line g above Co/E"
=5.1 and lines e and f below Co/E"=5. 1. The dashed curve indi-
cates the flrst-order phase boundary separating the ferromag-
netic and the antiferromagnetic states.

the total energy of the state

«no(~) {+E(~—A o-)'+A o'j'")
eg(2)

de go(e) {wL(&+A )'+A q'j' ')

+2 Co&2//N —Cons&a/N+A o'/Co. (10.13)

There is a special case of the spiral-spin-density-wave
state (SSSDW) that is analogous to the S.F. state. Like
the S.F. state, the SSSDW is the state of lowest energy
in some regions of phase space but the general SSDW
state never is. The SSSDW state can exist only when the
quantity Ap is sufBciently large and consists of all the
electrons being in one band. When 2A p is larger than
the band width (i.e., Ao )3), the periodic potential
does not split the bands so that if n& 1 then all the elec-
trons will be in one band. Further, it is possible to have
a band splitting and still have all the electrons in one
band. The condition for this to happen is found from
(10.3b) and (10.3e) to be

state along the line determined by 1/x, (Q) =0 where x
is the ferromagnetic susceptibility. Equations (10.15)
are easily solved numerically by specifying values of
Ao and Ao and thenby using (10.15b) to determine
6p('&, i e., e. The quantity Cp is found by means of
(10.15a) and a further check insures that e~&'&(Ao .
For a given A p, we can vary the value of A g and gener-
ate a set of points on the phase diagram; as we increase
Ag both Cp and e will increase.

As we have already noted, a SSSDW state with
Ag=0 corresponds to a maximally saturated ferro-
magnetic state; the line of such states is shown as line f
for Cp&5.1 in Fig. 14. If Ap &3, then ep(" &Ap for all
A@. On the other hand, if Ap &3, there will be some
critical value for Ag such that the quantity e+(') gener-
ated by that Ag satisies ep('&=Ap . These points will
lie on a line that corresponds to the set of solutions of
(10.9), (10.10), and (10.12) solved under the assumption
n(') =n, n('& =0. This line is denoted by g in Fig. 14.The
SSSDW state exists in the region bounded by the lines

f and g in Fig. 14 above Co —-5.1. As is expected from
the fact that the ferromagnetic susceptibility is nega-
tive in this region, the energy of the SSSDW state lies
below that of the ferromagnetic state.

We now take up the problem of constructing the more
general SSDW state. The three simultaneous equations
(10.9), (10.10), and (10.12) can be dealt with as follows.
We Grst choose values for n(') and n(2&, and then use
Eq. (10.10) to ind Ao . Next Ao can be determined
from (10.12) via a trial and error procedure. Finally,
C, is found from Eq. (10.9).

The case e&"=n&'&=e/2 corresponds to a point at
which this SSDW state is degenerate with the antiferro-
magnetic state, which occurs along the line e of Figs.
11 and 14. This line is determined by the condition
1/X, (0)=0 where X,(0) is the antiferromagnetic sus-
ceptibility. For a axed value of n, as n('& —n('& increases

SSSOW
)

S SS&DW8—

qp('&&Ay &3 (10.14)

1=-',Cp de go(e)/

where band (1) holds all e electrons.
The self-consistency equations for the SSSDW state

are

5-
C /EN

4—

FrG. 15. The phase
diagram for the para-
magnetic, ferromagnetic,
antiferromagnetic, ferri-
magnetic, and spiral-
spin-density-wave states.
Solid lines indicate sec-
ond-order phase trans-
formations and dashed
lines indicate first-order
transformations.

0=
{wL(e—Ao )'+Ao'$'") (10 15a)

qy'(1)

«no(~) ~/{~[(~—A ~)'+A Q')'12) (10 15b)

In the limit Ag-+0, the SSSDW state will be de-
generate with the maximally saturated ferromagnetic

4 .6 .8 I.O

(n/N)
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the SSD% state exists towards lower values of Co. In
the case of n suKciently large (Co) 5.1), we can increase
the difference e&')—m&') until it is equal to e and still
And a solution of the three simultaneous equations. As
already discussed, the values of our parameters also
satisfy (10.15) and can alternatively be constructed by
using the method previously employed in constructing
the SSSD% state, thus providing a check on the
accuracy of the numerical procedures.

For Co&5.1 there will be some maximum value of
n(') —n&2) such that it is smaller than e and still satisfies
the simultaneous equations. This line of maximum
e&'& n—&'& is represented by the line f below C,=5.1 in

Fig. 14. The SSD% state exists in the region betw'een

lines e and g for CD) 5.1 and between lines e and f for
Co&5.1. This state always has an energy greater than
the antiferromagnetic state. The dashed line in Fig. 14
indicates the line at which the energy of the antiferro-
magnetic state is equal to the energy of the ferromagnetic
tsate.

The 6nal-phase diagram is shown in Fig. 15.The state
of lowest energy is indicated, and second-order phase
transformations are denoted as before by solid lines,
while erst-order transformations are indicated by dashed
lines. Ke see that for the case of a half-ulled band the
special ferrimagnetic state is the state of lowest energy.
As the number of electrons increases or decreases, the
paramagnetic, antiferromagnetic, and ferromagnetic
states become possible ground states depending on the
value of Co/E". Finally, when the band is almost full

or almost empty, only the paramagnetic state exists for
not too large values of Co/E".

XI. LOCAL MOMENTS

%hen an impurity atom is placed in a paramagnetic
metal a local magnetic moment may be formed at the
impurity site. This phenomenon has been treated by
%ol6" and Clogston et al."within the context of a
model that is similar to ours. The Hamiltonian for the
system of metal plus impurity potential takes the form

(0~)a[0~'&=b.„.((o~[a,~o~&+ v,

+Co p, (os[hp (Os&

—C,(00
~
b,p ~

0(r)), (11.1a)

q~[a [
t'~'&= s, ,s, ,(0~ ]a [0~'&

+(1 br, obv, o)(~0—'~Ifo~f'0'&, (ll 1b)

in first quantization, where
~
fa) denotes a Wannier func-

tion of spin 0, V» represents the impurity potential, Ap

is the change in the density matrix induced by V», and

H~ is the unperturbed Hamiltonian. Equation (11.1)
can be solved exactly for (00

~
6p ~

00 ) and a local moment
is obtained when (0$)hp(ot')W(ol~dp~oj, &. On solving
for (00

~
Ap

~
00), one finds that for a given valence of the

"A. M. Clogston, S. T. Matthias, M. Peter, M. J. Williams,
K. Corenzwit, and R. C. Sherwood, Phys. Rev. 125, 541 (1962}.

Pro. j.6. The phase
diagram describing the
properties of the para-
magnetic state with
respect to- local mo-
ment formation. Below
the lower dashed curve
no local rnornent can
be formed independent
of the strength of the
impurity potential. Be-
tween the two dashed
curves local moment
formation is possible
depending on the
strength and sign of
the impurity potential.
Above the upper
dashed curve local mo-
ments form in the ab-
sence of an impurity.
The solid line indicates
the phase boundary of
the paramagnetic state
(see Fig. 3}.
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host material there is a critical value of Co, Co', such that
if Co& C()' no local moment is formed, independent of the
size of V». For Co&CO', there is a range of values of V»
such that a local moment is formed. The line Co' ——C0'(e)
has been plotted on the phase diagram and is the lower
dashed line of Fig. 16. The line is meaningful only in
those regions of phase space in which the ground state is
paramagnetic as this was taken to be the state of the
host metal when Eq. (11.1) was solved.

For su6iciently large Co a local moment is formed in
the case V»=0; this indicates an instability of the host
metal. The condition for this instability to occur may
be found by examining the sign of the local susceptibility
X,q Mq/H, q.

——This quantity is easily evaluated by
means of the method described in Sec. V and is

0=1+2' 1(z)go(s)dz,

I(z)=8 dz'gp(s')/(z —z') (11.5)

and I' indicates that the principal part is to be taken.
The line 1/X, ~

=0 is shown in Fig. 16 as the upper of the
two dashed lines. The entire line is seen to lie within a
region in which the paramagnetic state is unstable, as it
should be since stability against a spontaneous local
moment is less stringent than stability against an arbi-
trary polarization.

~.~= —»~'Ze 1'(q)/(1+Co Z. 1'(q)), (112)

r(q) =(1P)g,(F„,-F,)/(.„,—.,). (11.3)

The line in phase space corresponding to 1/x, g=o is
found from 0= 1+Co g~ 1'(q) which may be put in the
form
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XII. CONCLUSION

We have given a semiquantitative explanation of the
incidence and type of magnetism observed in the transi-
tion metals and alloys based on a SCF band model. The
model contains two parameters; the number of electrons
per atom n/X and the strength of interaction between
electrons compared to the bandwidth Co/E". The cor-
relation between the values of the parameters and the
position of a metal in the periodic table has been dis-
cussed; e/E is directly related to the average atomic
valence apart from the number of s electrons and
Co/E" is a quantity which is expected to increase
strongly as one moves upward and to the right in the
periodic table. For given values of the parameters there
will be one or more types of magnetic states that may
be constructed within the context of the model and we
have been speci6cally interested in determining the
state of lowest energy.

The region of phase space in which the paramagnetic
state is stable against a second-order phase transforma-
tion to an antiferromagnetic or ferromagnetic state has
been determined by a calculation of the paramagnetic
susceptibility x(g). Figure 3 shows the phase boundary
at which the paramagnetic state becomes unstable and
the upper portion of the 6gure gives the wave-number

g, for which the instability occurs. For n/IV=1 the
whole Fermi surface contributes to the instability, as
e/N decreases the area of the Fermi surface that con-
tributes to the instability decreases until at e/1V= 0.42
only a narrow ring of the Fermi surface contributes as
is shown in Fig. 4. As m/E decreases still further, it is
less justi6able to associate the instability with a par-
ticular portion of the Fermi surface. For e/1V(0. 14, we
6nd g, =o.

Our primary concern has been in determining for a
given e/X and Co/E" the state of lowest energy among
a limited number of the in6nitely many states that
may exist. The states chosen for study were the para-
magnetic, ferromagnetic, antiferromagnetic, ferrimag-
netic, and spiral-spin-density-wave states Lthe latter
three states are characterized by a spatial variation of

magnetization corresponding to q= (m./a)(1, 1,1)]. The
phase diagram associated with these states have been
constructed by means of the response function method .

and by actual energy comparison (in order to determine
the erst order -phase transformations).

The phase diagram is shown in Fig. 15. Keeping in
mind the correspondence between the transition metals
and the parameters e and Co/E", one sees that the
phase diagram is in reasonable semiquantitative agree-
ment with the observed incidence of magnetism in
transition metals and their alloys in that ferromagnetism
occurs in the upper right-hand portion of the phase
diagram and complex magnetic states occur towards
the center of the band. Ferromagnetism is seen to be
possible when C,/E")3.5. If it is assumed that the
t;Sect of the 6ve d bands is simply to increase the density

of states by a factor of 5 over that found in our one
band model, and if we further assume a bandwidth of
about 4.5 eV, then one 6nds Co -,'eV which may be
compared to the values of roughly 1 eV in Ni" and
O.P eV in Fe»

The possibility of a nonparamagnetic ground state for
very small values of Co/E" as occurs in the center of the
band is directly related to the coincidence of the Fermi
surface and the magnetic zone boundary. In the case of
a more realistic band structure where this coincidence
cannot occur, one would expect to 6nd only the para-
rnagnetic state for small Co/E" as is observed in the 4d
and Sd transition series. As Co/E" is increased. above
some critical value, the antiferromagnetic state would
be attainable for some restricted range of valence and as
C0/E" is further increased, the ferrimagnetic state
might become stable. The special ferrimagnetic state
occupies a large region in phase space compared to the
antiferromagnetic state while, in fact, antiferromag-
netism is usually observed to occur; this failure of the
model may be due to the one band approximation which
does not take account of intra-atomic exchange or to the
rather simpli6ed treatment of electron correlation.

We note that the phase transformation of the para-
magnetic state to the antiferromagnetic or ferromag-
netic states is second order. This result leads 'one to
believe that the actual region of stability of the para-
magnetic state has, in fact, been determined, from the
calculation of the paramagnetic susceptibility x(ri) for
general g. All phase transformations that do not involve
the paramagnetic state (with the exception of the ferro-
magnetic to SSDW transformation) are erst order; thus,
the response function method has been useful for de-
termining the boundary lines denoting phase trans-
formations only in those special cases.

The question of whether or not a local magnetic mo-
ment can be formed at an impurity site of a transitiori
metal has been investigated and the results are sum-
marized in Fig. 16. For a given n/1V there is a mini-
mum value of Co/E" (indicated by the lower dashed
line of the figure) below which no moment formation is
possible and above which moment formation is possible
depending on the value of Vz. For su%ciently large
Co/E" (indicated by the upper dashed line of the
figure) local moment formation takes place in the case
V&=0 indicating an instability in the host metal. It is
to be emphasized that any condition for local moment
formation that is independent of V~ must, in fact, refer
to an instability of the host metal itself.

Beck et Ol."have measured the linear speci6c heat yT
of a number of bcc 3d alloys, and they found a sharp
peak in y in several alloy systems when the electron to
atom ratio is about 6.5. We suggest that part of the peak
is due to the presence of a magnetic zone structure at
least in the case of Cro.SMn0. 5 which exhibits the largest

~ J. C. Phillips, Phys. Rev. 133, A1020 (1964).' C. H. Cheng, C. T. Wei, and P. A. Beck, Phys. Rev. 120, 426
(1960).
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peak. Such a peak is exempli6ed in our model; in the
case of the g=2r/a(1, 1,1) antiferromagnetic state the
density of states is porportional to 2)o(e)(e2+Ao')'"/6
which peaks as e —+ 0.
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APPENDIX A

In order to derive Eq. (5.5) we introduce the re-

solvents E. and Eo defined by

R(s)=(s+)6 H) '— (A1)

Ro(s) = (s+)((o—H())
—', (A2)

where p and H are the Fermi energy and SCF Hamil-

tonian in the presence of an external magnetic field and

po and Ho refer to the case of no magnetic held. The
relation

hence
XexpLi(k' —k) R(], (A8)

V~~(q) = (Co/&)Q) (kl
~ p2~ k+ql),

similarly,

(A9a)

v~&(q) = (co/&)p~(kt'~ pg~ k+qf). (A9b)

From (5.5) and H„(q) =(k0 ~H&~ k+qo), we obtain

v (q)=r, (q)(a„(q)—q„„,),
v„(q)= r, (q)(a„(q)-q„„,),

(Aioa)

(A10b)
where

r.(q) = (I/&)Q), (&),+,.—&),.)/(e), +,.—e),.) . (A11)

Equation (5.6) yields

In order to illustrate the procedure used in calculating
a response function we shall evaluate the ferromagnetic
susceptibility X,(q). Equation (5.2) yields

(Ei i
Vg i El) = P (ko i p 2ik o')'(k '(r'E, 1['Oi E1'k, ()), (A7)

krak'o'

where
~
k(r) denotes a spin-0 eigenfunction of the unper-

turbed ferromagnetic state and
~
lo) denotes a Wannier

function of spin 0. The relation (k'a'~ =P) (k'0'~lo')
(lo'~ in conjunction with Eqs. (2.5), (5.3), and (A7)
gives

«&I V~IIT)=(CO/&)Z(kTI p2[k'I&
kk~

R= Rp+Ro(H2 p2)R2-
/, =

( P&k~[ )k )(
where Hq ——H—Ho and p2 ——p,

—po leads to the first- &) ~ ~8~ ), 2( E) ~ Be)),.)
order approximation

R= Rp+R()(H, —p2)Rp.

The density matrix p= po+ p& can be expressed as

p= (1/2 )gd (22(p)(ppP'+1)-',

where the contour of integration includes all the eigen-

values of H. Equations (A4) and (A5) yield

p, = (1/2 i)fCh )(,(22, p)24(eP'+1) '. (A6)—

Upon taking the matrix element of p~ with respect to
eigenfunctions of Ho and carrying out the complex in-

tegration we obtain Eq. (5.5).

I'(0) = lim I'(q) . (A14)

The quantity —I', (0) is just the density of states of
the spin-a. band at the Fermi surface. Recalling that
H&(q) = V2)(q)+H'(q) where H'(q) = —ps' $(q) and
making use of Eqs. (5.8a) and (A10) we obtain

x,(q) =p2)'( —rq(q) —rt(q)+2.Cort(q)rg(q))/
(1—Co'rg(q) rg(q)) (A15)

for q&0. In the case of q=0 we 6nd

x*(o)= —4) s'/L2CO+(I/r~(0))+(I/r (0))] (A16)

which can be rewritten as

(H„(o)r,(o)ya„(0)r,(0))/(r, (0)+r, (0)) (A13)

where


