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The theory of low-energy electron-hydrogen atom scattering is reformulated to include, in any truncated
coupled-channel calculation, the contribution from continuum states due to exchange effects. The existence
of such a contribution has been explicitly demonstrated by Castillejo, Percival, and Seaton, although the
standard treatment does not include it. Our formulation of the problem employs the expansion of the exact
wave function ¥# in terms of the complete set of hydrogenic states {¢a} in the form ¥£=2, @u(1) ¥o*(2).
Although this expansion is not termwise symmetric or antisymmetric, the entire sum is made so by use of
the integral equation for ¥+, The boundary conditions satisfied by the scattering coefficients ¥,* are auto-
matically specified in this approach. Furthermore, it is now clear that the entire, exact elastic or inelastic
amplitude is contained in the scattering wave function y.*. The elastic wave function ¥* (and also the
set of open-channel wave functions) is shown to obey both homogeneous (optical potential) and inhomo-
geneous equations. The equivalence of these equations with each other and with the equation found using
Feshbach’s projection-operator method is demonstrated. A set of homogeneous equations are found for the
case where only certain chosen channels are kept and the rest are truncated. This latter set of equations is
identical to those obtained by Hahn, O’Malley, and Spruch as an adjunct to calculations establishing
bounds on scattering parameters. Both the exact and the approximate sets of equations for the y,* differ
from the corresponding equations used in all previous coupled-channel calculations. Using our results, the
relation between the Born-Oppenheimer amplitude and first-order exchange amplitude of Bell and Moisei-
witsch is discussed. Each is shown to be a different first-order approximation to the exact amplitude, al-
though the Born-Oppenheimer amplitude is seen to be an approximation to the amplitude derived from the
inhomogeneous equation. Some simple single-channel calculations of phase shifts and scattering lengths
have been carried out. The triplet phase shifts and scattering length derived from the approximate homo-
geneous equation are identical to those of the standard static exchange approximation, a result expected on
the basis of the antisymmetry of the ¥~. However, the singlet phase shifts and scattering length differ from
those of the standard static exchange approximation. We find that for 22<0.09, the singlet phase shifts are
larger than those calculated in the 1s-2s strong-coupling approximation, and that the singlet scattering
length is 7.85, where quantities are given in atomic units. For 42>>0.09, the singlet phase shifts are less than
those of the 1s-2s case and approach those of the static exchange calculation. Reasons for this behavior
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are discussed.

INTRODUCTION

LTHOUGH the scattering of electrons by hydro-
gen atoms is one of the simplest collision problems
that includes the effects of the Pauli principle, it is still
too difficult to be solved exactly, and all numerical
calculations have been based on approximations of
various kinds. The coupled-channels method is one of
the most popular theoretical approaches on which ap-
proximations are based.! In this method, the exact
scattering wave function ¥+ [upper (lower) signs refer
to singlet (triplet) total spin functions] is expanded via
the complete set of states { ¢,} of the H atom,

TE=3 0 [ea(DXF )£ 0a(D)XE1)], (1)
and Eq. (1) is then substituted into the Schrédinger
equation (E—H)¥*=0. A set of coupled, integro-
differential equations for the scattering coefficients X%
is found; these are to be solved with the boundary
condition

X (r)~8a0 exp (ik- 1)+ fx,*(6) exp(ikr)/7,
where ¢ is the ground state.

)

* Work performed under the auspices of the U. S. Atomic
Energy Commission.

1 Present address: Theoretical Physics Division, Atomic Energy
Research Establishment, Harwell, England.

1 Many references to the recent literature may be found in
Atomic Collision Processes, edited by M. R. C. McDowell (North-
Holland Publishing Company, Amsterdam, 1964). See also P. G.
Burke and K. Smith, Rev. Mod. Phys. 34, 458 (1962).
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The standard approximation consists of truncating
the set of coupled equations,! and solving the remainder
for X,* subject to Eq. (2). The amplitude fx* is then
interpreted as the elastic scattering amplitude. An
identical set of equations is also found by truncating the
expansion for ¥+ and using this abbreviated expansion
in a variational integral.! With the present availability
of high-speed computers, numerous calculations of this
sort have been carried out in recent years. In addition,
minimum principles and bounds on scattering parame-
ters have been developed that have proved useful in
assessing the accuracy of these calculations.!

Despite the great effort that has gone into such
calculations, no one, to our knowledge, has yet included
the effects of continuum hydrogenic states on the
scattering. That is, fx,%, for example, is not the true
elastic amplitude, and would not be even if X,* were de-
termined exactly. Instead, the true elastic amplitude
foE is obtained by examining

lim (o(1) [#%)=lim (Xe=() T ¢a(2)en] X))

=exp(ik- 1)+ fo=(0) exp(ikrs)/re.  (3)

From (3) we see that fo* contains fx,* and also contri-
butions from those states ¢z(2) which are in the
continuum.

It might be thought that there is no contribution
from the continuum states in Eq. (3), thus assuring that
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Xo* does yield the entire elastic amplitude. A simple
example shows that this is false, for we only need to
assume that electrons 1 and 2 are distinguishable and
solve (E—H)¥ (1,2)=0 in this case using the expansion
V(1,2)=3" 4 0a()uq(2) [electron 2 incident]. Then
UE=V(1,2)+¥(2,1) is a solution of (E— H)¥*=0. The
analog of Xo* is now o, which yields only the amplitude
for distinguishable particle scattering. Hence the con-
tinuum states must make a contribution to f¢* in this
case of X,=1u,. That there is a singularity occurring in
the expansion (3), the effect of which is to provide
precisely the correct exchange amplitude, has been
shown by Castillejo, Percival, and Seaton.?

The problem of attempting to include these con-
tinuum states within the framework of Eq. (1), is
formidable, since it essentially requires solving the whole
set of coupled equations, rather than just the truncated
version. On the other hand, if only a truncated set is
considered, then we ignore continuum exchange contri-
butions to fo*. Hence, inclusion of more channels in the
truncated set of equations for X,* will not necessarily
be an improvement since the contribution of the con-
tinuum states remains undetermined.

A possible means of avoiding this problem, based on
the fact that the X,* are not uniquely specified by Eq.
(1), has been noted by Hahn, O’Malley, and Spruch.?
The X,* may be redefined by requiring that {@o| Xo*)
=0, a70. This then forces fx* to be the true elastic
amplitude. Unfortunately, there is a difficulty that
renders this approach impractical. Namely, it would be
necessary to solve the entire set of coupled equations in
order to make sure that the condition { po| X,%)=0, @520,
was, in fact, obeyed. Without such a guarantee, we
would not know that X¢* was the only source of scat-
tered waves, thus bringing us immediately back to the
problem of using (1) without any restrictions on the X+
In other words, we are guaranteed that the redefined
X.E’s exist by the result of Castillejo, Percival, and
Seaton.? But we do not yet know the new set of coupled
equations that the redefined X,* obey. It is clear that
such a new set must exist in order that only X¢* con-
tribute to fot. If the old set of coupled equations! is
used, then in effect we are dealing with the X.* of Eq.
(1). It would be necessary to solve this whole set,
calculate the amplitude arising from the singularity, and
add this extra amplitude to that obtained from X*
(ViZ., fxoi)'

From the foregoing discussion, it is clear that practical
methods for including continuum-state contributions
are desirable. We explore several related methods in this
paper. The main procedure we follow is based on previ-
ous work on the scattering of a fermion by a system of

2L. Castillejo, I. Percival, and M. Seaton, Proc. Roy. Soc.
(London) A254, 259 (1960).

3Y. Hahn, T. O’Malley, and L. Spruch, Phys. Rev. 128, 932
(1962) ; 134, B397 (1964). Their method is equivalent to removing
the singularity exchange contributions of Ref. 2 and including it
m fthe coefficient Xxo*. This method is also briefly discussed in
Ref. 2.
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identical fermions.* Instead of using Eq. (1) for ¥#, we
expand in the form

‘I’i=2a ?’a(l)‘pai(z) 3 (4)

and require the entire sum in (4) to be antisymmetric,
even though termwise it is not. The advantage of Eq.
(4) over Eq. (1) is that yo*, for example, will contain the
entire elastic amplitude fo=. Furthermore, any ap-
proximation to yo* obtained by solving a truncated set
of equations will now not neglect continuum exchange
contributions to fo*.

In I, for the case of arbitrary targets, it was shown
that ¢+ obeyed an inhomogeneous differential equation,
and also that the open-channel wave functions ¢, *(0<a
<no=number of open channels) obeyed a set of coupled,
inhomogeneous differential equations. All exchange
effects were contained in the inhomogeneous terms. An
advantage of this set of equations is the absence of the
usual exchange nonlocalities. A drawback, however, is
that one cannot define an optical potential from an
inhomogeneous equation. However, the problem of de-
termining an (uncoupled) optical-potential equation for
Yot was solved by Bell and Squires® for the case of the
scattering of a fermion by a target containing an arbi-
trary number of fermions. Field-theoretic techniques
were used by these latter authors to obtain their results.
Using the methods of I, we have rederived the result of
Bell and Squires for e~+H elastic scattering and have
extended it to include inelastic scattering as well. For
the inelastic case, we find a set of coupled, homogeneous,
integro-differential equations for the y,* in the open
channels, thus permitting an optical-potential matrix to
be determined. This latter set of coupled equations for
the Y.+ closely resembles those for the X+, though there
are important distinctions as we show later.

An alternative approach to the problems of con-
tinuum states and the optical potential has been put
forward by Feshbach,® who used a different projection-
operator method than that of I. We show that theresults
obtained using Feshbach’s approach are identical to
those obtained using our methods. Although all the
equations derived for yo* (or for the open-channel
column vector wave function) by different means are
thus shown to be identical, in their original forms some
are seen to be more useful. This is particularly true for
Feshbach’s method. We show that if one wishes to
ignore some or all of the closed channels, Feshbach’s
equations are the easiest way to obtain the coupled
equations in this approximation. A derivation of the
correct equations to use in a truncated coupled-channels
calculation is contained in the work of Hahn, O’'Malley,
and Spruch,? although these authors made no use of it.
We discuss this point in detail later.

4F. S.Levin, Phys. Rev. 140, B1099 (1965). We denote this work
by I, and refer to equations from it as (I-1), (I-2), etc.

5J. S. Bell and E. J. Squires, Phys. Rev. Letters 3, 96 (1959).

6 H. Feshbach, Ann. Phys. (N. Y.) 19, 287 (1962).
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Numerous calculations have been made in Born
approximation and we discuss the relationship be-
tween the Born-Oppenheimer amplitude and the first-
order exchange approximation amplitude of Bell and
Moiseiwitsch.” In particular, we show that the Born-
Oppenheimer result is the lowest order amplitude
arising when the inhomogeneous equation for ¢+ is
solved, while the result of Bell and Moiseiwitsch’ is the
lowest order amplitude arising when the homogeneous
equation for ¥* is solved. Both results are first-order
approximations (in some sense) to the exact amplitude.

We have also carried out some simple single-channel
calculations of phase shifts and scattering lengths based
on the correct zero-order (‘“‘static’”’ approximation)
equations and have compared the results with previous
calculations. Despite the differences in the equations
obeyed by the X,* and the ¥,*, we find that the “‘static”
approximations for Xe* and yo* yield nearly identical
phase shifts except at very low energies where the phase
shifts from the static approximation to y,* are larger
than those of the 1s-2s strong-coupling approximation to
Xo£. The reasons for this are discussed.

INHOMOGENEOUS EQUATIONS

We first review the results of I, using the following
notation. The total Hamiltonian is # and can be ex-
pressed as (we assume an infinitely heavy proton)

H=Hy+Hyt+v=Hotv, )
where
Hiz Tri— Vi=—— (h2/2m)V12— 62/1’1' (6)

is the Coulomb Hamiltonian for electron z, and
= 62/ 712

is the interelectronic interaction. The electrons are
labeled 1 and 2, and

Hi0o(i)= €apa(). (N
We also define

Vi=—e/rit+e/rie=v+v.

Finally, ¢1(7) =exp(tk- r;) and ¢ is the Coulomb plane
wave of momentum £ satisfying (7) with e,=#%%?/2m.
From I, we know that ¥ is given by?®

VE=in(Er—H)[oo(1)¢r(2) £ 00o(2)pr(1) ], (8)

where E+t=E+iyn and E is the total energy given by
E=¢e;+e. The limit 7— 0 is always assumed after
relevant integrations have been done. By using the oper-
ator relation

(E+—H)™'= (Et— H,— To) ' [1+ Va(Et—H)™],

7K. L. Bell and B. L. Moiseiwitsch, Proc. Roy. Soc. (London)
A276, 346 (1963).

8 We drop the normalization 2712 in the source term of Eq. (8).
This will lead to no error. This form of the Lippmann-Schwinger
equation is given by Gell-Mann and Goldberger, Phys. Rev. 91,
398 (1953).
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Eq. (8) may be transformed to give the analog of Eq.
(I-15):

WE= 0o(1)x(2) = 0o(2)$x (1)
£ [Et—Hi— T 11 (Vi—V2) ¢o(2)$:(1)
+ (Er—H =Ty Wb, (9)

Alternatively, we may use the propagator (Et—Ho)™
to expand (E+—H)™, thus giving’

V= (po(l) Ok (2):|: lpo(Z) (pk(1)+ (E+—Ho)_l7)\1’d:. (10)

Our attention in this section will be mainly focused on
(9); Eq. (10) is the basis for the derivation of the
homogeneous equations obeyed by the ¥,*. Note that
¥+ does not contain Coulomb phase shifts, although we
would have to include shielding factors into H in order
to solve for ¥+ from (10) because of the ¢y.

Asin I, we introduce the diagonal projection-operator
matrix P(1):

Po(1)

)= D),

Pa(1) (PO(l) P 1(1))’

where P,(1)=| ¢a(1))}¢(1)| and % labels an arbitrary
hydrogenic state.ld Letting 1 denote the unit matrix in
the space of { .}, then Q(1)=1—P(1). It follows from

Eq. (4) that (Ve
P(1)w= e1(D¥1+(2)

en(¥n*(2)

Operating on (9) with P(1) and Q(1), eliminating
Q()V¥= from the P(1)¥* equation, and carrying out a
number of operator manipulations, we obtain an un-
coupled equation for P(1)¥#+ which is the analog of
Eq. (I-52):

P(V)[E—Hy,—To— P()UP(1)]
X[P(O)WEFP (1)@, (1) = P(H)Td:(1). (11)

Here, ®,(4) is a column vector having ¢o(7)¢x(¢) in the
first row [j=2(1) as ¢=1(2)] and zeros in the other »
rows,

U=Vt Vo[ E*—QMHQ() Q(M)V,,  (12)
U= VitV EF—QMHQM) QM V1. (13)

9 Both Eqgs. (9) and (10) give an antisymmetric function, since
¥*in Eq. (8) is constructed to be antisymmetric. This is obvious
in the case of (10), since H, and v are both symmetric. Equation
(9) on the other hand, is not manifestly antisymmetric, although
it is seen to be so by iteration. For a scattering system containing
more than three identical particles, it is not possible to write an
equation analogous to (10) for the exact, antisymmetric wave
function. The reason is that the rearrangement of labels due to
exchange causes a binding interaction for one grouping of particles
to become a perturbing interaction for another grouping of
particles. Only by introducing a model Hamiltonian and using
perturbation theory can this be accomplished, as implied by Bell
and Squires (Ref. 6).

10 Both open and closed channels may be included in the range
0<La<n.
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Equation (12) will be recognized as defining the optical-
potential operator for the case in which the electrons are
distinguishable.!* A formal solution to (11) is

P)¥E=P()uP(1)®, (1)L P(1)GP(1)U:(1), (14)

where P (1)« is the solution to the homogeneous portion
of Eq. (11) and

P)GP1)=P(\)[Et—H,—T,—P()UP(1)]P(1).

If the number of open channels is no greater than
n+1, then the denominators in Eqgs. (12) and (13)
represent the effects of virtual excitations. As mentioned
in the Introduction, it is not possible to solve Eq. (11)
exactly. The analog for (11) of the usual truncation
procedure! is to neglect the virtual excitations in U and
U. Doing this, we get a truncated set of coupled equa-
tions for the (now approximate) functions P(1)¥*
=P()VEFP(1)®,(1):

P(O)[E—H\—To—P()V2P(1)]P (1) T+

=+P()Vi®x(1), (15)
or written in a more standard notation,
(B THBEQ) = X (a0 [ Val s D))
=4(0a(1)[ V1] 00(2)$:(1)), 0<a<n, (16)

where (¢.(1)|P(1)¥%)=J,%(2). For the purposes of
computing phase shifts and cross sections, the term
P(1)®,(1) may be dropped, since it will not contribute
asymptotically if # labels a bound state.

The set of coupled, inhomogeneous equations given
by (16) may be used to calculate scattering parameters.
To within the approximation of ignoring the couplings
to the states in Q(1), Jo* contains all of the elastic
amplitude, including the continuum contributions neg-
lected in Xo* of Eq. (1).

The set of equations given by (16) bears a strong
resemblance to the truncated set obeyed by the X.* of
Eq. (1). To see this, let us consider the case #=0. Then
we have

(E— €0— T2—<s90(1) | V2I <P0(2)>)\poi
={eo(1) | V1] ¢o(2)¢:(1)).

Consider now the inhomogeneous term. We may re-
write it as

(o) | V1] 0o(2)¢r (1))
= <<P0(1) [ V1+H2+ Tr—Ei <P0(2)¢k<1)> ) (18)

since (Ho+T1—E)| 00(2)¢x(1))=0. Putting (18) into
(17), we see that Eq. (17) is now identical with the
equation obeyed by X% in the so-called static exchange

a7

11 H, Feshbach, Ann. Phys. (N. Y.) 5, 357 (1958); Ann. Rev.
Nucl. Sci. 8, 49 (1958).
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approximation,1212 except that in Eq. (17) ¢x(1) re-
places X¢£(1) in the exchange term. This replacement
then changes the equation from integro-differential to
inhomogeneous.

In I, we showed how the scattering phase shift ;
could be expressed in terms of a phase shift #; from the
solution to the homogeneous equation and a phase shift
7, from the solution to the inhomogeneous equation:

U A . . .
e sind ;== ¢ (siny,;sing,) .

Formulas relating 7; and #; to the interactions are given
in I. We also defined scattering lengths ¢ and ¢ related
to the true scattering length 4 :

A*=qaza.

Here ¢ and @ are the scattering lengths obtained from
the solutions to the homogeneous and inhomogeneous
equations, respectively. We now apply the formulas of
I to determine the scattering lengths ¢, @, and A for
Eq. (17) as an example of a calculation involving the
inhomogeneous equation. The results of more detailed
computations will be discussed elsewhere.

Tt is, of course, unnecessary to calculate g, since that
was done nearly twenty years ago by Chandrasekhar
and Breen® and more recently by Seaton.!* The result
(in atomic units) is = —9.44, where the asymptotic
form of the (£=0) S-wave solution F, to the homogene-
ous portion of Eq. (17) is Fo~ (1—a/r). The scattering
length @ is found by integrating the product of the S-
wave solution Iy and the S-wave portion of the inhomo-
geneous term in Eq. (17) [in limit #=0] and then
dividing by (%2 cosno)/2m. The final expression, easily
found by using the formulas of I and the definitions of
quantities in Eq. (17), is

=38 cosno(k= 0)]—1fr[e_’ (r—2)+e2r(r+2)F(r)dr.

For Fy, we used the Xo(r) of Chandrasekhar and Breen,
with a normalization determined by relating the known
value of a to its integral expression in terms of V2 and
Fq (see I). The value of 9o(k=0) was determined to be =
by extrapolating the results in Table I of Burke and
Smith! to zero energy. Numerical integration then
yields @= —34.9, a result whose accuracy is expected to
be good to within #1. The results for A% are found in
Table III, which we discuss later.

It is straightforward to calculate the “Born ap-
proximation” 7B to the amplitude resulting from Eq.
(17). We find

TB= (¢ (2) o(1)| V2| 00o(1)¢p(2))
— (¢ (2)eo(1) | V1| 0o(2)ep(1)).  (19)

2 Tn the static exchange approximation, Xo* obeys (wo(1) |
—H | @o(1)XoE(2) % 00(2) Xt (1)) =0. We discuss this approxima-
tion, and the role of the kinetic-energy operators in the exchange
term, in the next section.

13 S.) Chandrasekhar and F. M. Breen, Astrophys. J. 103, 41
(1946).

1 M. J. Seaton, Proc. Roy. Soc. (London) A241, 522 (1957).
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This is just the well-known Born-Oppenheimer ap-
proximation to the amplitude.” We have used quotation
marks above to indicate that we are not actually dealing
with a simple Born series in a perturbing interaction.
The Vs can, and do, support bound states, and this
causes difficulties with the Born series for rearrangement
collision amplitudes.’s

One of the seeming problems associated with (19) is
that because of the rearrangement implied by the ex-
change terms, we no longer deal with eigenfunctions of
a single unperturbed Hamiltonian and this leads to
orthogonality difficulties [e.g., (¢o|¢x)7<0]. It has been
claimed that one could thus add to V; a constant po-
tential that would change the cross section.”'¢ Two
methods have been proposed to get around this problem.
In Mittleman’s approach!” a projection operator is used
to ensure orthogonality, while Bell and Moiseiwitsch’
attempt to remedy the problem (for the e~+H case) by
using the arbitrariness in the definition of the X,*
(noted in the Introduction) to include ““‘all” first-order
terms in Vy and Vyin 7B,

Now we have already seen that the use of a truncated
expansion in Eq. (1) fails to include the continuum
contributions. It is thus not surprising that use of such
an expansion would lead to a “Born” amplitude that
seems to be unsatisfactory. On the other hand, we find
from Egs. (11) and (19) that the Born-Oppenheimer
approximation actually does include all first-order terms
in Vy and V. The point is that the Born-Oppenheimer
approximation is the first term not in a Born series, but
in a series obtained by expanding the solution to
the inhomogeneous equation in powers of Vi and
Vs. There is no guarantee that such an expansion is
meaningful.1®

As we shall see, the method of Bell and Moiseiwitsch?
is fully equivalent to determining, in lowest order, the
amplitude arising from o= of Eq. (4). The difficulty
with all such approximations is that we only know that
the lowest order term agrees with the exact calculation;
higher order terms do not include all terms of the exact
calculation. In addition to this difficulty, there is also
the problem of the convergence of the “Born’ series. As
we show later, the result of Bell and Moiseiwitsch is an
approximation to an expansion in powers of v only; v,
being repulsive, can support no bound states, and so the
series is very likely convergent. The lowes? order term of
this expansion in powers of v may be obtained by using
Eq. (10). The analog of (17) [see Eq. (23)] is found to
be

[E—eo— Ha—(po(1) | 2] 0o(1)) W™ (2)
==£(po(1)]v] 0o(2) i (1)},

with ¢ (1) replacing ¢x(1) of (17). The “Born” ampli-

15 R. Aaron, R. Amado, and B. Lee, Phys. Rev. 121, 319 (1961).
16 Tn point of fact, we could only do this by also subtracting the
same constant from V, in order to avoid changes in H.
( 7 M. H. Mittleman, Phys. Rev. 122, 1930 (1961); 126, 373
1962).
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tude 7”B analogous to (19) is now

T'=Toour+{ew (2) eo(1) | 9] eo(1) 2(2))
£(ew (2) eo(1) 2] @0(2) 0 (1)),

Tcour={pw (2) po(1) | v2] eo(1) 1 (2)).

The interaction v2 occurs only in T'cour. [ The amplitude
of Bell and Moiseiwitsch” reduces to this if their plane
waves ¢, are everywhere replaced by Coulomb waves
@1 ] Clearly, all states appearing in (20) are eigen-
functions of the same Hamiltonian, thus resolving the
nonorthogonality problem. A further discussion of the
lowest order amplitudes is given in the next section.

(20)
where

HOMOGENEOUS EQUATIONS

We derive, in this section, the homogeneous equations
obeyed by the ¥,*; as we show in the Appendix, these
equations, and thus the ¢,%, are the same as those of the
preceding section. The homogeneous equation obeyed
by o is the optical-potential equation. This potential
is unique, since the function y* is unique. However, it
is possible to introduce other functions y¢'* obeying
equations with different nonlocal, energy-dependent
potentials, that still yield the correct amplitude foF, as
shown for example by Mittleman.!® This is, of course,
the basis for the comment that the optical potential is
not unique. In the strict sense of the optical potential
being defined as the nonlocal operator appearing in the
(unique) equation for ¥, then this optical potential is
unique. As we shall see, the triplet optical potential of
Mittleman!? is identical to our result, which is also iden-
tical to the results of Bell and Squires® and Feshbach.®

To obtain the homogeneous equation, we use Eq. (10)
and the projection-operator matrices P(1) and Q(1). As
in I, and the derivation of Eq. (11), we apply P(1) and
Q(1) to both sides of (10), giving

P(1)¥E= oo(1) 01 (2)

+P(1) (B —H) [ P()+Q(Mr=, (21a)
and
Q()¥E= £ ¢o(2) px(1)

+Q() (E+—Ho)=[P(1)+Q(1)J¥*.  (21b)

At this point, we can solve Eq. (21b) for Q(1)¥%,
substitute the result into Eq. (2la) and obtain the
following inhomogeneous equation for P(1)¥#:

P()¥E= ¢o(1) o1 (2)+ (E*—Ho)™

XP(D)OVLP ) ¥+t ¢o(2)or(D)]. (22)
In differential form, Eq. (22) becomes
P)[E—Hy—UV]P(1)¥*==4+P(1)Veo(2) px(1), (23)
where
V=v+v(Et—Ho—Q(1)2)Q(1)v. (24)

It should be noted that state ¢, (1) occurring in P(1) is

18 M. H. Mittleman, Ann. Phys. (N. Y.) 14, 94 (1961).
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bound. If it is a free state ¢z, then we must have &’ <k.
We compare, in the Appendix, these results with the
optical-potential equations and show their equivalence.

Since we wish to derive a homogeneous equation
for P(1)¥# it is necessary to eliminate the factor
+¢0(2)px(1) in Eq. (21b) which gives rise to the
inhomogeneity. This can be done using the following
trick. We apply P(2) to each side of Eq. (10), which
leads to the following equation for == ¢o(2) 05 (1):

£e0(2)¢i(1)
=P(Q){¥*— (Et—Ho) [P (1)+Q(1) ¥}
Substituting this result into (21b) we find
Q¥E=P2)¥*+[Q(1)—P(2)]
X (E¥—Ho) [ P()+QM) W+, (25)

Again we note that if # corresponds to a continuum
state ¢y, then we must have &’ <k for Eq. (25) to hold.

Now,
Q)—P(2)=0-P, (26)

with 0=Q(1)Q(2) and P=P(1)P(2). Hence, on using
(26) and solving (25) for Q(1)¥= we find, after some
operator algebra,

Q)y¥*=P(2)¥*4-[E¥t—Ho— (Q—P)v]™*
X(Q—Py[P()+P(2) = (27)
As a preliminary step before obtaining the desired
result for P(1)¥=, we consider [P(1)+ P(2)]¥*. From
Eq. (4) and its symmetry properties we may rewrite
P(2)¥* as 4= PP (1)¥%) where Py is the two-particle
transposition operator. Hence,

[P)+PQ2)JWE= (1£Pp)P()¥:,  (28)

Using this last result and substituting Eq. (27) into
Eq. (21b), we obtain the homogeneous equation for
P()T=:

P(1)¥E= ¢o(1) ¢x(2)

+P (1) (Er—Ho) Vo P(1)TE. (29)

Here,

Voptt= Vopt (12 P12) = {v+ o[ E*— Hy— (Q— P)v ]!
X (Q—P)} (1 Pys),

defining Vopt. Alternatively, we have

Vopst = v o3[ ¥ — Ho—3(Q— P4 (0— P)o, (31)

with v¥=9(124=P1s). Equation (30) or (31) defines the
optical-potential operator for e~ H scattering.
The differential form of Eq. (29) is given by

P)[E—Ho— VopEIP(1)¥£=0.

(30)

(32)

We see that there are no kinetic-energy operators acting
on the exchange terms: The exchange effects occur
solely in the optical potential. This is in apparent con-
trast to the results of Feshbach® and of Hahn, O’Malley,
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and Spruch,® who applied Feshbach’s formalism to the
¢ +H problem. However, as we show later, there is no
contradiction: For the ¢ +4H problem, the kinetic-
energy operators do not act on the exchange terms.?

We have stated earlier that ¢* is the elastic wave
function of Bell and Squires® and that Vops* (for #=0)
is their optical potential. As noted in I, this result
follows from the uniqueness of ¢+ and the Schrodinger
equation. It can also be verified by comparing various
orders of perturbation theory for the self-energy (which
Bell and Squires show is the optical-potential operator)
with an expansion of Vope* in powers of v. We have
established that V,pe* and the self-energy are identical
to third order in v, as indeed they must be because of the
uniqueness of Yo*. It is evident that Eq. (30) is a closed-
form expression for the self-energy operator in the case
of a target containing one particle identical with the
projectile.

Although it is straightforward to show that Vip~ is
the same as Mittleman’s triplet optical potential,’® we
shall not demonstrate it here. However, his singlet
potential'® is not the same as Vopet.

Equation (32) is a compact way of writing the set of
coupled equations describing the open-channel wave
functions P (1)¥*, Even if only the ground-state channel
is open, (33) may be regarded as a set of coupled equa-
tions. Let us examine the equation for ¥+ i.e., we
choose #=0in Q and P. Then Q — Qo=Q0(1)Q0(2) and
P — Py=Po(1)Py(2), and we find that

VoprE=vE+ o[ Et— Ho— (Qo— Po)v ] (Qo— Po)v=.  (33)

If there is insufficient energy to excite the H atom, then
Vopt is real. This follows from the fact that a singularity
can occur only if in some intermediate state one electron
is in ¢, and the other is in ¢o. But Qo allows neither
electron to be in the ground state, while Py requires both
electrons to be in the ground state. Hence there can be
no singularity and we may take limy— 0 in the de-
nominator of Vopt. Note that for Vg™, the factor Pois
zero. However, for the more general case in which #>0,
P does make a contribution to V,p~. The reason is that
P is the product of the two matrices P(1) and P(2), each
of which operates in a different space. We shall show
explicitly how P affects coupled-channels calculations
later in this section.

We have investigated the behavior of Eq. (33) in the
adiabatic limit and determined the long-range properties
of its first- and second-order terms. The first-order term,
when combined with s, gives the usual shielded inter-
action, plus an exchange term, both of which fall off
exponentially. The factor Py also gives terms which fall
off exponentially, which may be seen from Eq. (49).
Only from Qo is there a long-range force, the polarization
potential, which is obtained in the usual way.!®

19 We believe that this result is true in general, and not merely
for the e+H scattering system. Examination of Bell and Squires’
work (Ref. 5) shows that this is the case for all orders of pertur-
bation theory in a model Hamiltonian approach.
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We show, in the next section, that Eq. (32) can be
derived using Feshbach’s projection-operator method.®
Consequently, we may apply the theorem of Hahn,
O’Malley, and Spruch? on lower bounds to the elastic
phase shifts resulting from Eq. (32). Within the limita-
tions discussed by these authors,? we thus find that the
exact phase shifts 9= are bounded from below by the
phase shifts 5% of the static exchange approximation,'
and that as more channels are included in the static
exchange approximation, the bounds increase in value.

The static exchange approximation!? (or its extension
to the case of coupling), is equivalent to calculating X+
of Eq. (1) [or the many-channel wave function
> a0 (12 P1s) 0 (1) XoE(2)] to first order in the inter-
actions not included in the binding potential of the H
atom. We now wish to consider the analogous approxi-
mation for Eq. (32). From Eq. (30) or (31), we see that
the first-order interaction in Vop® is apparently the
term %, Hence the analog for Eq. (32) of the static
exchange approximation would seem to be

P)[E—Ho—v*]P(1)E=0. (34)

This equation, however, is #of the proper analog. The
reason is that, in addition to ignoring terms second order
and higher in v, we also want to include a// couplings to
the states in P(1). It is obvious from Eq. (30) that the
terms containing P in the denominator of Vi do in-
volve such couplings. What is required, then, is a form
for Vepy in which only the term Q appears in the
denominator. As we show in the next section, Eq. (32)
can be cast into such a form, given by Feshbach’s equa-
tion for P¥*, The result of including all coupling terms
is a first-order equation of the form

P(V)[E—Ho—v+0P(2)JP()¥pt=0.  (35)

In addition to the nonlocality in 9%, this equation con-
tains an extra nonlocality vP due to exchange effects. It
is derived in the next section.

. We call the solution P(1)¥p* to Eq. (35) the static
approximation to the exact solution P(1)¥+. If it were
permissible to ignore all couplings to the neglected
(closed) channels, that is, if the terms with Q were
small, then (35) would be a good approximation to the
correct equation. On the other hand, (35) does treat all
of the chosen channels, i.e., the ones in P (1), correctly.
In the present work, we solve Eq. (35) for the case #=0
and only the elastic channel open.

For n=0, Eq. (35) reduces to

{E— eo— Hz—(00(1)| 2| ¢o(1))
+{eo(1) 2] eo(1) 2o (2))#0(2) |}
X [, (2))F(eo(1) |2] po(2)¥p,i*(1))=0. (36)

We use the symbol ¥, ¢+(2) to denote (@o(1)|¥p%). As
will become evident in the next section, the redefined
X%, discussed in the Introduction, would obey an
uncoupled equation very similar to this. In fact,
the equation is identical to (36) once it is realized
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that the redefined X;~=vyy~, while the redefined X¢*
=¥st— 3o 00| YoT).

Equation (36) differs from the more familiar equation
of the static exchange approximation? in two ways.
First, the operator (E—e—Hs) does not act on the
exchange term ¢o(2)Yp,t(1) in Eq. (36). Second,
Eq. (36) contains the additional exchange nonlocality
(@o(1)[2] @o(1) @0(2))X¢0(2) [¥p,i*(2)) not present in the
static exchange approximation. [ The generalizations of
these terms are given in Eq. (35).] Obviously, these
differences are proportional to ¢o(2){¢o|¥p,¢*). For the
case of Y p ¢, the triplet phase shifts?® 4~ must be the
same (for all partial waves L) as 95~ already calculated
from the static exchange approximation.?® This is evi-
dent for L0, since @o{¢o|¥r,0=) picks out only the
S-wave component. But even for L=0, there can be no
change since any alteration of the wave function by a
factor proportional to ¢ is inconsequential because of
the antisymmetry. However, this latter point is not
true for ¥ p,¢": the L=0 singlet phase shifts 5t will be
different from those of the static exchange approxima-
tion, although the Ls£0 phase shifts will be unaltered.
Similar considerations apply to the scattering lengths
derived from (36). We discuss the phase shifts and
scattering lengths later.

These remarks are also applicable to the case of
coupling, given by Eq. (35). If, for example, we were to
include the 1s, 25, and 2p states of hydrogen, then both
np* would differ from the phase shifts determined by
Burke and Schey? in their 15-25-2p calculations. The
difference would be maintained for the L=0 and L=1
partial waves, since it is only in these partial waves that
Y pEdiffers from the solutions of the 15-25-2p calculations.

We now return to the question of the first-order ex-
change amplitude of Bell and Moiseiwitsch.” Two differ-
ent integral equations, leading to identical scattering
amplitudes, can be written for ¥ p ¢£. These result from
treating v, in H, of Eq. (36) either as a perturbation or
exactly. We find, for these two different cases,

¥p,05(2) =01 (2)+ (Et—eo— To) {vap,0(2)
Heo(D) [v%] eo(1)¢p,0(2))

—({eo(1) [v] o(1) Po(2)¢r,0=(2))}, (37a)
and
¥p,05(2)= @1 (2)+ (Et—eo— Hy)™!

X {{eo() %] eo(D)yp,o=(2))

—(eo(V) | 0] o(D)Po(2)¥p,ex(2))}. (37D)

We may now write out the exact scattering ampli-
tudes (they are equal) arising from Eqs. (37a) and (37b).
In each, we may form the “Born” terms by replacing
¥p,o* by the first terms on the right-hand sides of (37a)
and (37b). This leads identically to the result of Bell and

% The angular momentum label L on the phase shifts is sup-
pressed.

2L See Burke and Smith, Ref. 1.

2 P. G. Burke and H. M. Schey, Phys. Rev. 126, 147 (1962).
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Moiseiwitsch? for Eq. (37a) and to Eq. (20) for the
lowest order amplitude arising from Eq. (37b). Bell and
Moiseiwitsch’s result is thus one type of first-order
approximation to the exact amplitude, obtained by as-
suming that the state of the projectile is a plane wave,
whereas Eq. (37b) assumes the state of the projectile to
be a Coulomb plane wave. Bell and Moiseiwitsch were
led to derive their result because of the orthogonality
problem associated with the Born-Oppenheimer ampli-
tude.” As we have seen, lack of orthogonality is merely
a consequence of solving an inhomogeneous equation
and should not be interpreted as an indication of an
unsatisfactory theory. [In fact, as we shall show else-
where, the inhomogeneous-equation method can be
easily extended to derive coupled equations for re-
arrangement collisions.] However, the amplitude de-
rived by Bell and Moiseiwitsch, though probably more
accurate, cannot be regarded as intrinsically better than
that of the Born-Oppenheimer approximation, since
each is the lowest order term in a perturbation series for
potentials that admit bound states. Only the amplitude
from (37b) avoids this problem, although in this case,
we are faced with the difficulty of evaluating matrix
elements containing continuum Coulomb functions.
Clearly, the simplest approach is to solve the differential
equation numerically, thus obtaining the phase shifts
directly.

DERIVATION USING FESHBACH’S METHOD

In this section, we derive an equation for ¥+ using
Feshbach’s projection-operator method.® The equation
will be of the form of Eq. (29) with (Q—P) in Vet
replaced by Q (plus other changes). We show that the
new equation for ¥o* reduces to (32), thus verifying the
assertion of the preceding section.

For the e~+H problem, the object of Feshbach’s
method is to find a projection operator @ such that

CUE= go(1)u*(2)== ¢o(2)u*(1), (38)

where only the elastic channel is assumed to be open.
The function «* is required to yield the entire elastic
amplitude fo=. Hence u»* is the same as the redefined
X¢* discussed in the Introduction. Since #* is to yield
the entire elastic amplitude, then we must have, for
either 7; or 7, asymptotic,

YE—@TE=0, 71 or ra—®™. (39)
A sufficient condition for (41) to hold is that
<<p0(i)l\lli—6)\lli>:0, i= 17 2; (40)

and it is with the aid of such an equation that the form

of @ is determined.®
Equation (40) is a relation between ¢* and wu*.
Choosing 7=1, we find

Yot (2)=u*(2)+ 0o (2)( @0 ). (41)

Since Yot is known, Eq. (41) is an integral equation for
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w*. For the upper sign, we find that

wr=y¢t—%eo{ 0| ¥a"),

while for the lower sign, we find
w =i+ o po|u™).

Clearly, %~ is undefined to within a multiple of ¢s.
Hence, we may write

C¥+= oYt (2)+ @o(2)¢t (1) — 0o (1) 0o (2){ w0 ¥ot)
=[Po(1)+Po(2)—Po ¥+, (42)

and

OT= oDV (2) — eo2Wbi=(1)
=[Po(D)+Po()T=[Po(1)+Po(2)— PoJ¥~. (43)

The last line of (41) follows from the antisymmetry
of ¥—.

Thus, for both ¥+ we may write ®= Po(1)+Py(2)
— Py. This expression for @ is the same as that found by
Hahn, O’Malley, and Spruch.? These authors show that
@ is indeed a projection operator, as did Feshbach®
[P(1)4-P(2) is not a projection operator ], and they also
show that inelastic channels may be included by
dropping the zero subscript on the P’s and using the
matrices P(z). In this latter case, we find that 9=1—P
is just the operator Q=Q(1)Q(2). Thus, ®+Q=1.

Before considering Feshbach’s equation for ®¥+, we
wish to emphasize that it is not the quantity u* of
Eq. (38) that is of interest, but y¥¢*. In Feshbach’s
formalism, #* is a bridge—albeit one that maintains the
symmetry of the problem—to ¥o*. It is yo* that yields
the exact amplitude and that is uniquely defined
through Yo== (| ¥£). The u* are not uniquely defined,
since Eq. (40) could be replaced by Eq. (39), which
could give a »'* differing from #* at small 7. This is seen
in the work of Hahn, O’Malley, and Spruch,® who note
that the function ¥g¥= ¢o(1)Xs%(2) = ¢o(2) Xs*(2) sat-
isfies @Y s*=T s+ and so derive that the phase shifts
ns* of the static exchange approximation are lower
bounds to the exact phase shifts 9~ However, the proof
of Hahn et al.? is more general than just stated. In
deriving their results, these authors did not make use of
the relation between #* and yo*. Hence, their result is
that ns* provide lower bounds to the phase shifts for
any function of the form of Eq. (38) that obeys the
equation for ®y%, which we write out below. However, it
is not true that any function of the form of Eq. (38) will
yield the proper amplitude [ f¢* of Eq. (3)]: Only those
u* which are related to ¥o* by, for example, Eq. (39) or
(40) will yield the correct amplitude. This is easily seen
to be the case by considering the equation obeyed by £
when coupling to channels other than ¢, is ignored.
This is just the equation of the static exchange ap-
proximation, which we know does not include the
continuum contributions. To find the correct “static”
equation, we must relate = somehow to ¥, i.e., we
must solve for . As noted in the preceding section, in
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the static approximation, Y= does not obey the equa-
tion of the static exchange approximation.
The equation obeyed by ®¥#* is given by Feshbach®:

®{E— H—HQ(E—QHQ)"QH}eU==0. (44)

Here, @ is taken to be ®= P(1)4P(2)— P. Operating in
both sides of (44) with P (1), we find

P(1){E— Ho—v—vQ(E+— Ho— 010)"1Q0}0¥+=0, (45)

where [Ho,Q]=0 has been used. Since [P(1),Hq]=0,
(45) reduces to
P(O)[E—HJP(1)¥*—P(1)

X[v-+vQ(E+—Ho—QuQ)-1QI0U==0  (46)
or
P(V){E—Hy—[v+v(Et—Ho—Qv)™Qv]

X (12 P1g) }P(L)¥*+ P(1)
X {v+v(Er—Ho—Qu) 'Quy PY¥+=0. (47)

The static approximation to Eq. (47) is obtained by
dropping the terms with Q, so that there is no coupling
to the channels not included in P(1). The result is just
Eq. (35), thus establishing the results of the preceding
section.

Equation (47) is easily transformed to Eq. (32) [with
Vops® given by Eq. (30) or (31)] by the use of some
operator identities and Eq. (32), which we have estab-
lished independently. We proceed by transforming the
factor (E+t— Hy—Qv)~'Qu of Eq. (47) using the operator
equation A~'=B~'4-B~1(4—B)A™!, where 4 and B are
operators possessing inverses. First we rewrite the
factor in question:

(E+—Hy—Qu)Qv
=[E+—Ho— (Q— P)v— Py [ (Q—P)v+Pv]. (48)

Employing the above-mentioned operator equation in
Eq. (48) and collecting terms eventually leads to

(Et—Ho—Qu)™'Qu
= Vopt— ‘1)+ ? (E+-‘ Ho"“‘ Q‘Z})—IP Vnpt ,

where Vpt is given by Eq. (30).
Substituting (49) into (47) we find

PO[E—Ho— Vo ]P ()T
+P(1)[v+v(Et—Ho—Qu)~'Qu]P¥+
— P()9(Er— Ho— Qo) PV op=P (1)¥E=0.  (50)

We now prove that the last two terms in Eq. (50) cancel.
Operating on each side of Eq. (29) with P(2) gives

PQ2y¥t= (Et—Ho) P (2)Vope=P(1)¥£.  (51)
Substituting (51) into the P¥* terms in (50) then leads to

P(1)(E—Ho— Vopi) P(\) ¥+ P (1) [0(Er— Ho) ™
A o(Er— Ho— Qo) *Qu(E+— Ho)V|PV oy P (1) W%
— P(1)o(E+— Ho— Qo) PV P (1)T£=0. (52)

But the term in square brackets in (52) is just

(49)
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v(Et—H,—(Qv)™Y, as is shown by using the operator
relation A—'=B'4A4-1(4—B)B~, thus establishing
the cancellation. Hence, we find

P [E—Hoy—Vop*F]P(1)¥+=0,

as stated above.

Equation (32) is the more compact form, but Eq.
(47) is evidently more useful, since it allows one to
write a simple equation for P(1)¥# in which all the
states in Q(1) are excluded. It is interesting that (38)
does not follow from (47) directly. One first would have
to hypothesize Eq. (32) and then show consistency
through the cancellation proved above. However, it is
worth emphasizing again that Egs. (51), (52), and (32)
only hold if the hydrogenic states in P (1) do not include
those ¢ with %2'>%, where % is the incident wave
number. Equation (47), on the other hand, is valid
regardless of the states included in P(1).

We close this section with a comment about the
scattering amplitude. In I, we showed that Eq. (11) or
(14) does give the correct elastic amplitude. Similar
results can be demonstrated for Eq. (29) or (32). How-
ever, at first glance, the same does not seem to be true
of Eq. (47). For example, the lowest order terms, apart
from the Coulomb amplitude due to Hs, would seem to
contain an extra amplitude involving the factor 2P¥,
This is, of course, only an apparent defect. If we express
P(1)¥* of Eq. (50) in terms of ¢o(1) ¢x(2) [i.e., use the
integral equation for P (1)¥* analogous to Eq. (29)7, so
that we then have the Born terms of the amplitude, it
becomes evident that the Born approximation to the
factor vP¥* is zero. The higher order terms in vP¥* are
nonvanishing, as is the case for the amplitude arising
from Eq. (29). It is not difficult to show that the correct
elastic amplitude is indeed obtained from (51), just as
with the other equations.

32)

SINGLE-CHANNEL CALCULATIONS

In this section, we discuss the results of some single-
channel calculations we have carried out using the
equations derived above, and we compare our phase
shifts and scattering lengths with other calculations. All
calculated quantities are given in atomic units.

Only scattering lengths have been calculated from the
inhomogeneous equation for ¢¢*, Eq. (17). However,
both phase shifts and scattering lengths have been
computed for Eq. (36), the static approximation to the
elastic scattering equation. In addition to these latter
quantities, we have also determined the scattering
lengths and phase shifts for Eq. (34), the incorrect
static equation. This was done to evaluate the effect of
dropping the term (E—2e)o(2){@o|¢o%) occurring in
the static exchange approximation. Our discussion will
concern only the S-wave phase shifts p*(L=0), since,
as noted before, the equation for ¥ p ¢* differs from the
equation for Xg%, the static exchange wave function,
only in the .S wave.
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5.0

6.0

F16. 1. Shown are the functions Co(r) and Cgr(k%;7), each
multiplied by #'/2, for k2=0.0 and £2=0.6. Both % and 7 are given in
atomic units.

Both Egs. (34) and (36) were integrated using a non-
iterative method to handle the exchange nonlocalities;
the method is identical to that used by Marriott.2s All
numerical integrations were carried out using the
Runge-Kutta scheme. The nodal definition was used in
computing phase shifts. The computer program for
determining the scattering parameters was checked by
computing the phase shifts and scattering lengths for
the triplet case and also for the case where exchange is
ignored. These results agreed with previous calcula-
tions™ ; consequently, we do not list any triplet phase
shifts, since they are identical to the values obtained in
the static exchange approximation. A final check on the
over-all accuracy was provided by changing the mesh
size of the numerical integration from 0.1 to 0.05. The
results for £=0.2, 0.5, and 0.8 remained unchanged.

In Table I, we list the singlet S-wave phase shifts
npt(L=0) derived from Eq. (36) and compare them
with the results of other calculations, the values of
which have been tabulated by Burke and Smith.! Only
results for £2<0.70 are listed, since the singlet resonance
is found to occur at slightly larger values of £2.

The most striking aspect of this table is the fact that
for k2<0.16, npt is larger than the corresponding phase
shift of the strong-coupling approximation, which is a

TasLE I. Singlet S-wave phase shifts. % is given in atomic units.

Static  Strong-
Static exch. coupling Variational
k2 approx. approx. approx. 15-25-2p cale.
0.0001 3.063
0.01 2.414 2.396 2.404 2.491 2.553
0.04 1.890 1.871 1.878 1.974 2.067
0.09 1.526 1.508 1.519 1.540(k2=0.10) 1.696
0.16 1.253 1.239 1.257 1.355(k2=0.15) 1.415
0.25 1.042 1.031 1.046 1.082 1.202
0.30 0.959 0.949 1.008
0.40 0.833 0.825 0.888 1.047 (k2 =0.36)
0.50 0.744 0.737 0.811 0.930(k2=0.49)
0.64 0.652 0.651 0.698 0.776(k2=0.65) 0.886
0.70 0.630 1.240

2 R, Marriott, Proc. Phys. Soc. (London) 72, 121 (1958).
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coupled-channels calculation that includes the 15 and 2s
states. On the other hand, for £2>0.16, 55+ is less than
the strong-coupling phase shift and as % increases
rapidly approaches the value of ng*, the phase shift of
the static exchange approximation.

To help understand this behavior, we have plotted in
Fig. 1 the radial dependence of the coefficient, from both
Eq. (36) and the equation of the static exchange ap-
proximation, which multiplies the nonlocal factor
§¢o[¢g+>. For Eq. (36) this coefficient, denoted by Cy(r),

1S
Co(n=2[1—e(r+1)]e0o(r), (53)

while for the static exchange approximation this coeffi-
cient, denoted by Cgr(k?; 7), is'?

Cr(k?;r) =L+ 1Dr]eo(r). (54)

Apart from these terms, the two equations are identical.

Two values of Cx(k?; 7) are shown in Fig. 1. It is clear
from these curves that Cg(0.6;7) and Co(r) are quite
similar, and it is thus not surprising that at the larger
values of %% np*, and ggt are nearly the same. On the
other hand, as 4 approaches zero, C(%?;7) and C o(7)
become less alike, with the extreme case of C(0.0;7)
illustrated in Fig. 1. This difference in the two coeffi-
cients is reflected in the differing values of npt and ygt.
That 7p+>7s+ can be expected from the theorem of
Hahn, O’Malley, and Spruch.? The difference is greatest
at k=0, as shown in the scattering lengths 4 p+ and 4 ¢t
of Table III, which we will discuss shortly.

We may now use this information to help explain the
fact that for £2<0.09, npt> 1,9+, In the 15-25 strong-
coupling case, there are two coupled equations. The one
for X,t, the coefficient of the ground state ¢, in Eq. (1),
isidentical to that of the static exchange approximation,
except for the additional term (£24-1) gz, (7){ 00| Xa5*), in
an obvious notation. For £2< 0.09, the state Xs.* is
relatively far off the energy shell, and the overlap
(@o|X2sT) should be small. Furthermore, the factor
(B*+%) is small. [Also ¢y, has a node at r= 2,
which should help reduce the contribution of this
term when it is integrated.] Hence, the extra term
(B+3) 2:(r){@o| X25*) should not make a strong con-
tribution to 71,.2s*, the main contribution coming from
the terms of the static exchange approximation. As we
see in Table I, the 15-2s phase shifts are larger than 75T,
but less than 5zt for £22<0.09. On the other hand, for
k*20.16, the 2s coupling term in the Xg*+ equation is not
as far off the energy shell and also the contribution of
the X¢t coupling term in the X, + equation can increase
(¢o| X25¥), s0 that 51,.2,+ may be greater than npt. Hence
the fact that the 1s-2s phase shift and 7Pt cross at some
energy is not unexpected, although these qualitative
arguments cannot predict the value at which the cross-
ing takes place.

Since the term (¢o(1) [v] P¥+) of Eq. (36) is so similar
to the kinetic-energy term (E— 2¢) ©0(2){ po| X¢*) of the
static exchange approximation, it is interesting to de-



142

TasLE II. Singlet S-wave phase shifts. % is given in atomic units.

Correct static Incorrect static

k2 approx. [Eq. (36)] approx. [Eq. (34)]
0.0001 3.063 3.121
0.01 2.414 2.926
0.04 1.890 2.717
0.09 1.526 2.521
0.16 1.253 2.342
0.25 1.042 2.186
0.30 0.959 2.120
0.40 0.833 2.018
0.50 0.744 1.945
0.64 0.652 1.879
0.70 0.630 1.281
0.0000 7.85 2.16

termine the effect of ignoring these terms. If we do so,
the resulting equation is (34). This equation results
from using the projection operator ® and the assumption
that (@o|¥et) =0, which is not a valid result. The singlet
phase shifts and scattering length obtained from this
equation are tabulated in Table IT and compared with
Apt and gpt. (The triplet parameters were found to be
identical to those from the static exchange approxima-
tion, as required by antisymmetry of the spatial wave
function.) The effect of dropping the term{¢o(1) | v| P¥*)
is clear in this table; not only are all the incorrect phase
shifts greater than 5pt, they are also larger than any
phase shifts so far calculated. The importance of the
extra exchange term thus is evident.

Before turning to the comparison of scattering lengths,
we point out that the 15-2s strong-coupling approxima-
tion based on Eq. (1) is not the same as the strong-
coupling approximation based on Eq. (35). Qualitative
arguments similar to those used above lead us to expect
that the singlet 1s-2s phase shifts from Eq. (35) may be
larger than the singlet 15s-25-2p phase shifts of Table I
for low energies, although the presence of the 1p state
makes the application of this argument somewhat
uncertain. The results for the 1s-2s S-wave phase shifts
will be reported elsewhere.

The results of our scattering-length calculations are
given in Table III, where we compare them with the
results obtained by other methods.?* As can be expected
from the behavior of the phase shifts, the singlet
scattering length of the static approximation 4 st is
smaller than the singlet scattering lengths of the static
exchange (4g") and strong-coupling approximations.
Furthermore, as indicated above and verified in Table
III, A 5~=A 5. The curious aspects of Table III, how-
ever, are the scattering lengths determined from the
inhomogeneous equation. These results could not be
expected to be accurate, since the entire distinguishable
particle solution [solution to the homogeneous part of
Eq. (11)] is approximated so crudely by the solution to
the homogeneous portion of Eq. (17). Inclusion of some
coupling reduces the “static’” scattering length by
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nearly a factor of 2 when exchange is ignored,? and
coupling will presumably alter @, the exchange scat-
tering length, by a large amount also (see the discussion
of the Lippmann and Schey? calculation below). The
significance of the sign of A+ in the first row of Table I1I
is not understood, but coupled-channels calculations
should help in understanding this. The results of such
calculations for the inhomogeneous equation will be
discussed elsewhere.

CONCLUDING REMARKS

We first summarize the results of this paper. It has
been shown that ¥+ obeys an inhomogeneous equation,
with all exchange effects contained in the inhomogeneous
term. Scattering lengths in the “static” approximation
to the exact inhomogeneous equations have been de-
termined. We have also derived the set of optical-
potential equations for the open-channel wave functions
(or any chosen set of channels) in several ways. Both
phase shifts and scattering lengths were calculated in
the static approximation to these equations, in the limit
of pure elastic scattering, i.e., one channel open. These
various results have been compared with the results of
other calculations. A comparison with the older forms of
the theory that do not include the continuum exchange
contributions has been given. Finally, we have shown
how the Born-Oppenheimer and first-order exchange
approximations? are related to the present work. We
have made no comments about continuum contributions
to variational calculations. None, in fact, were necessary
since the forms of the variational wave functions were so
chosen as to exclude these contributions.

The use of an inhomogeneous equation to represent
the effects of the Pauli principle was first used by
Lippmann and Schey,® in a heuristic approach. Their
equation for Yo may be regarded as an approximation
to Eq. (11) for the case #=0. The inhomogeneity is
approximated by the term \¢o, where X is a constant
(which is determined in the calculation). The potential
(o(1)|U| @o(1)) of Eq. (11) is approximated by the
usual shielded Coulomb potential plus a polarization
potential that is finite at the origin. It is difficult to
assess quantitatively the accuracy of these approxi-
mations, but we can show some qualitative conclusions
from the results of the calculations based on them. First,

TastE III. Scattering lengths, in atomic units.

Calculation A~ A+
Inhomogeneous equation 25.46 —44.34
Static approximation 2.35 7.85
Static exchange approximation 2.35 8.095
Strong-coupling approximation 2.33 8.05
15-2s-2p 1.89 6.74
Variational calculation 1.76 5.96

24 See Table I of Burke and Smith, Ref. 1.
25 B. A. Lippmann and H. Schey, Phys. Rev. 121, 1112 (1960).
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the approximation of (¢o(1) | U| ¢o(1)) used by Lippmann
and Schey is an attempt to include the effects of
coupling on the solution #, of Eq. (14) ; this approxima-
tion is known to be accurate at large values of 7. Thus,
this solution to the homogeneous equation is obviously
far more accurate than that of Chandrasekhar and
Breen,®® which we have used. Second, the approximation
of the inhomogeneity by Mg is not expected to be good
because the functional dependence of the inhomogeneity
is clearly more complicated than just the dependence of
@o on 7. On the other hand, use of the orthogonality
condition?® to determine N probably helps to overcome
this to some extent. Finally, since the relevant exchange
scattering parameters are determined by integrating the
product of the homogeneous solution and A g, the use of
such a simple form as ¢ to represent the inhomogeneity
may not be too inaccurate. This last comment is borne
out, of course, by the reasonableness of the phase shifts
and scattering length obtained by Lippmann and Schey??
especially when compared with the large value of the
triplet scattering length obtained from our calculation
using the inhomogeneous equation. The simulation of
the effects of other channels by use of the polarization
potential thus indicates that a coupled-channel calcula-
tion using the inhomogeneous equation may lead to
greatly improved results, as noted above.

Let us now consider the homogeneous equations.
With only a single channel considered, we have seen
that the singlet phase shifts are increased in value over
the old strong-coupling results for certain energies. This
is clearly a result of including the continuum exchange
contributions. The physical interpretation of this in-
clusion is that we are now allowing the two electrons to
experience a greater correlation than was possible in the
older treatment. Such a correlation is obviously intro-
duced, in Eq. (36), through the terms P¢¥# which
force both electrons to be in the ground state where (a)
they must be near to each other and (b) they can feel the
effect of v most strongly. Further correlations of this
type are introduced by the operator P in the case of
coupling given by Eq. (34). It is thus quite likely that,
in contrast to the results of Burke and Schey,? inclusion
of 1s-2s-2p couplings in Eq. (34) will give singlet phase
shifts in much closer agreement with those of variational
calculations.?

Since the structure of the 1s-2s-2p coupled-channels
equations are quite similar to those of the older calcula-
tions, except for the addition of several extra exchange
nonlocalities (recall the discussion of the 1s-2s case
above), we expect to find a resonance in 1s-2s-2p
calculations based on Eq. (35). The reason is that we
would be retaining essentially the older amplitude
which produced a resonance and adding to it another,
and presumably nonresonant, amplitude. Calculations
to test this are planned.

26 C, Schwartz, Phys. Rev. 124, 1468 (1961).
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We have stressed the differences that may occur in
the coupled-channel calculation of scattering parameters
using Eq. (35) as compared to those previously calcu-
lated. This is an obvious consequence of the real differ-
ence between Eq. (35) and the coupled equations that
result on using a truncated version of Eq. (1). Even
though the functional dependence of the terms in Eq.
(36) and in the equation of the static exchange ap-
proximations are quite similar, we must not regard these
two equations as being equally valid approximations to
the exact scattering equation. Their origins are based on
quite different treatments of the Pauli principle. As we
have remarked above, the difference between our equa-
tion and the older ones based on a truncated form of
Eq. (1) is much more marked in the 1s-2s coupling case,
and becomes even more pronounced as more states are
included in the coupled-channels equations. In addition
to possible improvements in the low-energy scattering
parameters, one will also hopefully get better results at
higher energies using Eq. (35) for just the 1s-25-2p
coupling case. Further couplings, though harder to
calculate, will also be interesting to investigate.

Note added in proof. Due to an error in the computer
program, the singlet phase shifts and scattering length
for Eq. (36) are incorrect. They should equal, instead,
the values obtained from the static exchange approxi-
mation. Furthermore, it can be shown that as long as
P(1) contains only bound states, then Eq. (34), for the
singlet case, can be transformed into the equation
obeyed by the truncated form of Eq. (1). The trunca-
tion of Eq. (1) will be such that the sum on « runs over
the same states as are in P(1). Hence, in this case, the
singlet scattering parameters are the same as obtained
in the standard type of calculation using a truncated
form of Eq. (1). This is not true however, for the triplet
state. While the equality of the static exchange approxi-
mation results and those obtained from Eq. (36) can
be predicted, it can be shown that this equality no
longer holds when coupling is introduced. Thus our
conclusions remains valid for the case of triplet scatter-
ing. When all states including the continuum are con-
sidered, our method still provides a unique means of
determining the scattering amplitude. The author
wishes to thank Dr. R. Peterkop for pointing out the
necessary existence of the error in the calculations of
the singlet scattering parameters.
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APPENDIX: PROOF OF SOME EQUALITIES

In I, it was stated that the four different equations
for ¢o* were identical, an identity that follows from the
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uniqueness of Eq. (4) and thus of yo* itself. We have
already seen that Eqs. (32) and (46) are identical. We
now show that Egs. (11) and (23) are identical; the
identity of (23) and (32) will complete the circle and
thus establish the remark of I stated above. We shall
work with the integral equations for y¢* in establishing
the identity of (23) and (32). It will again be clear that
P cannot contain continuum states with wave number
greater than or equal to k.

The identity of (11) and (23) will be demonstrated by
transforming (11) into (23). First we note that from
Egs. (12) and (13)

P(LHUPQ1)
=P()[v+ov(Et—H—QL)v)1Q(1)v]P(1) (A1)
and
P(1)U,(1)
=P(1)[v+otv(Et—Ho—Q (1))
XQ(1) (v+2)]J@:(1), (A2)

since [Ho,Q(1)]=[2,Q(1)]=0. Substituting Eqs. (A1)
and (AZ) into Eq. (11), using P(l) (E— 60—H2+‘Z)1)‘§k (1)
=0, and rearranging terms, we find

[E—e—Hy—P(1)UP(1)JP(1)¥*
=xP(H[UQ(1)®:(1)
+o(E¥—Ho—Q(1)2)1Q(1)v:®: (1) ].

To obtain (A3), we have also employed the relation

We wish to eliminate the term v:®;(1). To do this, we
observe that, by definition,

er(1)=¢r(1)+ (Bt —eo— H1) 019 (1),

(A3)

or
n¢r(1)=(Et—eo—Hy)[ox(1)—or(1)].

Hence,
118, (1) = (E*—Ho)[0(2) 0x(1)—®:(1)].

Thus, the second term on the right-hand side of Eq.
(A3) may be written as

v(Er—Ho—Q(1)0)'Q(1vidk(1)
=v(Et—Ho—Q(1)v)(E*—Hy)Q(1)
XLeo(2)ea(1)—2:(1)]
=[vt+o(Er—Ho—Q(1)2)7Q(1)]
XLeo(2) o2 (1)—Q(1)@4(1)]

=Upo(2) pr(1)—UQ(1)®:(1). (A4)
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Substituting (A4) into (A3) then leads to the cancella-
tion of the UQ(1)®,(1) terms, thus producing Eq. (23).

Next we turn to the relationship between (23) and
(32), establishing the identity using the integral equa-
tions (22) and (29). We transform Eq. (29) into (22).
First we rewrite the denominator of Vep*:

[Et—Ho— (Q—P)v ] (Q—P
~[E*—Ho— Q]
X{1=PQULE = Ho— (Q— P14} (= Plo, (A3)

since Q—P=Q(1)—P(2). Furthermore, the term
{ }(Q—P)vin (AS) can be rewritten as
{ }(Q—P)v=0Q(1)v—P(2)Vop. (A6)

Thus, substituting (A6) into (AS5) and then into Eq.
(29), we obtain

P(1)¥E= po(1) ox(2)+ (EF—Ho)P(1)
X{U—[Et—Ho—Q(L)v] P (2)Vops}
X (1£Pw)P(1)T*. (A7)
The terms P(2) Vo P(1)¥% may be transformed in
the following way. The integral equation for P(1)¥# is
equivalent to the equation obtained from (10) by
projecting with P(1) and equating P(1)»¥* to
P(1)VopstP (1)¥#, Similarly, projecting on (10) with
P(2), we find

£ P(2)¥E=t 00(2) pr(1)+ (ET—Ho)™

XP(2)VopsT[ £ P (2)W]
= ¢0(2) or(1)+ (Et—Ho)™!
XP(2) Vot =P (1)T,
or
P2)VopsEP ()T =

= (E*—Ho)?[P(2)¥*+F 0o(2) ex(1)].
Putting (A8) into (A7), we get

P(1)¥*= po(1) ox(2)+ (E*—Ho) P (1)
X{U (1 P1o) P(1)¥E+0(EY—Ho—Q (1))
X(Et—Ho)[FP(2)¥*=E£0o(2)0x(1)1}. (A9)
Since v(Et—Ho—Q(1)v)(E*—Ho)=U, Eq. (A9) may
finally be put into the form
P(1)¥t= 0o(1) pr(2)+ (Er—Ho) ' P(1){U (1= P1p)
XPMYEFUP(1)¥EEUeo(2) ¢i(1)},
which just reduces to Eq. (22).
We have now established that the four equations
derived for ¢+ are identical, thus providing explicit

proof that the various methods of deriving y¢* lead to
identical functions.

(A8)



