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Space-Time Symmetry of Transport CoefBcients
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Lincoln Laboratory, * Massachusetts Institute of Technology, Lexington, Massachusetts
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The symmetry properties of linear transport coeKcients are derived treating time inversion and spatial
transformations on the same footing. The possible presence of a uniform external magnetic field is taken
into account. The method used can be applied more generally —to nonlinear transport coeKcients, for
example. It is shown that the usual Onsager reciprocity relations do not in general apply in practice to
magnetic crystals; appropriate generalized Onsager relations are given. The 1651 3-dimensional space
groups which exist when time inversion is taken into account fall into three categories: (a) 230 which
contain time inversion as an element, (b) 230 which do not involve time inversion, and (c) 1191 which
contain time inversion only in combination with spatial transformations; (a) refers to nonmagnetic crystals
and (b) and (c) refer to magnetic crystals. Onsager's relations are shown to apply in their usual form to
crystals in category (a), not at all to crystals in category (b), and in general only in a modified form to
crystals in category (c).As an application, the equations derived which determine the symmetry restrictions
are used to obtain symmetry-restricted matrices for the thermogalvanomagnetic coefBcients for each of the
1651 space-group symmetries, and the results are tabulated.

l. INTRODUCTION

YMMETRY properties of magnetic crystals have
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been actively investigated in recent years. ' ~ Sym-
metry restrictions on equilibrium-property tensors have
been examined for magnetic as well as nonmagnetic
crystals treating spatial and time-inversion transforma-
tions on the same footing. "' For transport properties,
on the other hand, earlier investigations have treated
the spatial symmetry and time-inversion symmetry
separately, the latter leading to restrictions consisting
of the usual Onsager relations. In the present paper,
symmetry restrictions on transport-property tensors are
examined treating spatial and time-inversion symmetry
on the same footing.

The electric current density j and the heat current
density q in a crystal are related to the gradients of the
electrochemical potential tt =|—ep and the temperature
T by'
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where —e is the electron charge, E is the electric field,
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g= 'f/T, and H is the external magnetic field. The usual
Onsager reciprocity relations among the coefFicients can
be expressed in this case as

ii)(H) —S„o)( H) S „(4)(H)=S„„(4)(—H)

S„,&sl(H) =S,„tel(-H). (1.2)

These are equivalent to the Onsager relations

p„„(H)=p„„(—H), tt„„(H)=«„„(—H),
~"(H)=2'~"(—H) (1.3)

for the electrical resistivity y, thermal conductivity x,
Peltier coefficient et, and thermoelectric (or Seebeck)
coefficient at, which enter in the form of equations' ' "
describing thermogalvanomagnetic effects convenient
for application to experiment. Equations (1.2) and (1.3)
hold for nonmagnetic crystals.

In Sec. 2 a derivation is given of geeeralised Ouster
relations which hold in the presence or in the absence of
an external magnetic 6eld, for magnetic as well as non-
magnetic crystals, and which incorporate modi6cations
of the usual Onsager relations required for the syixonetry
of some magnetic crystals. The relations derived in
Sec. 2 are applied in Sec. 3 to obtain symmetry restricted
matrices for the thermogalvanomagnetic coefFicients for
each of the 1651 space-group symmetries. Correspond-
ing restrictions for y, x, e, and e follow immediately.

2. SPACE-TIME SYMMETRY RESTRICTIONS

We derive generalized Onsager relations in a slightly
more general form than is necessary for the specihc
Eqs. (1.1). We introduce the transport coefficients" ie

rtt„g„(eo,H) = dt e '"t dX Trp(H)A„Bo(t+t@i; H)

(2.1)
"A. C. Beer, Galvanomagnetic Egects in Semiconductors (Aca-

demic Press Inc. , New York, 1963), Vol. 4."J.Meixner and H. G. Reik, in Encyclopedia of Physics, edited
by S. Flugge (Springer, Berlin, 1959), Vol. 3/2, p. 413.

"R.Kubo, J. Phys. Soc. Japan 12, 570 (1957)."R. Kubo, Lectures in Theoretical Physics (Interscience
Publishers, Inc. , New York, 1959), Vol. I, p. 120.
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S„„&'&(H)= dt dZ(j „j„(t+iB.; H)),

S„„&'i(H)= dt dX(qj „(t+iB,; H)),

S„„&'&(H)= dt dX(j, q( +tiB.; H)),

(2.4)

S„,'4i(H) = dt dl~(q„q„(t+iA; H)).

which depend on the angular frequency ~ as well as on
the magnetic field H. Derivations and applications of
expressions of this type for linear transport coefFicients
have been reviewed recently. '" In (2.1),

B„(t;H) =e—xp{[iK(H) t/k) )B„
Xexp{—Piae(H)t/k j) (2.2)

is the operator B„in the Heisenberg picture, with X,(H)
the Hamiltonian, and

p(H) =—exp{—P3C(H) )/Tr exp{—PK(H) ) (2.3)

is the density operator for the canonical ensemble;
P= 1/kT and k is the Boltzmann constant. The trace in
(2.1) represents the thermal average (A„B„(t+ih&; H)),
the average of the operator product A„B„(t+iAX;H)
with respect to the canonical distribution.

If we identify A and B with the electrical and heat
current density operators j and tl and set oi=0, (2.1)
gives the following expressions' for the coefficients in
(1.1)

operators I and antiunitary operators" a= e8, where v is
unitary and 8 is the time-inversion operator. We assume
that X(H) is a subgroup of X(0), the group in the
absence of a field, an assumption which one can ordi-
narily expect to be satisfied in practice.

A group X falls into one of three categories It. (a)
contains the time-inversion operator 8 as an element,
(b) does not involve 0, or (c) contains 8 only in com-
bination with a spatial operator. These categories pro-
vide a convenient classification of the groups X. The
space group of a nonmagnetic crystal is one of 230 in
category (a). The space group of a magnetic crystal
is one of 230 in category (b) or one of 1191in category
(c). The derivation in Sec. 2B is, however, not limited
to these 1651 groups and their subgroups.

Associated with X are the groups Xr,, Xc, and g. Xr, is
the subgroup of X of linear operators N. The group Xl,
has index 1 or 2 in X and is therefore an invariant sub-
group of X. If X contains antiunitary operators, it
consists of X~ and the coset Xl,a, where u can be any
element of the coset: X=Xr,+Xi,a. Xc is the group of
linear operators generated by XL, and any v=a8 ':
Xc=XI.+Xi,v. g is the subgroup of X which leaves
K(H) invariant: X= /+ gab, where b is an element of X
(if any) which changes X(H) to K(—H). Related groups
gr, and gc, defined in an obvious way, can also be
considered.

When 8/0 it is convenient to classify a group X also
according to the index of g in X, the index of gr, in

g, and the index of Xr, in X. The five possible cases
are indicated in Table I. The case determines the cate-

TAsLE I. Classification of symmetry groups for II&0.

The symmetry properties of these coefficients depend on
the transformation properties of j and q. They would
be unaffected, for example, if j and q were multiplied
by real constants. Consequently, we need not be con-
cerned here with a precise definition of the operators j
and q. For similar reasons, symmetry restrictions ob-
tained using (2.1) or (2.4) as a starting point can be
expected to be valid under conditions at least as general
as those assumed in deriving these equations.

Case

(i)
(ii)
(iii)
(iv)
(v)

Category

(b)
(c)
(b)
(a)
(a}

A. Symmetry Groups

As an aid in deriving and discussing symmetry re-
strictions we consider the group X=X(H) of quantum-
mechanical operators corresponding to space-time sym-
metry transformations'4" 4 with the property that an
element of X leaves the Hamiltonian 3C(H) invariant or
changes X(H) to K(—H)."Time transformations are
here restricted to time inversion. X consists of unitary

gory, as shown. In cases (i) and (ii) X= rl and K(H) is
invariant; antiunitary operators occur in case (ii) but
not in case (i). In cases (iii), (iv), and (v) X contains
elements which reverse the direction of H; in case (iii)
these elements are unitary, in case (iv) they are anti-
unitary, and in case (v) half of these elements are
unitary and half are antiunitary.

B. Derivation

'~ R. Zwanzig, Ann. Rev. Phys, Chem. 16, 67 (1965).
E. signer, Group Theory and its Application to the Quantum

Mechanics of Atomic Spectra (Academic Press Inc. , New York,
1959).

"A. Messiah, Quantum Mechanics II (Interscience Publishers,
Inc., New York, 1963).

"The selection of X(Hl is discussed briefly after (2.29).

We proceed by transforming (2.1) using the elements
of the group X(0).The operators A „and B„are assumed

"Here unitary means linear and unitary, while antiunitary
means antilinear and unitary. For a particularly pertinent discus-
sion of properties of antilinear operators, see Ref. 4.
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to have the transformation properties

uA„u '=g&, A&D&"&(u)&...

aA.a—'=P&, A&,D&"&(a)g„

uB„u '=P, B.D&~&(u),„,
aB„a '=Q. B.D&~&(a),„.

The group properties of X(0) are refiected
equations"

(2.5)

(2.6)

(2 7)

(2.8)

in the

TrLL'= TrL'L (2.10)

which holds for linear operators L and L', together with
TrL= Tr(u 'u)L(u 'u)= Tru '(uLu ')u, to obtain

TrL= TruLI ' (2.11)

On using (2.11) and inserting u 'u between adjacent
operator factors in L on the right-hand side we obtain

Tr exp[—PBC(H)]A „B„(t+i&z&&;H)

=Tr{u exp[—PBC(H)]u
—")[uA„u—']

X[uB,(t+iM. H)u '] (2.12)

D(uu') =D(u)D(u'), D(ua) =D(u)D(a),

D(au) =D(a)D(u)*, D(aa') =D(a)D(a')*, (2.9)

satisfied by the co-representation matrices D(u) and
D(a).

We first transform the trace in (2.1) using a unitary
operator of X(0). We make use of the identity

We next use a similar procedure to transform the
trace in (2.1) using an antiunitary operator of X(0).
The analog of (2.10) for two antiunitary operators a
and u cs

Tr(aa') = [Tr(a'a)]*, (2.18)

which leads to the analog

TrL= [Tr(aLa ')]* (2.19)

of (2.11). The analogs of (2.12), (2.13), and (2.14) are
then

Tr exp[—PBC(H)]A„B„(t+itzl&; H)
= {Tr[aexp[—P3C(H)]a '][aA„a ']

X[aB~(t+itz&. ; H)a '])*, (2.20)

aBC(H)a '=3C(H.), (2.21)
and

aB„(t+i&;H)a '

=Q„B„(—t+itzl&; H, )D' '(a)„„. (2.22)

Substituting (2.21), (2.6), and (2.22) into (2.20) gives
for the analog of (2.15)

Tr exp[—PBC(H)]A „B„(t+itzX;H)

=P{Trexp[—PK(H, )]A &,B„(—t+i@„H,) )*

XD ~'(a)x,*D& &(a) *. (2.23)

By making use of the identity

For u in X(0) (TrL)*=TrLZ (2.24)
u3C(H)u '=X(H„), (2.13)

where H„ is a transformed 6eld which will be speci6ed
later. Consequently, using the definition (2.2) for
B(t; H) together with (2.13) and (2.7) gives

uB„(t+zB. H)u —'

for the linear operator L, , the identity (2.10), and the
identity

Tr exp( —P3C)B(r)A =Tr exp( —PBC)BA(—r), (2.25)

we transform (2.23) into

XD' &(a)„„*D&"&(a)i„*. (2.26)

=Q„B„(t+'tz&&;H„)D' '(u).„. (2.14) Tr exp[ —pK(H)]A„B„(t+iQ.; H)

On using (2.13), (2.5)
&

and (2.14), (2.12) becomes =P Tr exp[—PK(H, )]B„tA&,t(t+i@,; H, )
«X

Tr exp[ —PK(H)]A „B„(t+i@,; H)

=P Tr exp[ —PX(H„)]AiB„(t+zt&&; H )

XD&~'(u)y D' '(u) . (2.15)

By letting A„and B„be the identity operator, we obtain
from (2.15) the special case

Tr exp[ —PK(H)]= Tr exp[—PX(H„)]. (2.16)

Introducing (2.15) and (2.16) into (2.1) we obtain for
every u in X(0) the linear homogeneous equations

r J&„g„(&a,H) =Q r&z„g,(co,H )D&s&(u) „„D&"&(u) i„(2.17)

for the transport coeScients.

"Reference 14, Eq. (26.21).

On putting A„=B„=1 in (2.26), we find

Tr exp[—P3C(H)] =Tr exp[—PBC(H,)] (2.27)

the analog of (2.16). On substituting (2.26) and (2.27)
into (2.1) we obtain finally the analog of (2.17): For
every antiunitary operator a of X(0) the transport co-
e%cients satisfy the linear relations

r»„~„(ru)H)=Q rg„&»„(co H )D' '(a) *D (a)i"

(2.28)

The basic equations are (2.17) and (2.28). The former
determine the spatial symmetry restrictions, while the
latter determine the symmetry restrictions involving
time inversion.



C. Discussion

To obtain the restrictions imposed on a property
tensor by a symmetry group it sufhces to use the re-
strictions determined by a set of elements which gener-
ate the group"' ' This is a consequence of the fact that
if the property tensor satis6es the restrictions deter-
mined by two elements of the group, it also satisfies
the restrictions determined by the product of these two
elements. In the case of r» ~„(&o,H) this fact can be
proved directly by using (2.17) and (2.28) together with
the properties (2.9) of the transformation matrices.

,The generated Onsagpr relations result from (2.28)
when X(H) is the group of operators under considera-
tion. Recall that in this case H, =H if a is in g(H),
Rnd Hg= —8 lf not.

If X(H) is in category (a) of Table I we can take a= 0.
Then, v=1, 8,= —H. We assume now that 8 either
commutes or anticommutes with A„and with 8„, so
that D&"&(t&)=+1 and D&~&(8)=&1. This assumption
is satis6ed by many operators of practical interest. Then
(2.28) reduces to

r~„g„(co,H) =D &"&(0)D's& (0)r~„tp„t(co, —H), (2.29)

the usual form of the Onsager reciprocity relations, For
the thermogalvanomagnetic coefficients (2.4), D&»(8)
=D~~&(8)= —1~ so that (2.29) reduces to (1.2).

If X(H) is in category (b) there is no antiunitary
operator in X(H), so that (2.28) cannot be applied, and
there is consequently no Onsager reciprocity relation.

If X(H) is in category (c), (2.28) can be applied only
with v not the identity, so that in general (2.28) does
not reduce to (2.29). The implications of (2.28) for
thermogalvanomagnetic coc%cients are examined in
morc dctRll ln Scc. 3.

The group X(H) is by definition determined by the Hamiltonian
X(H). In applications the selection of an appropriate X(H) for
use in (2.1) can involve subtle questions which are common to
calculations of equilibrium properties and are beyond the scope
of the present paper. For example, by adopting a sufficiently fun-
damental approach, 3'.(H) can always be chosen for any system
so that 3', (H) is in category (a) and the usual Onsager reciprocity
relations (2.29) hold. This is analogous to the statement that the
symmetry group of the Hamiltonian of a crystal includes all
spatial transformations and not simply space-group transforma-
tions when nuclear motion is taken into account on the same
footing as electronic motion (see also Ref. 6, p. 108 and Ref. 3,
Chap. 5, Sec. 1).Here we assume that an adequate description of
the system can be found using a Hamiltonian X(H) with sym-
metry appropriate to the observed symmetry, or with symmetry
otherwise prescribed. As a more concrete illustration of a possible
application, to calculate the conductivity tensor S(') in (2.4) for
a magnetic crystal with localized magnetic moments (rare-earth
ions, say) 3'.(0) might be taken to describe the motion of conduc-
tion electrons in the field of the fixed localized moments; the sym-
metry of this field would determine the group X(0).

The procedure used in this section can also be used to
determine implications of spatial symmetry and time-

"H. Jagodzinski, edited by S. FlQgge Egcyclopediu of I'bye'cs
(Springer-Verlag, Berlin, 1955), Vol. 7/1, p. 1.

inversion symmetry for other physical properties, in-
cluding microscopic properties. In particular, this pro-
cedure can be applied to nonlinear transport coefficients,
for example, nonlinear conductivity and susceptibility
coeAicicnts. ""In this case, the procedure is applied
to a thermal average of r operators where, in contrast
to (2.1), r& 2.

The procedure used here can also be extended to take
account of other external Qelds, such as an electric 6eld
and a strain 6eld. This extension can be approached
Rlong lines used caI'llcl ln conncctlon with spRtlRl

symmetry only.

D&"&(u) = D&s& (I)=D(0) (3.1)

is a real orthogonal 3&(3 matrix.
It is convenient to introduce the proper counterpart

I', of 0.. If 0 is an improper rotation operator we can
write O=IP, =P,I, where P, is a proper (or pure)
rotation operator and I is the spatial inversion operator.
Then P.= Ia. and D(0) = D(P,). If 0 is a—proper rota-
tion operator, a=P, . Consequently, D's&(N). „D'"&(I)&,„
in (2.17) can be replaced by D(P,).„D(P,)&... so that
(2.17) slmp116es to

rp„g„(H) =P r~~„(H )D(P.),„D(P.)&... (3.2)

where we have suppressed the dependence on co. Simi-
larly, if e= f&t& ~

i'), (2.28) simplifies to

rs„g„(H)=Q rg„»„(H.)D(Pp)„„D(P,)&,„. (3.3)

In (3.2), H is given by

(3.4)

and in (3.3), H is given by

H.„=—Pp D(P,) pHp. (3.5)

In (3.4) and (3.5) account has been taken of the fact

~ P. N. Butcher and T. P. McLean, Proc. Phys. Soc, (London)
SS, S&9 (1964).

~'~P. S. Pershan, Phys. Rev. 130, 919 (1963).
~ L. Grabner and J.A. Swanson, J.Math. Phys. 3, 1050 (1952) .

3. APPLICATION TO THERMOGALVANO-
MAGNETIC COEFFICIENTS

A. Simplification of the Symmetry Restrictions

I.et us now apply the results (2.17) and (2.28) of
Sec. 2 to the case of thermogalvanomagnetic coeKcients.
In this case A, and B„arc both components of trans-
lationally invariant polar vectors which change sign
under time reversal. Ke shall take A„and 8„ to be
rcctRngular components. Consequently~ for thc spRcc-
group operator4 u= {0( t), where 0 is an operator repre-
senting a point-group transformation and f is an oper-
ator representing a translation,
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that the magnetic Geld 8 is an axial vector which
changes sign under time reversal.

Alternative forms for (3.2) and (3.3) often found
convenient in applications can be obtained by replacing
D by R=R '= D and H by H„-~=H, -~ in (3.2) and
H, -~= —H, -~ in (3.3). Then (3.2) and (3.3) become

rtt„~„[H(o)]=+R(P.)„„R(P.),pro„g, (H), (3.6)

TAsl,x II. Classi6cation of the crystallographic point groups
according to their Laue groups. International symbols are used
to denote the groups (see Ref. 25, p. 28, Ref. 5, p. xiii, and Ref. 8).
The prime denotes that the spatial point operation is combined
with time inversion. The Laue group is given for each of the point
groups of category (b) and category (c). The point groups of
category (a) are omitted from the table, since the Laue group of a
point group of category (a) is obtained simply by appending 1'
to the Laue group of the corresponding point group of cate-
gory (b). Table II corresponds to an extension to include time in-
version of Table 3.8.1 of Ref. 25.

and
Point groups Laue groups

rts„g„[—H(to)]=+ R(Pr)„„R(Pr)„)rsgtt„(H), (3.7)

where

H(a) „=H„~„=H„'-=Q„R„„(P,)H„ (3.8)

and the corresponding coordinate transformation is

x(a)„=sc„'=Q„R„„(o)sc„. (3.9)

The usual method" " '4'' for deriving spatial sym-
metry restrictions on property tensors, based on tensor
transformations [such as (3.9)7, leads directly to (3.7).

CATEGORY

B. Laue Groups

The group X(0) in the present application is a group
of quantum-mechanical operators representing one of
the 1651 3-dimensional space groups of symmetry
transformations which exist when time inversion is
taken into account. ' 4 We see from (3.2) and (3.3) or
(3.6) and (3.7) that the symmetry restrictions imposed
by one of these groups are the same as those imposed
by its Laue group (enantiomorphous group). The Leuc
group of a group is defined here as the group obtained
from the given group by [17 replacing every translation
by the identity, and [2] replacing every improper rota-
tion by its proper counterpart. The operation [1) re-
places a space group by its point group, while [2]
replaces a space group by a space group containing no
improper elements. We denote by a superscript I. the
result of applying operations [1] and [2]; thus, the
Laue group of X is X~. X~ is a point group involving
spatial operators only in the form of pure rotation oper-
ators. Every space group and every point group has a
unique Laue group.

(b)
1, 1
2, m, 2/m
222, mm2, mmm
4, 4, 4/m
422, 4mm, 42m, 4/mmm
3, 3
32, 3m 3m
6, 6, 6/m
622, 6mm, 6m2, 6/mmm
23, m3

'

432, 43m, m3m

(c)
1'
2//m', 2'/m

4/m', 4'/m'
4/m'm'm', 4/ ' mmm4'/m'm'm
3I

6/m'm'm', 6/m'mm, 6'/mmm'
m'3
m'3m', m'3m

2', m', 2'/m'

4', 4', 4'/m

32' 3m' 3m'
6', '6', 6'/m'
6'22', 6'mm', 6'2m', 6'm2', 6'/m'mm'
62'2', 6m'm', 6m'2', 6/mm'm'
4'32', 4'3m', m3m'

(b)
1
2
222
4
422
3
32
6
622
23
432

(a)
1'
21'
2221'
41'

3f
3'2
61/
6221'
23'
43'2

(c)
2'
2'2'2
4I
4'22'
42'2'
32'
6'

62'2'
4'32'

Figure 1 shows the number of space groups, point
groups, and Laue groups in each of the categories (a),
(b), and (c) defined in Sec. 2A. The lines indicate the
genealogy of the groups with respect to the operations
[1]and [2], and are based on the effect of these opera-
tions applied in succession on {ot t}:

a) c) TOTAL {o
~
t} r o —& P..

f&l l2]
(3.10)

SPACE GROUPS

POINT GROUPS

lAUE GROUPS

230 250 517+ 252+ 422
/
r32 52 2l + 37

II II Io

l65l

I22

Fze. 1. Number of space groups, point groups, and Laue groups
in each of the categories (a), (b), and (c).

~ J. F. Nye, Pttyszcat Properties of Crystals (Oxford University
Press, London, 1960).

C. S. Smith, SolQ State Physics, edited by F. Seitz and
G. Turnbull (Academic Press Inc., New York, 1958), Vol. 6,
. 175.

Category (c) space groups are further classified into
three mutually exclusive subcategories (c.1),(c.2), and
(c.3) of which there are 517, 252, and 422, respectively.
A category (c) space group is of subcategory (c.1) if it
contains an element of the form {E~t}8, where t is non-
primitive and E is the identity operator. Otherwise, it is
either of subcategory (c.2) if it contains an element of
the form {I

~
t}8with t nonprimitive, or else it is of sub-

category (c.3) if it does not. A point group of category
(c) is one of 21 groups if it contains I8 as an qlement;
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TAsLE III. Classi6cation of the crystallographic and limiting Laue groups. Category and case refer to Table I. Symmetry-
restricted matrices of thermogalvanomagnetic coefBcients for various classi6cations are given in the tables indicated.

V&0 (~)
(iii)
(iv)
(v)
(ii)

(a)

(c)

Category Case

(b)
(a)
(c)
(b)

Table Groups

X = Xz,~= Xz~. all 11 crystallographic groups; ~, ~ 2, oo ~
X =Xz, +Xz, 8: all 11 crystallographic groupsj c)1) o021) «e ao1'
X = Xz,J.+X&,zar' all 10 crystallographic groups; o«) 2'
X~= $z,~= gc~ ' 1, 2, 3, 4, 6'
X~= Xz,~= QJ.~+gz,~bl, ~ggz, ~. 2, 222, 32, 422, 622; ~ 2
X = gl, +pl, 8: 1', 21', 3', 41', 61' 00 1'
X =XI +XI. & Xz, =$1, +)I, bJ. Wgz, .'21') 2221') 3'2, 4221', 6221'; 0021'
X~= g~ =gl.~+gz,~a~ gal, ~. 2', 22'2', 32', 42'2', 62'2'; x 2'

otherwise it is one of 37. From Fig. 1 we observe that
although a space group of category (a) has a Laue group
of category (a) and a space group of category (b) has a
Laue group of category (b), a space group of category
(c) can have a Laue group of either category (a) or
category (c).

The correspondence between point groups and Laue
groups indicated in Fig. 1 is detailed in Table II.
International symbols"' ' are used to denote the groups.
Determining the subcategory of a category (c) space
group from a table' ' of space groups is facilitated by
use of Table II.

For polycrystalline samples it is useful to consider
groups with infinite-fold axes (limiting2o groups). A

limiting group arises as the limit as rl —&~ of a sequence
of groups with an rs-fold axis. Different sequences may
lead to limiting groups which are indistinguishable, at
least insofar as they imply the same symmetry restric-
tions. Whether ~ ' and ~ 1' are regarded as identical or

TABLE IV. Symmetry-restricted matrices of thermogalvano-
magnetic coefficients for II=0, (b).

Laue group

not, "the symmetry restrictions for ' are the same as
for 1', since an infinitesimal rotation approaches the
identity in the limit. Consequently, we make the
identifications ~'= ~1', ~'2= oc 21'= ~'2', and ~'~
= ~ ~ 1'= ~ '~ '. Our considerations of limiting groups
are restricted in what follows to limiting Laue groups.

The 32 crystallographic Laue groups and 7 limiting
Laue groups are classified in Table III for H=O and
HWO according to the three categories. For HWO they
are further classified according to the five cases of
Table I.

C. Symmetry-Restricted Matrices of
Thermogalvanomagnetic CoefBcients

The symmetry restrictions (3.6) and (3.7) constitute
a system of linear homogeneous equations. To obtain
all the symmetry restrictions for given H it suffices to
use only equations determined by a set of elements
which generate the Laue group X~(H). The relations
among the transport coefficients which result from
solving these equations are conveniently expressed in
matrix form. Such symmetry-restricted matrices are listed
in Tables IV—IX. The effect of the symmetry restric-

7 yQ

7 ZC

+ay +cz
&yy &yz

~zy +ZZ

TABLE V. Symmetry-restricted matrices of thermogalvano-
magnetic coefficients for II=0, (a).

222

3, 4, 6; ~

32, 422, 622; ~2

23, 432; ~m

(r, r,„o)
(0 0 r)
(r,. 0 0 )
! o .„„ o !
E, o 0

(r„r,o 0

0 0

(r„o 0)
o ., o!(0 o

(
r 0 0)o;, o!
0 0

I.aue group

21'

2221'

3', 41', 61'
3'2, 4221', 6221'j
~1', ~21'

23, 432 ~ ~1

+gg +yZ +ZZ

~gy +yy +Zy

+g Z +yZ +ZZ

o!
0 0 r.,1

0 0)
0 r„o 0

(0 o

(r„o 0

(0 o

(r.. 0 op
o ... o

!(0 0

!

0zs 0'sy 0'cz

0zy 0yy &yz

l0'z z &yz 0'zz

ox' oxo

Z i
0'~o o'oo 0
0 0 o../

(o„o 0)
0 o„„o(0 0 ogle)

(o, 0 0

(o„o 0)
0 o„o

(0 0

"Internationa/ Tables for X-ray Crystallography I (Kynoch
Press, Birmingham, England, 1952).

"Reference 5, pp. 75, 161. "Reference 5, p. 116.
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TABLE VI. Symmetry-restricted matrices of thermogalvano-
magnetic coefBcients for H =0, (c).

Laue
group

Thus, ~ and ~' represent S~2& and S"& or S~" and S'"
in (2.4), while e represents S'" and S'".

In the remainder of this subsection each of the classifi-
cations in Table III is discussed briefly.

2'2'2

32', 42'2'
62'2', co 2'

6'

6'22'

4'32'

0

Ty+

Tyy

Tyz

T

Tyy

Tsy
Tzz

0
Tss
0

0
Txa
0

0
Txz
0

r„)—
r,. j
0 (' o,.

o

o
0 o„)

o „0)o„o
0 0zz)

0 0)
o

0 o,.j
0. , 0

0 0)
0

i
0

r 0

0 0)
o

i0 o„j

(
&ae &ay &~z

gay ayy ayz
0~z &yz 0 zz)

H=O

When H=O, X=g.
(b) In this case the symmetry-restricted matrices

result from application of (3.6). The matrices for ~ are
listed in Table IV; g' and e have the same form as ~.

(a) In this case 8=1' is an element of the Laue group
and (3.7) implies the usual Onsager relations: r„„'=r„„
and a.„„=0„„.These are to be imposed on the symmetry-
restricted matrix of c for Xl,~ given in Table IV. The
resulting symmetry-restricted matrices are given in
Table V.

(c) The symmetry-restricted matrices for ~' and o are
given in Table VI for this case. These are obtained by
imposing on the symmetry-restricted matrix for XL,~,
as given in Table IV, any additional restrictions arising
from using an element of Xr,~a~ in (3.7).

H/0
For H/0 it is convenient to represent the results in

terms of the parts of g, z', and e even and odd with
respect to reversal of the direction of H.

tions for all 32 cryst'allographic and 7 limiting Laue
groups can be determined from these tables by inspec-
tion. These results are classified according to Table III,
as shown in the "Table" column. Although the results in
Tables IV, V, VIII, and IX are not entirely new, "all
results are included since it is useful to have them pre-
sented together for comparison and for reference.

The abbreviations 7 =7.g g 7 „=Tg g 0'

are used, where we can choose A =j,8= q or A = q, B=j.
TABLE VII. Symmetry-restricted matrices of thermogalvano-

magnetic coefBcients for II&0, (b.iii).

~'(H) —=k[~(H)+ ~(—H)],
~'(H) —= -', [~(H)—~(—H)].

(3.»a)
(3.11b)

and (3.7) takes the form

r"[H(p)]„,=g R(P,)„„R(P,),gr'(H)). .. (3.13a)

—r"[H(p)]„„=P R(P,}„„R(Po)„gr'(H) ~„. (3.13b)

In terms of these quantities, (3.6) takes the form

'[H( )],„=QE(P,)„„E(P.)„'(H)„, (3.12 )

r'[H(o)]„,=g R(P,)„„E(P,)g,r'(H)„)„, (3.12b)

Laue group

222

(
0) (0 0
oi io o

0 0 rgi) (ego rg„o j
(r, 0 0) (0 r, o)o
(0 0 r j Eo 0 0)

32, 422, 622; ~ 2
(r„o 0)io;, oi(0 0 rggj

( 0 ro 0)
o oi

go o o)

"The results in: Table IV are given in Ref. 2, Table 2(d), in
Ref. 3, Table 4d, and, in a diRerent but convenient form, in
Ref. 23, p. 227. The ma, trices for e in Table V are given in Ref. 23
p. 23 and in Ref. 24, p. 215. Some of the matrices for e in
Tables VIII and IX occur in Ref. 22, Eqs. (25)-(27).

For complete symmetry information the same groups
are involved as for H=O, but for determining the
symmetry-restricted matrices of ~, z', and e for given H
only the subgroups g(H) and X(H) enter. Each operator
group g(H) represents the intersection of a space group
with the group of space-time transformations which
leave H invariant, while each operator group X(H)
represents the intersection of a space group with the
group of space-time transformations an element of
which either leaves H invariant or reverses its direction.
Corresponding statements hold for the point group and
for the Laue group of a group g(H) and of a group
X(H). The Laue group which leaves H invariant is
~ 2'; the I.aue group an element of which either leaves
H invariant or reverses its direction is ~ 21'.
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TABLE VIII. Symmetry-restricted matrices of thermogalvanomagnetic coefficients for B/0, (a.iv).

Laue group
Xl,~= gl,~

21'

e"(H)

+IV ~gV

l7+g 77)g 7 gg

(r„r„, 0

(0 0 (
0 r„,—0)

0 0!
0 0 0)

e (H)

(
0'gg &sg

Ogy Oyy &yg
0'~ g 0'yg &gg

o.,„0)
aza avz( 0 0 o,.j

e'(H)

( 0 o.*„ azz)
0

0)

( 0 a,„ 0)
0 0!

0 0 Oj

3', 41', 61', ~1'
('r„r,„—0

0
(0 0

0 0

TABLE IX. Symmetry-restricted matrices of thermogalvanomagnetic coefBcients for II&0, (a.v).

Laue group
XL, Wgl. e"(H) e'(H) 0'o {H)

21'
(cr 0 „0
! aza aaa(0 0 (

0 0 azz)
0 0

0)

2221'

3'2, 4221', 6221'; cc 21'

(r., 0 0
0 r„„0

(0 0

0 —r„0)
0 0!

0 0 0)

(
0 r,„oq

0 0!
0 0 0)

(o„0 0)
0 a„„O(00o)

(„
0 o, 0

EO 0 o„)

0 aa 0)
0 0!

( 0 a,„0
!

—o,„0 0
( 0 0 0

r(—8)„„=R(2,)„„R(2.)„„r(H)„„, (3.14)

It is important to bear in mind that the coordinate
axes of the Laue groups listed in Table III may not
coincide with crystal coordinate axes. The symmetry-
restricted matrices of c, c', and o referred to crystal
coordinates are then obtained from the tabulated ma-
trices by a rotation of coordinates. Concomitantly, a
di6erent choice of the independent parameters of ~, ~',
and e may be convenient.

(b.i) In this case X~ does not involve 0 and it leaves
8 invariant. It is therefore a point group which is a
subgroup of the group ~. The symmetry-restricted
matrix is the same for z' and ~', and is given in Table IV
for each of the crystallographic and limiting Laue
groups; ~' and e have the same form as g.

(b.iii) The elements of ziz~ leave H invariant. The
elements of XI.~—gr, ~ reverse the direction of 8 and
are therefore twofold rotations perpendicular to H. The
Laue group X~ is consequently one of the subgroups of
~2 obtained by augmenting those for (b.i) with a
twofold rotation perpendicular to H. The symmetry-
restricted matrix of z is obtained correspondingly from
that for zir, ~, given in Table IV, by imposing the re-
strictions (3.6) for one of the elements of Xr,~—g&~. If
the element is 2, then R„=—R»= —R„=1,R„„=o,
p, Wv. This restriction takes the form

r'(H)„„=r(—H)„„,

o(8)„„=o(—H)„„,

or, according to (3.13),

(3.16)

(3.17)

r"(8)„„=r'(8)„„, r"(8)„„=—r'(8).„, (3.18)

o'(8)„„=o'(H) „„, o'(8)„.= —o'(8)„„. (3.19)

These restrictions are to be imposed on the symmetry-
restricted matrices for X~~, given in Table IV in case
Xr,~ ——air, ~ and in Table VII in case XI.~Whiz, ~. The
resulting symmetry-restricted matrices are given in
Tables VIII and IX.

(c.ii) Each group in this case is formed by appending

or, from (3.12),

r'(8) „,=R(2 )»E(2,)„„r'(8)„„(3.15a)

—r'(8) „„=E(2,)„„E(2,)„„r'(H)„„. (3.15b)

The resulting symmetry-restricted matrices for c are
given in Table VII. Notice that those for ~' are the same
as in Table IV. The symmetry-restricted matrices for
z' and e are the same as for ~.

(a.iv, a.v) These groups can be obtained by append-
ing 8= 1' to the groups of category (b). When 8 is used
as a group element (3.7) reduces to the usual Onsager
relations



to R gl'ollp oil, Rll Rntlblnary lotRtloll II = 2 wltll axis
perpendicular to H. Notice that no Laue groups X~(H)
in category (c) contain elements which reverse the
direction of H. This ls ln contIast to thc gIoups which
yield the ordinary Onsager relations (2.29); the latter
groups are in category (a) and always have XnW ri~.

The symmetry-restricted matrices are obtained in
ttus case from those of gl, ~, given in Table IV, by
applying (3.7) using an element of rll, ~a~. For the ele-
ment a~=2', (3.7) reduces to

r'(H) „„=P E(2)„„E(2)„lr(H)),„(3.20)

which has the same form as when H=o. The resulting
symmetry-restricted matrices for ~'(H) and e(H) are
glvell 111 Table VI. Eqllatloll (3.20) Rlso relates e ' to v'
and z" to z', so that Table VI applies as well for g",
0' and 4 0'

Inspection of the tables shows that as the I.aue sym-
IDetI'y lncI'eases, tI'ansfoI'IDatlons involving tlIDc 1Qvcl-
sion tend, roughly speaking, to have a smaller additional
effect on the form of the symmetry-restricted matrices.

To Blustrate the difference between the symmetry-restricted
matrices given here and those given earlier by Birss' 3 we consider
the H=o electrical conductivity e for an orthorhombic crystal
with I.aue group 2'2'2. T4e symmetry restricted matrix is given
in Table VI, according to the present theory. On the other hand,
according to Birss, the symmetry restrictions are determined by
the maximal subgroup of 2'2'2 which does not involve time in-
version, namely, the group 2, together with the restrictions im-
posed by the usual Onsager relations, namely, that e be sym-
metric. The symmetry-restricted conductivity matrix for 2'2'2
predicted by Birss is thus the same as that given in Table P for
21'. It is symmetric and clearly different from the one given in
Table VI, which is antisymmetric.

It appears that Birss' prescription for symmetry-restricted
matrices is inconsistent with the existence of the extraordinary
Hall effect in ferromagnets.

D. Symmetry-Restricted Matrices of the
Isothermal Magnetic SusceytibiTity

VA'th regard to symmetry restrictions the implications
of time inversion for equilibrium properties are in
general di8erent from the impIications of time inversion
for transport properties. To illustrate this consider the
isothermal magnetic susceptibility y„, an equilibrium
property. 'The magnetic susceptibility and the thermo-
galvanomagnctic coeKcients are both second-rank polar
tensors, and therefore transform the same way under
spatial transformations. Time inversion has no CEect on
the isothermal magnetic susceptibility, in contrast to its
effect on the thermogalvanomagnetic GOCS.cients. There
are, however, ~etriesic symmt, 'fry'9 —"restrictions which
are separate from the space-time symmetry restrictions.
Intrinsic symmetry I'cqulI'cs the isothcrIDal magnetic
susceptibility to be symmetric in its tensor indices. This
is evident from the definition, X„„= O'F/BH„—BH„,
where Ii is the appropriate free energy.

It follows that, aside from the intrinsic symmetry,
the symmetry-restricted matrices for the isothermal
magnetic susceptibi1ity are the same as for the electrical
conductivity except that the Laue group Xq~ is used
instead of the Laue group X~. (Xc~ is obtained from
X~ by replacing time inversion wherever it occurs by
the identity. )
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