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calculated and the observed frequencies as a function
of the external magnetic field. The value of the hyper-
fine field at diferent temperatures was obtained almost
independently of the other constants. It was found that
there is a slight deviation between the ratios of the
hyperfine fields and the magnetization saturations
which can be interpreted as a small temperature
dependence of the canting angle.

The large field dependence of the linewidth at low
magnetic field was found to arise from a large spread in
the anisotropy field in the (111)plane.

Comparison between the integrated intensities in low
and high fields has shown that the enhancement at low
fields is larger than that calculated for the bulk. This
increase of the enhancement may arise from the domain
wall and further investigation is necessary to obtain
conclusive results.

Saturation of the nuclear system in this canted spin-

system has a different effect on the NMR signal from
that in normal systems. This arises from the strong
dependence of the position of the line on the nuclear
temperature. As a result, for high enough rf power, the
shape and position of the line may depend on the sense
in which the frequency is swept. An additional line was
observed at a frequency higher than that of the pulled
line. Its origin is not clear and a few possibilities are
suggested.

A.CKNOWLEDGMENTS

The author is indebted to A. C. Gossard for his help
and discussions in the initial part of this work, to J. C.
Hensel for the use of his apparatus during part of this
work, and to J. B. Mock for technical help. He wishes

to thank H. J. Fink, W. Low, and M. Weger for several

fruitful discussions.

PHYSICAL REVIEW VOLUME 142, NUMBER 2 FEBRUARY 1966

Nuclear Spin-Lattice Relaxation in Ferromagnetic Insulators at Low Temperatures*

AKIo HoNMA)

Physics Department, Brookhaeee National Laboratory, Upton, gem Fork

(Received 4 August 1965)

A theoretical study of the nuclear spin-lattice relaxation in cubic ferromagnetic insulators at ultralow
temperatures is presented. Calculations are performed for nuclei which belong to the magnetic atoms, con-
sidering only the direct processes. Three mechanisms are considered: the relaxation to mixed magnon-phonon
modes, indirect nuclear-spin interaction modulated by lattice vibrations, and nuclear quadrupole energy
modulated by lattice vibrations. The first two mechanisms lead to a relaxation time T& which depends on
both the temperature T and the external Geld H p, with T1~HO'/T for Ho)) magnetization and the anisotropy
Geld. For a Geld comparable to the magnetization or the anisotropy Geld, the relaxation time is proportional
to Ho", g being larger or smaller than 2 depending on the shape of the single-crystal sample. The last mecha-
nism does not lead to a Geld-dependent Tj,. Comparison with experiments performed on powdered EuS is also
presented.

I. INTRODUCTION

'HE temperature and external field dependence of
the spin-lattice relaxation for nuclei w'hich belong

to magnetic atoms in a ferromagnetic insulator at very
low temperatures and in fairly large external fields is of
interest because of a recent experimental investigation
on powdered KuS.' A convenient expression for the ex-
perimental temperature and field dependence is T1
~HO'/T'. Measurements were made in the ranges
0.05 0.15'K for the temperature and 2 17 kOe for the
field.

We calculate here general expressions for T1 for nuclei
which belong to magnetic atoms with orbital S states

*Work at Brookhaven performed under the auspices of the
U. S. Atomic Energy Commission.

f Present address: Institute for Optical Research, Tokyo Uni-
versity of Education, Shinzyuku-ku, Tokyo, Japan.

'R. I. Schermer and L. Passell, Bull. Am. Phys. Soc. 10, 75
(1965).

and surroundings of cubic symmetry. The nuclear
Hamiltonian H~ is written as

&~=&z"+&hi+A a+&q,

where the first term is the Zeeman energy, the second
the hyperfine interaction with atomic spins (assumed,
isotropic), the third the indirect nuclear spin interaction
via the hyperfine interaction, ' and the last the energy
due to the presence of the nuclear electric quadrupole
moment. The unperturbed nuclear-spin Hamiltonian is
given by the sum of Bz and the static part of Bhf. The
mechanisms of the nuclear spin-lattice relaxation come
from the modulation of the remaining parts of H~ by
the exchange motions and the lattice vibrations. Since
we assume the temperature to be ultralow, direct
processes should be dominant and so energy conserva-

2 H. Suhl, Phys. Rev. 109, 606 (1958); T. Nakamura, Progr.
Theoret. Phys. 20, 542 (1958).
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tion between the unperturbed nuclear and the heat-bath
systems should be required.

The mechanism due to modulation of Hhf by the
exchange motions can be omitted because the energy
conservation between the nuclear and magnon systems
cannot be satisfied for a fairly large external field. The
modulation of Hhf by the lattice vibrations gives two
effects: one is the modulation of the hyperfine coupling
constant and. the other is the formation of mixed
magnon-phonon modes' via the magnon-phonon inter-
action. The former mechanism leads to a Raman process
and can be omitted for ultralow temperatures. The
latter gives the relaxation mechanism of the nuclear-
spin system to the mixed magnon-phonon modes and
energy conservation is satisfied between the low-lying
mixed mode and the nuclear system. Regarding the
magnon-phonon interaction as a perturbation, the low-

lying state of the mixed mode has a magnon component,
the mixing amplitude being proportional to the inverse
of the magnon energy (which is proportional to the
external field. for large field strength). In this case it is
anticipated that the relaxation time will be proportional
to the square of the external field. For the case of the
external field comparable to the magnetization or the
anisotropy field of the electronic system, the field de-
pendence of the relaxation time will be complicated.

The indirect coupling between nuclear spins H;„d is
obtained from the second order perturbation of Hhf with
respect to the magnon system. Taking into account the
dipolar interaction between electronic spins, H;„d in-
cludes terms like I,+I,'+, the coeKcients of which de-
pend on the hyperfine coupling constant and the
magnon energy. The modulation of the hyperfine
coupling constant by lattice vibrations gives a mecha-
nism of relaxation and energy conservation is satisfied
between the nuclear spin and the phonon systems. The
relaxation time will depend on the external field in a way
similar to the previous case.

The 6nal mechanism comes from the modulation of
Hg by lattice vibrations. Expanding Hg in powers of the
displacements of nuclei and retaining only the linear
terms, we get the relaxation time for direct process.
Since the strength of the external 6eld is very small
compared to the hyperfine field acting on nuclei, the
relaxation time obtained by this mechanism will not
depend on field strength.

In Sec. 2, expressions for the mixed, magnon-phonon
modes for cubic crystals are obtained and, using them,
we calculate the relaxation time given by Kq. (2.32) for
the case that the anisotropy field is very small compared
to the external field and the magnetization. For the case
of the small magnetization compared. to the external and
the anisotropy 6elds, the expression of the relaxation
time is given by Eq. (2.44). For both cases, the tempera-
ture dependence is given by the function Fi(T) which is
nearly proportional to temperature. In Sec. 3, the

' P. Pincus and J. Q'inter, Phys. Rev. Letters, 7, 269 (1961).

indirect nuclear spin interaction is derived by taking
into account the dipolar interaction between electronic
spins and the expression of the relaxation time, Eq.
(3.6), is obtained. The order of magnitude of the relax-
ation time obtained here is longer than the one obtained
in Sec. 2 for a rare-earth ion. In Sec. 4, we get the
quadrupolar nuclear spin-lattice relaxation time given
by Kq. (4.21).Ii 4(T) is also proportional to temperature.
The order of magnitude of the relaxation time can be
comparable to the one obtained in Sec. 2. Finally in
Sec. 5, the expressions of the relaxation times obtained
in the previous sections are extended to the case that
there are two isotopes and the comparison with the ex-
periment on powdered KuS is presented. Taking the
values of the magnon-phonon coupling constant G~ and
the ratio of the eGective charge of the ion to the ionic
charge p as 10 cm ' and 10', respectively, the order of
magnitude of the relaxation times by the mechanisms
stated in Secs. 2 and 4 is comparable to the experimental
one, i.e., T~ several hours at 0.05'K and 17 kOe. Be-
fore going to these problems, we discuss the electronic
spin and the phonon systems.

The Hamiltonian of the electron-spin system for a
ferromagnetic insulator is written as

H'= Hz'+H *+Hg,p+H, , (1.2)

where the 6rst term is the Zeeman energy, the second
the exchange interaction, the third the dipolar inter-
action between atomic spins and the last the anisotropy
energy. They are given by

HZ =gpsHOQ'5'

H,„=2Jg(;,'&S; S,',
(1.2a)

(1.2b)

Hd, ~ ,' P, P, , D,,—[S,.S,, 3(S, r",, )(S.r",,,)j (12c)

H.„=(~/8') P, [5;"+S,"+S;*'),

D;, = (gps)'/r;; ', r, , =r;,'/r;, ',
(1.2d)

(1.2e)

where g &,; & denotes a summation over nearest-neighbor
pairs. The external field Ho is applied along the f' axis
perpendicular to which the $' and q' axes are defined.
The crystallographic axes are designated by x, y, z. We
assume the sample to be an ellipsoid with symmetry
axes x', y', z'. Finally we introduce the coordinate
systems $, g, f' with the 1 axis parallel to the equilibrium
direction of the magnetization Mo. The rotation matrices
which relate these coordinate systems are defined by

&1 &2 &3 s pl P2 P8

+ II II II pl

71 72 73 (1.3)
, Vi V2 V3

The direction cosines of the equilibrium magnetization
with respect to the crystal axes are e&, n2, n3. We intro-
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duce the magnon variables by

5;+=5;r+iSp= (25)'~'a;*,

5; =5;& i—Sip= (25)'~'a.

&p= gI a2~M pP pi(k) ~„„(k)+2i&i„(k)]

+6.5 p,'(,"+~ )'
i=»

5 r= —5+a *a,j 27

u;*= (I/N)"' g p e '" &u p''

aj——(I/N)'" Q p e'"'&up,

(1.4)

where

I'g ——Q, exp(iy k), (1.11a)

Applying Eqs. (1.3) and (1.4) to (1.2), we have
y being the vectors to nearest neighbors and App(k),
etc. , are given by

(1.5) V 1
~ p~(k) = 2 (I—a,y') expt:ik. (j—i')1,

188 4m' P rjp3

He Hpe+HieyHpe

where Bo', H»', and II~' include the magnon operato
and e~ in zeroth, 6rst and second order, respectively.
Ho' and P»' are given by

Hp'= 1VSfg&i»H py—p+EJS
~„(k)= Z (1—p, ) pLk. (i—I')], (111b)

4~X ~'r"H

i=»

—g„2 M. p p, p~,--,)-.Sp,'], (1.6) ~r, (k)=-
1

a,,'P, ' expt:ik. (i—I')],
4+% ~' rj,"

»'= (5/2)'&'t giisHp(vp" +ivp')

—
gv «M 2 P;(P;"+iP'')(&' ')—-
—4~5 Q aP(n;"+in )]g a,+c.c. , (1.'I)

where s is the number of the nearest neighbors and E,
are the principal values of the demagnetization tensor
which are given by

4~&'= (I'/&)Z' r.i '(1—3&i'~x')+p~, (1 g)

A;;; being the direction cosines of r";j in the x', y', s'
system.

The equilibrium values of o.; are determined by mini-
mizing IIO' with respect to o.; or putting the coe%cient
of ej in II»' equal to zero. ' The results are

g& sH pv p'
g& a4~M p Q—; pA'i&/;

—4~5+, nba, '=0,
g&i»Hpyp" —g&is4prMp Q, p;p,"E,

—4pS Q; nfl, "=0.
H~' is given by

Hp'=gp(~ pup up+ pj3pupu a+p~p up a p),— (110)—
with

A p= g&isHpyp+2sJS(1 I'p)+yrs47rMp P—PP(-' —.V )

+g&tis2prMpLA pi(k)+A„„(k)]

e;;., p;;, y;; being the direction cosines of r";; in the
(, », f' coordinate system. Using the canonical trans-
formation

ap ——2-"'t (up&'&+ap&P&) cosh-,'q p

—(u p
"&*—a p&'& P) sinh-', p& p]e-'P',

= 2-"'t (a o& —u '
&) cosh-', pp

—(ap&'&*+up&'&*) sinh-,'ppp]p '&",

tanhppp ——tBpt/2 g, ,

where Pp is defined by Eq. (1.10)& H p' reduces to

H;=P' P k~p~a, i»*a,&»+const,
k p,=»,2

kp& '= (g P—tB tP)'&P

(1 13)

~rr(k) =kP/k'

A „„(k)=k„'/k' —p,

Ar, (k) = krak„/k'.

(1 14)

Finally the Hamiltonian of the phonon system is
written as

H~=P P kp&P/p, +const,

-~'p, =f p,*fp. , Pp, Pp. ']=&pp "p.. .

(1.15)

where P p' is the summation over the half-space of k.
For the case of wavelengths small compared to crystal
dimensions, Arp(k) etc. are expressed as'

' M. H. Cohen and F. KeGer, Phys. Rev. 99, 1128, 1135 (1955}.

3 where b~,~ and bl„are the creation and annihilation
+2KS(3—5 p n') operators of phonons of mode s and wave vector k We

(1.11) assume throughout this paper that the phonon fre-

4 J. Kanamori and K. Yosida, Progr. Yheoret. Phys. 14, 423
(1955}.
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quency is independent of s and given by

COIt; =8k ~

v being the velocity of propagation of the long-w'ave-

length sound waves.

II. MIXED MAGNOÃ-PHONON MODES AND
NUCLEAR SPIN RELAXATION

de6ned by

(3a' 'e '"'= 2{[-fa,+&a, '+ (—) fa, &a,' *]cosC a,
—[ga.+2)3,'"'+ (—)"ga. Rt a.'"'*$

XsinC a,}, (2.7)

ha. '"'= -', {[ta.+Pa*(»+ (—)"la. Pa.(»*)»nC'3*

+[m„+na.(»+ ( )—~ma, na-, (»*j
XcosC a,},

In this section we consider the case that the energy of with
the nuclear spin system is transferred to the mixed
magnon-phonon modes, which are assumed in excellent
thermal contact with the heat bath.

The magnon-phonon coupling energy for a cubic
crystal is written as

H' =Glg (3;"(S )'+3;""(S")'+3;"(S')')+GR
XQ; [p;"(S;SP+SPS; )+p, "(SPS +S,*S,")

+3;"(S*S; +S,'S')j (2.1)

((pa~ ) 1(2

f.. =I
(pas (da

t'(pa' t (ppas )
~

g '=I
E(pa,+ k p)a

((pa ')'"

((pa ) E(paP)

(2 g)

pj
3 i (h/——2ME)" Q 3 Q (k ' /(p)a )' ')

X (ba,e" —bae*e "'"),

k, '3= '2 (ea, '-ka+ea, 'k~), (3, b= x, y, s.
(2 2) alld

where e are the strain-tensor components, given by (p)aP) 1(2 p)a Q 1)2

ma+=/
&~a,+)

4)33a,
~

(~a'~aP)'"Il '
tan24 ~,=—

(OA,
' '—O)g~ ' (2.9)

ba =2 "'(bl "'+ba "')
—2-&/2 (b (1) b (2))

for phonons, we have

H P= —P' Q PN„[na(»*ba. (»
}(: t(3=1, ,2 S

(2.3)

+ ( )p(ta(»pba (»@]+cc (2 4)

The eI„' are the components of the unit vectors in the
directions of polarization of the mode s and ME is the
total mass of the crystal. Considering only the bilinear
coupling between the magnons and phonons, and using
the transformations (1.4), (1.12) for magnons and

In these expressions, coI„+ are given by

(~a.')'= 2[(~")'+(~a')'1
~2{[(~a')'—(~a')'3'

+(4IN" I/&)' " "}"'

H"=p a' p, p„[k(pa,-23a,(»

+))Rp) a,+233,(»'j+ const,

Rta, (»= pa, (»pea (» 23a,(»'= &a,(»p&a, (» ~

(2.11)

which are independent of p, i.e., the same values for
both k and —k. In terms of these new operators, H" is
diagonalized and written as

with

uj„=fj„e'&~ cosh-,' yj,+)A, ,*e '&' sinh-', q y

= ~Na. (e'" ~

where t&, is given by

ta, = (AS'/M(pa )'"{Gl[nl(nl'+inl")k, '*

+ nR (QR'+ inR") k,»+n3 (QR'+ in3")k,"j
+G2[(nl(Q2 +ZQ2 )+Q2(nl +Rnl ))kg
+ (Q2(Q3 +RQR )+QR(QR +RQR ) )ks"

+(QR(nl +Rnl )+nl(QR+RQR ))k ]}

(2.4a)

Hp~ —kp)pQ;I j, —— (2.12)

»3=A~, (2.13)

where Ap is the static part of the hyperfine coupling
coefficient and we assume

e~„el„' are the occupation number of the mixed
magnon-phonon modes. As seen from Eq. (2.10), the
branch with co~, for small k behaves like a phonon
spectrum, so it is called, the quasiphonon state. '

Next we calculate the relaxation time of the nuclear
spin. The unperturbed nuclear Hamiltonian is

The mixed magnon-phonon modes are obtained by
diagonalizing H; g„)R„H3&&A pS (2.14)

Hws He+HP+HeP (2.6)

We introduce the new boson operators (a,.(», 2)a,(»,

throughout. coo can be taken as positive, because it is
seen that the relaxation time is independent of the sign
of oro. The Hamiltonian which is responsible for the
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II'= l~p(S/&)'"Zp Z.' Z.Z, e'""

X[exp(ilr j)—(—)s exp( —pk j)]cosC&,

X (I;+e 'PP cosh-,'vps —I; e'P" sinh-,'pps)

X[f,+t„,'»+ (—)"f, g .'"'*]+c.c. (2.16)

relaxation H' is

B =sApg (S+I +S I+). (2.15)

Using the transformations (1.4), (1.12), (2.7) and con-
sidering only the quasiphonons, II' is written as

f'2
~
Is, ( )'

op s~
cos'C s,

E tI~,

(2.24)

Now we assume

a&g, /a&@p, (Nsp(/&cop', and ~gsp('/ip'ags'~s &(1, (2.23)

for k which is given by the 5 function appearing in Eqs.
(2.18) and (2.20). In this case cop, and cosC s, are given
by ~q~= vk,

and fsp+ are
By standard per turb ation theory, the probability per
unit time W;+ of a transition from state

~
m;, ps'. ~" ) to

state ~m,+1, ass, '»+1) is

(2.25)fs,+=fs, (rds'—/rdsJ')",

from Eqs. (2.8), (2.9), and (2.10). Then the relaxation
time reduces to

W,+(m;, I&,&» p m;+1, ns, &»+1)
= (2 /p')

~
(m+1, nap'+1[s'~m;, ea, '"') ~' ' " '~ ' (It~ I)'~i(T)—2 E(

T, as X ~ ~ (a~,
where m; is the quantum number of I;&. Considering that
the nuclear spins are independent of each other in the
unperturbed system and taking the thermal averages
over the quasiphonons, we obtain the probability per
unit time 8'+ that the quantum numb er of a nuclear
spin m increases by one:

W+=Qs' Q„Q, X '

Xg;(W,+) average over quasiphonons

O'5 1
(m~I I+)m) PP ~

—'""e*f scosh-', pps
4h' s

+e '""fs,+smh-', &sl'

Xcos'Cs, (pss, +1)8(~s, —o&p), (2.18)

where n&, is given by

where

X[cosh2qs+sinh2pp cos2(gs+rs„)]

Xb(sk —rpp), (2.26)

-«I I'I-)) «I I-I'))-
Fg(T) =

e~"" —1 1—e

t6

In Eq. (2.26) we use ~$z,
~

and rz, instead of ~N&,
~

and
v&„ the relation between these quantities being given by
Eqs. (2.4) and (2.5).

The temperature dependence of the relaxation time is
given by the function F&(T) which is shown in Fig. 1 for

n &,= (ee"cp p --1)-', (2.19)

P being 1/k&T. In a similar way, the probability per unit
time that m decreases by one is obtained, the result
being

W-= ( Ao' S/4A')( m~I +I-) m)E '

Xgsg, ~e"P fs; cosh-', q s+e-'"P fs,+sinh-,'ys~'
XcossC s,gs, 5(&os, —&op).. (2.20)

Using these probabilities, the nuclear spin-lattice re-
laxation time T& is given by'

Tz '——&m(W
——W+))/[&ms) —(m)'], (2.21)

where

OJ
I
O

I-

O

I-
~IS

O

I-
CV

U

12

IO

&f(m)) —P f(m)eepwppp/ P eesppppp

—=«f(I"))). (2.22)
0 t I p

to
' For example, C. P. Slichter, Principles of Magnetic Resonance

(Harper R Row, New York, 1963), Chap. 5, without the assump-
tion PE„((i.

ks T/ h~o

Fro. 1.Curves of F&(T), Fp(T), Fp(T), and F4(T) versus keT/fkpp.
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I=s. Fl(2') is proportional to temperature for ksT
&6ANo, represented by 2ksT/ANp, and deviates slightly
from a straight line for lower temperatures. A typical
value of koo is 10-' cm—'= 1.4X 10-' 'K. The curve at
ultralow temperatures near O'K is not shown in Fig. 1,
because the assumption that the quasiphonon system is
in the thermal equilibrium will not be valid at such a
low temperature.

The external field dependence of Tj is given by the
summation term in Eq. (2.26), which shows that TI is

proportional to Ho' for high fields such that Ho&&4m Mo,
IrS/gl4II, but deviates from the Ho' curve for fields

comparable with the magnetization or the anisotropy
field. It is dificult to perform the summation rigorously,
so we wiO consider the following two extreme cases:

rg=Gs/Gl,

E~=&xl Qs +res 4rs +rss Csl

Lr~=Ay tlat A32 2 2

The integrals I; are defined, as

(2.34)

II= (glssHp/AN 4') cos112ps sln8pd8p,
0

and Mo. It is expressed as

G (Ho) = prgs(Is+Is —Is+I4}+(1—rg)

y ((1+rg) (Il+Is) —-', (1+3rg) (Is—I4)]E.
+3(1—rg)'(Il —3Is——',Is+ —,'I4)I. , (2.33)

with

CaSe 1: Hp, 47rM p»~S/gpss,

Case 2: Ho, zS/glsII»47rMo

(2.28)

(2.29)
(glsIIHo/AN p')s cosh2 y p coss8p sin8 pd8p,

(2.35)
The value of the magnitude of vector k is determined by
the 5 function in Eq. (2.26), i.e. , k=ApS/oA. For the
values of ApS 10 ' cm—' and o 10' cm/sec, 1/k is
estimated as 10 cm which is very small compared to
crystal dimensions and lies well outside the Walker-
mode~ region, showing that the spin-@rave theory to
represent the electron-spin system gives a good ap-
proximation for this k. The exchange energy for small k
is given by 2sJS(gk) from Eq. (1.10) for cubic lattices,
where a is the nearest-neighbor distance. A typical value
of this energy is, at most, 10 'J, so vie may omit this
energy in the magnon spectrum.

Case 1. Introducing the angles 8p and f p of vector lr

in the ),rl, i coordinate system and using Eqs. (1.10)
and (1.14), we obtain

A p= glssH pys gpe4rrMo Q P—,sX;

(gjsIIHp/AN p ) s111112+p sln8pd8p,

I4— (gpsHp/AN p ) sl11112pop cos 8p sln8pd8p.

If the sample has a shape of an ellipsoid of revolution
about s' axis,

Xg ——E2——Ã„E3——Xl, , (2.36)

and I; are given by

I,= (A,—,.~,)-'+(2(A,—,.V,)LA,+,(~ „+&,)3)-'

+ (2mpl~'[hi+ms(V~~+lV, )1'") '

)&tanh ILmo/(AI+mp(iV„+1VI))j"s,

I,= (3(AI—mpX, )s)—I+ (2mp(AI —mpFI)) '

I
8p I

—gllII21I Mp Sill 8p,

+glsII2IrMp Sins8p, (2.30) —(2m'"LAI+mp(LV„+X)j ) '

Xt»h ILmo/(AI+mo(IVi i+&I)))Its

Replacing the summation over k by an integral and
using the orthogonality relations

I3= —Ig, I4= I2
(AI—mpIV, )s 3(AI—mplVI)s

8 ~k8 ~k8 &@5 )
e 5

e &k8 &k8' —~88'

we obtain, after some tedious calculations,

(2.31)
A, = ps —mp(N„—X,)Pss,

mo 4~Mo/Ho. ——

(2.38)

(2.39)

1 ApsS'Gls G (Ho)
FI(T)

Tl 8srA4v'd (gl4SH p)'
(2.32) The equilibrium values of n; are determined by Eq.

(1.9) and given by

where d is the density of the crystal. G (Hp) is a function
of the magnon-phonon coupling constants 6, and. the
equilibrium direction of magnetization n; as well as Ho

' L. R. Walker, Phys. Rev. 105, 390 (1957).

mo(Xi K)pops" =74"—,
mo(Xi —K)pops'= Vs'.

(2.40)

From Eq. (2.40), the relation between ys and ps is

ps= $1—mps(111')( —X,)spss(1 —pss))"s, (2.41)
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9)

—L1—ii,(~ +3L,. 4Z'. ')j"" (2.47)

Qi is
~

etween p3 and the relation b "f,omEq ('

O 4—
a

C9

0

SPHFRE
I/3 OH 0ra

p O~= ~/8

8= ~/4

2

/4~M p

(2.48)G,= 2G44)Gl ——
~ ll )

fpr the prb ital S-be reasonabl
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The second-order perturbation of Eq. (3.3) gives

DF.= (S/41V) P; PJ g A,A; (cosk (j—j')/Pup ')
XP(e"4'"I; I, +e "&"I,+I,'+) sinhq p

—2I,rb, ,'
—(I,+I,' +I, I,'+) cosh sos], (3.4)

in which only the first term is responsible for the relax-
ation. Using (3.2) and (3.4), the relaxation Hamiltonian
for the direct process is written as

H'= (A pA iS/41V) P s P, (sinhy p/hips' )

X[2e (e '*'PsI+'+-e"PsI ')-
+g (p,+p, ) cosk (j—j')

given by Eq. (2.32). The ratio is

T,sr 96Fs(T) Ls(Ho) t'Ai)'

Ti ma S Fi(T) G (Ho) (Gi)

32 Ls(Ho) /A=—I(I+1)
S' G (Hp) EGi)

(3.11)

The last step in Eq. (3.11) is obtained by using the high-
temperature approximation. Since the order of magni-
tude of Ls(Hp) is the same as that of G (Hp) except for
rg 0 and some special values of n;, Ai should have a
value of

A i~Gi/10 (3.12)
X(e "'" ~' ~"+"'"I ~~' )] ( )

where

Li(Ho) = l1V ' Es(gynHo/ha&p') sinhyse"&" l',

Ls(H p) =1V 'P s((gpeH p/—hop p') sinhpps)',

((IrI+'I ')) ((IrI 'I+'))
Fs(T) =

~
—2pk(00

(3 7)

(3.8)

D((I")'))—((I'))'] (3 9)

((IrI+I ))((I+I )) ((IrI I+))((I I+))
Fs(T) =

p pled)0

L(((I')'))—((I'))'] (3 1o)

In deriving Eq. (3.6) we have used the fact that for
r=

l j—j l/ap))1, uo being lattice constant, the integra. -

tion of the term cos[k (j—j')]/hips' over the magni-
tude of k decreases exponentially with r,2 so that we can
take the value of rap~p/o as very small compared to
unity.

Fs(T) and Fs(T) which are shown in Fig. 1, behave
like Fi(T) defined by (2.27), that is, for I= ,' they are-
proportional to temperature for k~T&5koo and deviate
from the straight lines for lower temperature in a way
similar to the Fi(T) curve. At higher temperatures
Fs(T) and Fs(T) are given by 2(4I(I+1) 3)knT/5tup-
and 2I(I+1)knT/3Isppp respectively. The field depend-
ence of L;(Hp) may be similar to G (Hp) in Sec. 2.

We compare the order of magnitude of the relaxation
time Ti z„q obtained here with that of Ti~ in Sec. 2.
For the Case 1 defined by Eq. (2.28), Li(Hp) in Eq.
(3.6) can be neglected compared to Ls(Ho) and Tssr is

The relaxation time through the mechanism (3.5) is
given by

1 6A o'A i25'

Ti prksosd(gsssHp)s

X[Li(Ho)Fs(T)+2Ls(Ho)Fs(T)], (3.6)

in order that Ti z„~ be comparable to Ti~. For a rare-
earth ion, Gi has a value of 10 cm ', so A i from (3.12)
becomes 1 cm—' which seems to be too large compared
to Ap 10 cm '. That Ls(Hp) has the same order of
magnitude as G (Hp) may be certainly true for G (H p)

averaged over all angles contained.

IV. QUADRUPOLAR NUCLEAR SPIN-
LATTICE RELAXATION

The nuclear relaxation time arising from the quad-
rupolar energy has been calculated by Van Kranendonko
for the Raman process. In this section we calculate the
expression of the relaxation time for the nuclei which
belong to magnetic atoms in a ferromagnetic insulator,
considering only the direct process. In this case the beat
bath is the phonon system expressed by the Hamiltonian
(1.15) and the unperturbed nuclear Hamiltonian is
given by Eq. (2.12). The perturbation H' is the quad-
rupolar energy expanded in powers of the displacements
of nuclei, retaining only the linear terms with respect to
displacements;

where the summation over j extends over all the nuclei
except the central nucleus j=0 and u; is the relative
displacement u;—uo with respect to the central nucleus.

Q„ in Eq. (4.1) are given by

Qp
——8[3 (Ir)' —I(I+1)],

Q+i= &[I"I++I+I']/2
Qps ——BI+s,

where

&=eQ/I(2I —1) eQ= (»lQol») (43)

(4.2)

In the point-charge model, the vectors A» in Fq. (4.1)
are obtained as in Van Kranendonk's paper' and written

' J. Van Kranendonk, Phypica 2Q, 781 (1954).

H'=Q„Q„Q;A„; u,
=(@/21lI1V)"'2 Q 2 Zp 2 (~ "ep /(~p')'")

X[bp, (exp(ik j)—1)
+b'*(exp( —ik j)—1)] (4 1)
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as

Q„A„;(r)F„(r)= (3q/2R4)t 2 (R,' r) r

+ ( '—5 (8,"r)')8,], (4.4)

where
Q„= (m+pIQ„Im),
No 1/——(ee""o —1).

(4.14)

where

Fp(r) =3s' —r', F~i(r) = z(pp&iy),

F„(r)= (*~iy)o,

R;=R,/Ri,

I Q„„I'M„(pep )'
8' ., ~„=

6n.hood (1 e—» "ao)
(4.»)

Expanding sink R; in powers of k R, and replacing the
summation over k by an integral, we have

R; being the relative position vector in equilibrium from
the central nucleus. q in Eq. (4.4) is the eRective charge
of the ion and is assumed to be

in which qo is the ionic charge and the multiplication
factor y includes both the Sternheimer antishielding
factor' for the nuclear quadrupole moment, and the
covalent and overlap sects on the central ion due to the
surrounding ions. From Eq. (4.4) we obtain the relations

(4.7)

For the simple cubic lattice with lattice constant e and
considering only the contributions from the nearest
neighbors, A» are given by

where

~.=Z~ Z '(»'R') (A.~'A.~' ) (4.16)

d=MN/V.

The nuclear spin-lattice relaxation time Ti is given by

1 P„p&mW„, „)
T, (m') —(m)'

(4.17)

where ( & means the same operation as Eq. (2.22).
Using Eq. (4.15), we obtain

((I'Q.Q-.)& ((I"Q-.Q.&)

Ti 6m&'v'd ~ e»& p 1 1—e I'p«p

L&((I")'))—«I"&)'], (4 18)
Aoi= C(-'„0,0),

Apo= C(0,—',,0),

Apo= C(0, 0, —1)

with

Aii ——C(0,0)1),
Aoi ——C(—a, ',i, 0), —-

Aio ——C(0, 0, i), —
A„=C(——,'i, —,', 0),

A„=C(1, —i, o), A„=O,

C= 3q/2ao.

(4.8)

(4.9)

where P„' means the summation over the positive
values of y and Q„are defined by

Q.=&Q.

B being the nuclear quadrupole moment expressed by
Eq. (4.3).

For the simple cubic lattice, the 3f„are calculated by
Eq. (4.8)

By standard perturbation theory, the probability per
unit time t/I/", ~„of the transition that the quantum
number of the central nuclear spin m changes by p is

W.,~„=go+,(W(m, No, ~ m+p, No, +1)
+W(m, No, —+ m+p, Noe 1)& hermeal veraagey (4 10)

M~=16C' u' M =—'C'e'
Using these values in Eq. (4.18), we obtain

1 8(AC)o(ApS)o
F4(T),

Ti 3~A'e'd

(4.20)

(4.21)

where
over phonons in which

we obtain

P.(A„, eo,) (A„,'* e"o,) =A„, A„,'*, "(4.12)

W.,~.= ( /~») IQ.-I'2, 2, Z.(A. -A.,')
Xsink R; sink R; I"(No+1)5(cpo —popo)

+NB(pip +p«)]/» (4 13)

' R. M. Sternheimer, Phys. Rev. 84p 244 (1951);95, 736 (1954);
130, 1423 (1963);R. M. Sternheimer and H. M. Foley, Phys. Rev.
102, 731 (1956).

W(m, No, —+ m+p, No, &1)
= (2~/i')

I (m+~ N "~1III'Im N') I'
X&(~o'Wp~o). (4.11)

Using the matrix elements of H' and the relation

&(I"QiQ-i)) ((I"Q-iQi))
F4(T) =

ep«p g ] e—p«p

» ((&I'QoQ-o» «I"Q-gQo»)
+—

I

eo cocoa 1 1 e-oeoao )
I:«(I")o)&—&(I"&)'] (4 22)

The relaxation time obtained here is independent of
the external field, because of the assumption (2.4). The
F4(T)-versus-T curve which is shown in Fig. 1 is similar
to Fi(T) in Sec. 2, that is, for I= ,'F4(T) is propo-rtional
to T for k~T&4&0 and deviates slightly from the line
for lower temperatures. The high-temperature value of
Fo(T) is expressed by 27

I 4I(I+1)—3]kaT/10Puuo.



316 A KIO HONMA

where

Hp~ —Q, Q„P——,"hid„I,„r,

&~,=~0"~.

(5.2)

(5 3)

Since the relaxation process through the indirect nuclear
spin interaction is not effective for a rare-earth atom as
stated in Sec. 3, we consider two other mechanisms.
In deriving the expressions of the relaxation time, we
will assume that the cross relaxation time" between
these two isotope systems is short compared to the spin-
lattice relaxation time of the individual system, i.e.,
these two systems have a common spin temperature.

A. Relaxation to the Quasiphonon System

The perturbation II' is given by

O'= 'P P P "Ao"(5,+I-,„+5, I,,+). (—5.4)-
Using the transformation (1.4), (1.12), (2.7) and con-
sidering only the quasiphonons with the assumption
(2.23), H' becomes

H'= '(S/IT)v'P P'P-P
j k e p=12 v=a b

X [eik 1 ( )ee—42 1](ip e
/&pp)P1/ 2

XcosC 2, (I;„+e '4' cosh ', ev2 I,„e'4' sinh--', 222)—

XB..i &+(—) g..& &*]+c.c. , (5.5)

which is the extension of Eq. (2.16) to the case con-
sidering here. As in Sec. 2, we obtain the relaxation time
Tj for the case that the anisotropy energy can be
neglected, i.e., under the condition (2.28), as follows:

1 5'G12G (Hp) 2 (~ o")'P .(&) (5 6)
T12r 82rl'242'd(giMeHp)2 =., p

"A. Abragam and W. G. Proctor, Phys. Rev. 109, 1441 (1958};
N. Bloembergen, S. Shapiro, P. S. Pershan, and J. L. Artman,
Phys. Rev. 1I4, 445 (1959}.

V. ISOTOPE EFFECT AND COMPAMSON
WITH EXPERIMENT

In order to compare with the experiment on the
powder EuS, ' in which the nuclear spin-lattice relax-
ation time was determined by measuring the trans-
mission of polarized neutrons through the sample, we
extend our results obtained in the previous sections to
the case that there are two isotopes. We assume these
isotopes have the same lattice vibrations and are dis-
tributed at random on the lattice sites. Specifying them
by the superscripts e and b and introducing the pro-
jection operator P;" (v= a, b):

P,"=1, if the site j contains a v nucleus,
(5.1)=0, otherwise,

the unperturbed nuclear Hamiltonian Ho~ is written as

where
-((I.rI'I.-)). ((I,rI;I. ));

F1„(T)=c~„2Z„
gp~co v g

—pA

2 c~'Z. [(&(I ")')) —&&I.'))']

which corresponds to Eq. (2.32). In Eq. (5.7) c„ is the
natural abundance of the isotope v, i.e., the ensemble
average of P", and (( ))„means

((0,))„=TrO„ee" "'"/Z„,
(5.8)

Z =TreP"" I'

Qo"= & L3(I.")'—I.(I.+1)]
9+1"=»[I'I.++I.+I']/2
Q+2"=&.(I.+)',

8„=eQ„/I„(2I„1), —
Q.= (I,I, IQ"II,I,).

(5.10)

These equations correspond to Eqs. (4.1)-(4.3). By the
same method stated in Sec. 4, we obtain for the simple
cubic lattice

1 8(uC)252
P 2(A ")2F (T), (5.11)

Tyg 3x'k 8M

where
((I.'Q1 "Q-1")). ((I."Q-1"Q1")).

P4v(T) = Cvipv Zv
gp@co v pAG0 v

13(((I'Q2 "0-2")). ((I.'Q-2"02")).)
epep~v 1 1 e

—2epeev

P c~ 'Z [&&(Ivr)')) —&(Ivr)) '] (5.12)

0."=Q."/&' (5.13)

The Eq. (5.11) is the extension of Eq. (4.21).
To apply our results to the powder sample, it is

necessary to take averages of Eq. (5.6) over all angles
and the shapes of the single crystals composing the
powder sample. We assume that the powder sample
consists of a number of single crystals, each of which
has, for simplicity, the sphere-shape with the crystal
axes orientated at random with respect to the direction
of the external 6eld. In this case y3 determined by Eq.

B. Relaxation Through Nuclear Quadrupole Energy

The perturbation for the central nucleus is written as

H'= Q QP"Q„"P A„,"u,p

v=c, b p

(b/2IvIIiI)1/2 Q g Pv Q vP P g (A .e& /(ip P)ll2)
V j k e

X[b2.(e'"'i —1)+bp,*(e '"'1—1)], (5.9)

where P" is the projection operator for the central
nucleus and Q„" are given by
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with
F4(T) =F4 (T)+0.49F4p(T). (5.18)

In Eq. (5.15) we use Gii instead of Gi related by Eq.
(2.48) and Gii measures in cm '. According to the
experiment, ' Tq is expressed by

Ti H p'/T' (5.19)

0
0 10

k T/%(uo

Pro. 7. Curves of F&(T) given by Eq. (5.16) and F4(T) given by
Eq. (5.1g) versus kgT/Ace„where M, means A0S for Eu'".

(2.40) has the value of one and I, Eq. (2.37) are inde-
pendent of angles, so we have only to take the average
of G (Hp) over n;, obtaining g„(Hp) as

G (Hp) = (9/280) t (16—4r g+23r g')Ii
+ (8+12rg+15r g') (Ip Ip+I4)]j, (5.14)—

where I; are given Eq. (2.37) with h&= 1 and X&~=X&

3
In EuS, the isotopes g and b correspond to Eu'" and

Eu' ' with I,=Iq ——~, and 5= ~. c and c q are 0.478 and
0.522, respectively. Taking A p =0.298)& 10 cm ',
App=0. 144X10 ' cm ', d=5.7 g/cm', 47rMp=14 kOe 'p

Q,= 1.2X10 P4 cm', Q p
——2.5X10-'4 cmP" lattice con-

stant ap ——2a=5.97A',"qp
——2e and p= wpX10+' cm/sec,

we have from Eq. (5.6) with Eq. (5.14) and Eq. (5.11)

Tijr ' ——0.351X10-'(Gii'/pp')

X (4~%p/Hp)'G. (Hp)F i(T), (5.15)

for the ranges of T=0.05—0.15'K and Hp=7 —17 kOe
and has the value of several hours at 0.05'K and 17 kOe.
Fi(T) and F4(T) given by Eqs. (5.16) and (5.18) are
shown in Fig. 7 as the functions of keT/Ikp„where Api,

corresponds to 0.015'K. Fi(T) is proport:ional to T for
T)0.1'K and convex towards the T axis. F4(T) has the
similar behavior as Fi(T). The field-dependent part of
T&3r, namely (Hp/4x. 3fp)'/G, (Hp), is shown in Fig. 8 as
the function of (Hp/4n. Mp)'", 4~Mp being 14 kOe. We see
the Tz~ is proportional 8p

' in the range of H p= 7—17
kOe. The values of T~~ and Tj@ at 0.05'K and 17 kOe
are

Ggg'
X10-6

&p

0.855 for r0=0,
(5.20)

1.06 for r0= —3,

Tie i ——3.17X 10 P(y /ppP) . (5.21)

Taking ep ——2, which may be a reasonable value from
O~D ——204'K, Tip' and Tie are the same order as the
experiment when G~~= 20 and y= 10'. Since the experi-
mental relaxation time depends strongly on the external
6eld, y may have a value of 10' or less."That the value
of G~~ is of the order 10 is reasonable for a rare earth
ion. The agreement of the calculated T~ with the
experimental one seems to be fairly good.

with
Fi(T)=Fi.(T)+2.66X10 'Fip(T), (5.16)
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