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calculated and the observed frequencies as a function
of the external magnetic field. The value of the hyper-
fine field at different temperatures was obtained almost
independently of the other constants. It was found that
there is a slight deviation between the ratios of the
hyperfine fields and the magnetization saturations
which can be interpreted as a small temperature
dependence of the canting angle.

The large field dependence of the linewidth at low
magnetic field was found to arise from a large spread in
the anisotropy field in the (111) plane.

Comparison between the integrated intensities in low
and high fields has shown that the enhancement at low
fields is larger than that calculated for the bulk. This
increase of the enhancement may arise from the domain
wall and further investigation is necessary to obtain
conclusive results.

Saturation of the nuclear system in this canted spin-
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system has a different effect on the NMR signal from
that in normal systems. This arises from the strong
dependence of the position of the line on the nuclear
temperature. As a result, for high enough rf power, the
shape and position of the line may depend on the sense
in which the frequency is swept. An additional line was
observed at a frequency higher than that of the pulled
line. Its origin is not clear and a few possibilities are
suggested.
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Nuclear Spin-Lattice Relaxation in Ferromagnetic Insulators at Low Temperatures™®
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A theoretical study of the nuclear spin-lattice relaxation in cubic ferromagnetic insulators at ultralow
temperatures is presented. Calculations are performed for nuclei which belong to the magnetic atoms, con-
sidering only the direct processes. Three mechanisms are considered : the relaxation to mixed magnon-phonon
modes, indirect nuclear-spin interaction modulated by lattice vibrations, and nuclear quadrupole energy
modulated by lattice vibrations. The first two mechanisms lead to a relaxation time 77 which depends on
both the temperature T and the external field Ho, with T1~H?/T for Ho>> magnetization and the anisotropy
field. For a field comparable to the magnetization or the anisotropy field, the relaxation time is proportional
to Ho", n being larger or smaller than 2 depending on the shape of the single-crystal sample. The last mecha-
nism does not lead to a field-dependent 7. Comparison with experiments performed on powdered EuS is also

presented.

I. INTRODUCTION

HE temperature and external field dependence of
the spin-lattice relaxation for nuclei which belong
to magnetic atoms in a ferromagnetic insulator at very
low temperatures and in fairly large external fields is of
interest because of a recent experimental investigation
on powdered EuS.! A convenient expression for the ex-
perimental temperature and field dependence is T3
~H#/T? Measurements were made in the ranges
0.05~0.15°K for the temperature and 2~17 kOe for the
field.
We calculate here general expressions for T'; for nuclei
which belong to magnetic atoms with orbital .S states

* Work at Brookhaven performed under the auspices of the
U. S. Atomic Energy Commission.

T Present address: Institute for Optical Research, Tokyo Uni-
versity of Education, Shinzyuku-ku, Tokyo, Japan.
(1;(?5') I. Schermer and L. Passell, Bull. Am. Phys. Soc. 10, 75

and surroundings of cubic symmetry. The nuclear
Hamiltonian H? is written as

H¥=Hz"+Hu+Hinat+He, (1.1)

where the first term is the Zeeman energy, the second
the hyperfine interaction with atomic spins (assumed
isotropic), the third the indirect nuclear spin interaction
via the hyperfine interaction? and the last the energy
due to the presence of the nuclear electric quadrupole
moment. The unperturbed nuclear-spin Hamiltonian is
given by the sum of Hz¥ and the static part of Hy;. The
mechanisms of the nuclear spin-lattice relaxation come
from the modulation of the remaining parts of H¥ by
the exchange motions and the lattice vibrations. Since
we assume the temperature to be ultralow, direct
processes should be dominant and so energy conserva-

2 H. Suhl, Phys. Rev. 109, 606 (1958); T. Nakamura, Progr.
Theoret. Phys. 20, 542 (1958).
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tion between the unperturbed nuclear and the heat-bath
systems should be required.

The mechanism due to modulation of Hy by the
exchange motions can be omitted because the energy
conservation between the nuclear and magnon systems
cannot be satisfied for a fairly large external field. The
modulation of Hye by the lattice vibrations gives two
effects: one is the modulation of the hyperfine coupling
constant and the other is the formation of mixed
magnon-phonon modes?® via the magnon-phonon inter-
action. The former mechanism leads to a Raman process
and can be omitted for ultralow temperatures. The
latter gives the relaxation mechanism of the nuclear-
spin system to the mixed magnon-phonon modes and
energy conservation is satisfied between the low-lying
mixed mode and the nuclear system. Regarding the
magnon-phonon interaction as a perturbation, the low-
lying state of the mixed mode has a magnon component,
the mixing amplitude being proportional to the inverse
of the magnon energy (which is proportional to the
external field for large field strength). In this case it is
anticipated that the relaxation time will be proportional
to the square of the external field. For the case of the
external field comparable to the magnetization or the
anisotropy field of the electronic system, the field de-
pendence of the relaxation time will be complicated.

The indirect coupling between nuclear spins Hinq is
obtained from the second order perturbation of Hys with
respect to the magnon system. Taking into account the
dipolar interaction between electronic spins, Hinq in-
cludes terms like ;%1% the coefficients of which de-
pend on the hyperfine coupling constant and the
magnon energy. The modulation of the hyperfine
coupling constant by lattice vibrations gives a mecha-
nism of relaxation and energy conservation is satisfied
between the nuclear spin and the phonon systems. The
relaxation time will depend on the external field in a way
similar to the previous case.

The final mechanism comes from the modulation of
H by lattice vibrations. Expanding H ¢ in powers of the
displacements of nuclei and retaining only the linear
terms, we get the relaxation time for direct process.
Since the strength of the external field is very small
compared to the hyperfine field acting on nuclei, the
relaxation time obtained by this mechanism will not
depend on field strength.

In Sec. 2, expressions for the mixed magnon-phonon
modes for cubic crystals are obtained and, using them,
we calculate the relaxation time given by Eq. (2.32) for
the case that the anisotropy field is very small compared
to the external field and the magnetization. For the case
of the small magnetization compared to the external and
the anisotropy fields, the expression of the relaxation
time is given by Eq. (2.44). For both cases, the tempera-
ture dependence is given by the function F1(7') which is
nearly proportional to temperature. In Sec. 3, the

3 P. Pincus and J. Winter, Phys. Rev. Letters, 7, 269 (1961).
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indirect nuclear spin interaction is derived by taking
into account the dipolar interaction between electronic
spins and the expression of the relaxation time, Eq.
(3.6), is obtained. The order of magnitude of the relax-
ation time obtained here is longer than the one obtained
in Sec. 2 for a rare-earth ion. In Sec. 4, we get the
quadrupolar nuclear spin-lattice relaxation time given
by Eq. (4.21). F4(T) is also proportional to temperature.
The order of magnitude of the relaxation time can be
comparable to the one obtained in Sec. 2. Finally in
Sec. 5, the expressions of the relaxation times obtained
in the previous sections are extended to the case that
there are two isotopes and the comparison with the ex-
periment on powdered EuS is presented. Taking the
values of the magnon-phonon coupling constant G, and
the ratio of the effective charge of the ion to the ionic
charge v as 10 cm™ and 103, respectively, the order of
magnitude of the relaxation times by the mechanisms
stated in Secs. 2 and 4 is comparable to the experimental
one, i.e., T'y~several hours at 0.05°K and 17 kOe. Be-
fore going to these problems, we discuss the electronic
spin and the phonon systems.

The Hamiltonian of the electron-spin system for a
ferromagnetic insulator is written as

H9=Hze+Hex+Hd,p+Han’ (12)

where the first term is the Zeeman energy, the second
the exchange interaction, the third the dipolar inter-
action between atomic spins and the last the anisotropy
energy. They are given by

Hz*=gugHo > ; S}, (1.22)
Hex=2J 3 ;0 S;+ Sy, (1.2b)
Haip=322725 Djy[S;-8y—3(8;-#;7)(8- 7)1, (1.2¢)
Han=(k/SH2; [S;=+Si"+5], (1.2d)
D;y=(gus)*/rii*, (1.2¢)

where Y (;;») denotes a summation over nearest-neighbor
pairs. The external field Hy is applied along the ¢’ axis
perpendicular to which the ¢ and 7’ axes are defined.
The crystallographic axes are designated by x, y, 2. We
assume the sample to be an ellipsoid with symmetry
axes %, 9’, 7/. Finally we introduce the coordinate
systems £, #, { with the { axis parallel to the equilibrium
direction of the magnetization M. The rotation matrices
which relate these coordinate systems are defined by

iy ="Tj0/7jjr

E alll a2// Ol3” x ﬂl’l 62’1 63’1 x/
nl=la’ a & ||y|=|8 B B[y
¢ a1 ar az|l|2 B B2 Bs| |4
’YI" 72// 73” El
=|v' v v ||7 (1.3)

Yioove s ¢

The direction cosines of the equilibrium magnetization
with respect to the crystal axes are ai, as, as. We intro-
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duce the magnon variables by
Sit=Si+1S;7= (25)"*a;*,
S;=Sjt—iSy= (25)"a;,

Sit=—S+a;*e;, (1.4)
o= (1/N)2Y , eikig,*,
= (1/N)"2 3 ) e’ day,
Ler,ar*]=08k1.
Applying Egs. (1.3) and (1.4) to (1.2), we have
He=Hy+H*+H,°, (1.5)

where H¢, H,%, and H,° include the magnon operators @
and e* in zeroth, first and second order, respectively.
Hy® and H, are given by

Ho*=—NS[gupH¢ys+2/S

3
—gug2rM, Z BEN —%)—«kS T aif], (1.6)
=1 7=1

Hye=(S/2)"*[gupH o(vs"+iv3)

3
—gupdrMo Y BB/ +iB)(Ni—3%)

2=l

—4kS Z 013(0‘1”"}'1051’)] Z a,+c C. (17)

1=1

where Z is the number of the nearest neighbors and V;
are the principal values of the demagnetization tensor
which are given by

4rNi= (V/N)LZj i~ (1= 3Nijp?) + 4,

N\ being the direction cosines of #7;7 in the ', y/, 2’
system.

The equilibrium values of «; are determined by mini-
mizing H,® with respect to a; or putting the coefficient
of a; in H,® equal to zero.* The results are

(1.8)

gupHovd — gupdnr Mo : BB/ N

—4 iafa/=0,

’ kS D ada (1.9)

gueHoys"' —gupdnMo Y BiB{'N;

—4kS Y s ade’ =0.
Hy¢ is given by
H2e= Z k(A kak*dk—l"%Bkad_k—*‘ %Bk*ak*a_k*) N (110)
with

3

Ar=gupHeys+227S(1—Tr)+gupdnMo 3 B2G—N )

a=1
+gup2r M o[ A g (k) +A4 4, (k)]
+2«S(3—5 i ad),
= (1.11)

4J. Kanamori and K. Yosida, Progr. Theoret. Phys. 14, 423
(1955).
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Bi=gup2rM o[ A (k) — Ay (k)+2i4 ¢, (k) ]

3
+6kS Y al(ad +iad)?

=1

= | By|e?i¢*,

where
I'y=>,exp(ip-k), (1.11a)

o being the vectors to nearest neighbors and A (k),
etc., are given by

%4
A (k)= 4——2——(1 a;i") explik- (i—i')],

aN i fur

Vv
fm(k)—rz——(l Bii*) explik- G—i")], (1.11b)

mwIN 1" Vi

3V
Agy(k)=——-3

TN i ¥

3‘111 Bijr eXPDk G-1)1,

ajiy Biy v being the direction cosines of 7;; in the
£, m, { coordinate system. Using the canonical trans-
formation

a,=2"12 (a;V+a1?®) coshj e
— (a:V*—a;,@%) sinhj ox Je ¢k,
0 =272 (a3 — ar?) coshj o
— (@xW*4a;@*) sinhg oy e,
tanher= | Bx|/A4,
where ¢ is defined by Eq. (1.10), H,® reduces to

”—Z’ > hwrtar®*ar®-4-const,

w=1,2

= (42— | B2,

(1.12)

(1.13)

where 3"’ is the summation over the half-space of k.
For the case of wavelengths small compared to crystal
dimensions, 4 (k) etc. are expressed as®

Age(k)=ke/k*—%,
4 "l’l(k) = knz/kz_ % )
4 fﬂ(k) = kEkﬂ/k2 .

Finally the Hamiltonian of the phonon system is
written as

(1.14)

3
HP=3%" 3" hwiPN k,+const,

k s=1

(1.15)
Nis=brs*0rs, [Brodrrs™ ]=0kr0ss,

where b;,* and by, are the creation and annihilation
operators of phonons of mode s and wave vector k. We
assume throughout this paper that the phonon fre-

§ M. H. Cohen and F. Keffer, Phys. Rev. 99, 1128, 1135 (1955).
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quency is independent of s and given by
w kP =k )

v being the velocity of propagation of the long-wave-
length sound waves.

II. MIXED MAGNON-PHONON MODES AND
NUCLEAR SPIN RELAXATION

In this section we consider the case that the energy of
the nuclear spin system is transferred to the mixed
magnon-phonon modes, which are assumed in excellent
thermal contact with the heat bath.

The magnon-phonon coupling energy for a cubic
crystal is written as

HeP=G1 3 (7*(Si%)*+ ¢4V (S)*+ €72 (S5)*) + G

X5 L (S8 7+ S 45 5%) + (S S #+S5%)

+¢72(S2S7+ 551,

where ¢;9 are the strain-tensor components, given by
=01/ 2UNI2 T T (st (a0 P)V2)

X (brset*i—bys*emi*)

ks®v=13(ers%+e1s%%), a,b=ux,v,3.

The er,® are the components of the unit vectors in the
directions of polarization of the mode s and M N is the
total mass of the crystal. Considering only the bilinear
coupling between the magnons and phonons, and using
the transformations (1.4), (1.12) for magnons and
bke= 2—-1/2 (bks(1)+ bks(z)) ,
b pe=2"12(b eV — b, @) |

for phonons, we have

HeP———Z' Z Zuk [ak(“)*bk ()

u=1,2 s

(2.3)

+ (=) ar®*bp,W* Hc.c., (2.4)
with
U=t rs'%* cosh op+11.%e 9k sinh oy,

= |Upe| e, (2.42)

where ¢4, is given by

= (hS3/ MwiP)V2{ Gl o1 (ar'+ 1 ks®
Fag(as’+ias” ) k¥4 as(as’ +ias” ) ke*7]
+Gal ((es'+ias") +az(er+iar"") Yo,
+ (o (s’ +1as” )+ az(ae’ i) Yo, v
+ (as(en/ 4+t )+ ar (s’ +ias) Y22}

= Ithleirka.

The mixed magnon-phonon modes are obtained by
diagonalizing H™;
Hmr=He4HP+4HeP, (2.6)

We introduce the new boson operators £is, nxs®,

(2.5)°

LATTICE RELAXATION 309
defined by
(1.16) apWeivke= L e x4 (—)* fraEra'*] cosPps
—Eglca+7]ka(#)+( )“glcs ﬂka(")*]
Xsin®x,}, (2.7)
ke = F{[IrsE x4 (= )Plrs™ERs™*] sindy,
+Emka+7]ka(")+( )”mks ﬂkaw)*]
Xcos®Prs},
with
Whs 1/2
o= () (. )
Whs wg®
Wiks
gks (m > =+
o 2.8)
L\ 12 @
ne=(Co) = 3
(21) Wks wk
ka 1/2 Wi 1/2
()Y
d ks+ ka
2.2) an
(2.2) 4| u’”l (wrwiP)2h1
tan2®,= — (2.9)
(wi®)2— (wi?)?
In these expressions, wgs* are given by
(wrs®)?=3[ (ws*)*+ (w0iP)*]
3 {[(0r®)?— (wi)* P
+ (4|uk_,|/h)2wk°wk1’}”2, (210)

which are independent of u, i.e., the same values for
both k and —k. In terms of these new operators, H™ is
diagonalized and written as

Hm= Z k’ Za Zn [hw ks_”ka(“)
+ 7w st s’ 4 const,
nkx(#)' = ﬂka(“) *ﬂks(") ;

(2.11)
IRCE OIS

ks, Wxs are the occupation number of the mixed
magnon-phonon modes. As seen from Eq. (2.10), the
branch with wz,~ for small 2 behaves like a phonon
spectrum, so it is called the quasiphonon state.?

Next we calculate the relaxation time of the nuclear
spin. The unperturbed nuclear Hamiltonian is

HoV=—thwoy ; I, (2.12)
with
fiwo=A4,S, (2.13)

where A, is the static part of the hyperfine coupling
coefficient and we assume

ZnbinH oK A0S (2.14)

throughout. we can be taken as positive, because it is
seen that the relaxation time is independent of the sign
of wo. The Hamiltonian which is responsible for the
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relaxation H' is
H'=%A025(Sj+lj_+5j"‘1j+). (215)

Using the transformations (1.4), (1.12), (2.7) and con-
sidering only the quasiphonons, H’ is written as

H'=34u(S/N)" 5, T T T e
X[exp(ik-3)— (—)* exp(—ik-j)] cos®s,
X (Ijte~9k cosh} or— 1 ¢'¢* sinh} oy)

X [fka+g ks(”)+ (_ )“fks—-g ks(n) *:]+ C.C.

By standard perturbation theory, the probability per
unit time W;t of a transition from state |, #k:*) to
state |m;+1, ngW+1) is

W it (mj, nxs® — mi+1, ny41)
= (2m/72) | (mi+1, nrsW+1| H' | mj, mis®) |2
Xé(wrs—wo), (2.17)

where m; is the quantum number of 78, Considering that
the nuclear spins are independent of each other in the
unperturbed system and taking the thermal averages
over the quasiphonons, we obtain the probability per
unit time W+ that the quantum number of a nuclear
spin m increases by one:

WH=3 ) 2 w2 N7
X3 {W;t) average over quasiphonons

T4 :S 1

7 (m| T +lm)~A~7 2 X [e fu” coshien

(2.16)

+eivks fy F sinh% @k I 2

X o™y, (figs+1)8 (wrs—wo), (2.18)
where 7, is given by
Tipe= (eFPok—1)71, (2.19)

B being 1/k5T. In a similar way, the probability per unit
time that m decreases by one is obtained, the result
being
W= (w4 2S/AW2) (m| I+I~ | m) N1
XXk 2| €k fr~ coshd ppt-eike
X cos*® kT ks (w ks — wo) .

ket sinhj o |2
(2.20)

Using these probabilities, the nuclear spin-lattice re-
laxation time T is given by?®

Tt =(m(W——W+)/[(m)—(my],  (2.21)
where
{f(m))= Z;:_I f(m)ebtwom/ é_l Bhoom
={faH- (2.22)

6 For example, C. P. Slichter, Principles of Magnetic Resonance
(Harper & Row, New York, 1963), Chap. 5, without the assump-
tion BEK1.
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Now we assume
wiP/wre, luks|/hwk‘, and l’uksl2/h2wk2ka<<1, (2.23)

for & which is given by the & function appearing in Egs.
(2.18) and (2.20). In this case ws~ and cos®y, are given
by

wrs > P =1k,

2| e | \? 03P (2.24)
cosﬂtﬁksm< ) ,
wre / wi®
and fi* are
Frstfrio(wit/wif) 2, (2.25)

from Egs. (2.8), (2.9), and (2.10). Then the relaxation
time reduces to

l_onzSF(T)lz [£rs]\2
- N Z( >

T, 2 ks \hw;®
X [cosh2 pr+sinh2 oy, cos2 (¢x+7ks) ]
Xo(vk—wo), (2.26)
where
(Brrr)) (rrr+y)
Fy(T)= [ :| /
eBhwo_ 1 1— e—Bhwn

LK@=

In Eq. (2.26) we use |/xs| and 7, instead of |us,| and
U1s, the relation between these quantities being given by
Eqgs. (2.4) and (2.5).

The temperature dependence of the relaxation time is
given by the function F;(T") which is shown in Fig. 1 for

(2.27)

6 T T I I

FIUT), Fp(T 107! Fy(Mx 107, Fy(T)x 1072

kg T/ Nw,

Fi16. 1. Curves of F1(T), Fo(T), F3(T), and F4(T) versus ksI'/Hy.
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I=%. F(T) is proportional to temperature for kpT
> 6fiwo, represented by 2ksT/fwo, and deviates slightly
from a straight line for lower temperatures. A typical
value of fiwgis ~10~2 cm™1=1.4X 102 °K.. The curve at
ultralow temperatures near 0°K is not shown in Fig. 1,
because the assumption that the quasiphonon system is
in the thermal equilibrium will not be valid at such a
low temperature.

The external field dependence of 71 is given by the
summation term in Eq. (2.26), which shows that T} is
proportional to H¢? for high fields such that Ho>4wM o,
kS/gup, but deviates from the H¢* curve for fields
comparable with the magnetization or the anisotropy
field. It is difficult to perform the summation rigorously,
so we will consider the following two extreme cases:

Case 1: Hy, 4vMo>kS/gus, (2.28)
Case 2: Hy, kS/gup>4rM,. (2.29)

The value of the magnitude of vector % is determined by
the & function in Eq. (2.26), i.e., k=A4,S/vh. For the
values of A4¢S~102cm™! and »~105 cm/sec, 1/% is
estimated as ~10~* cm which is very small compared to
crystal dimensions and lies well outside the Walker-
mode’ region, showing that the spin-wave theory to
represent the electron-spin system gives a good ap-
proximation for this k. The exchange energy for small 2
is given by 2275 (ak)? from Eq. (1.10) for cubic lattices,
where a is the nearest-neighbor distance. A typical value
of this energy is, at most, ~10%J, so we may omit this
energy in the magnon spectrum.

Case 1. Introducing the angles 6 and ¥ of vector k
in the ¢7n,¢ coordinate system and using Egs. (1.10)
and (1.14), we obtain

3

A v=gupHoys—gusdrMo X BN
=1
+gM821rMo sin20k , (230)
| Bx| = gup2n M sin®6y,
b="Yx.

Replacing the summation over k by an integral and
using the orthogonality relations

Zs eksaeksbzaab,

2.31
Za eksaeks'azass’, ( )
we obtain, after some tedious calculations,
1 APS'Ge G.(Ho)
—_= T) . (2.32)
T, 8wh*vd (gusHo)?

where d is the density of the crystal. G, (Ho) is a function
of the magnon-phonon coupling constants G; and the
equilibrium direction of magnetization a; as well as Ho

7L. R. Walker, Phys. Rev. 105, 390 (1957).
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and M,. It is expressed as

Go(Ho)=3r(I1+To—Is+10)+ (1—7¢)
X[(l—l—rg) (I1+12)"‘%(1+37’G) (13—14)]Ka

+3 (1_‘7'G)2 ([1— 31— %Is—f' %L;)La ) (233)
with
rq= Gz/G1 )
K = alalt+ oo+ adas?, (2.34)
La = a12a22a32 .
The integrals I; are defined as
I,= [ (gupH o/ hw1)? cosh2 ¢y sindfy
0
I,= / (gusH o/ hw1?)? cosh2 gy cos?y sinfrdfy,
’ (2.35)

[3=f (g[l,BHo/hwke)2 sinh2 ¢y, sinfdf;,
0

I,= / (gupH o/ hw®)? sinh2 ¢y, cos?0y sinfxdfy.
0

If the sample has a shape of an ellipsoid of revolution
about 2z’ axis,

Ni=Ny=N,,
and 7, are given by
Iy= (hy—moN )2+ 2 (ha—moN ) [ht-mo(N i +N1) 1)~
+ @mo 2L hitmo(N 4Ny JP2)—1
X tanh—[mo/ (hr4mo(N 4N 1)) ]2,
Iy= 3 (h1—moN 1)*Y '+ Qmo(hr—moN 1) )™

N3z=N,, (2.36)

(2.37)
— @mPLhy+mo(N 4Ny )~
X tanh=1[m,/ (atmo(Nu+N1))J2,
2 2
=_'—""——Il; I4=__' _"IZ,
(]11—mON1)2 3 (hl—m0N1)2
where
h1=‘Y:3""'m0(Nn"‘NL)B32, (2-38)
and
mO=41rMo/Ho. (239)

The equilibrium values of a; are determined by Eq.
(1.9) and given by

mO(NIl—NL)ﬁ&B?a”:'Ya»H )
mo(Nu—N1)BsBs =73’

From Eq. (2.40), the relation between 3 and 83 is
va=[1—m@(Nu—N)82(1—BH ]2, (241)

(2.40)
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SPHERE
r6=-1/3, ®:0
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o
(L)
~
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rg=-1/3,0= 7/8
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Ho/4m M,

F16. 2. External field dependence of 1/G4(H,) for the sphere
sample. The external field is applied in the plane constructed by
the two crystal axes. © is measured from a crystal axis.

where only the positive value of s is necessary, because
the magnon energy should have a real value.

Case 2. In this case, 4 1, | Bi|,and ¢ defined by (1.10)
are independent of k, so we denote them divided by
gupHo by @4, be, and ¢.. They are written as

aa=73+if(5Ka— 1) y

bo=3R(K2—3L)", (2.42)
tang,=23; alale!’/Tiad(a/"—a?),
where
R=4xS/ gunHo. (2.43)

Replacing the summation over k in Eq. (2.26) by the
integral and using the relation (2.31), we obtain

1 APSGe G. (Hy)
—= ) , (2.44)
T1 81r h41)5d (gp. BH 0)2
where
Go' (Ho)=—————{[Gre+ (1—-rd")K](a+04")
0 3 (aa2___ ba2)2 2
—6kaa(1—7¢%) (K.2—3L.)}. (2.45)
The equilibrium values of a; are given by
~ v 3y S — ’
KZtazaz V3, (246)

-~ " __ 1"
g iafad =y,
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from Eq. (1.9) and the relation between v; and «; is
yi=[1— R(Koat3La—4K T2,  (2.47)

from Eq. (2.46).

G. and G, depend on the external field vector Ho and
the ratio 7¢=G1/Gy when M, «, and G, are given. The
dependences on these variables are shown in Figs. 2-6.
In these figures, H, is applied in the planes constructed
by the two crystal axes, and the symmetry axis of the
ellipsoid of revolution 2’ coincides with the crystal [001]
axis. The radios 7¢ are taken as 0, —%. Since the G, are
related with the usual spin-lattice coupling coefficients
G11, Gua for cubic crystals by

G1=35Gu, G3=2Gu, (2.48)
rq¢ adopted here may be reasonable for the orbital S-
state atoms, referring to the experimental values on
Mn?t.® As seen from these figures, G, and G, depend
strongly on the shape of the sample and the sign of the
anisotropy constant and therefore 7' is not proportional
to Hy? for Hy~4mM, or xS/gup. The saturation values
of Hy above which G, and G, are regarded as constants

are 8w M for the Case 1 and 16xS/gus for Case 2.

1/Gg (Hy)

=-1/3,0=7/8

16:0,0=7/4

to=-1/3, @=w/4

Ho /4»1rM°

Fic. 3. External field dependence of 1/G.(H,) for the disk
sample with the symmetry axis parallel to the [001] axis. The
external field is applied in the (xy) plane. © is measured from a
crystal axis.

8 G. D. Watkins and E. Feher, Bull. Am. Phys. Soc. 7, 29 (1962);
N. S. Shiren, Bull. Am. Phys. Soc. 7, 29 (1962).
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III. INDIRECT NUCLEAR-SPIN INTERACTION
AND RELAXATION

The indirect nuclear spin interactions in magnetic
materials are given by Suhl and Nakamura.? In this
section we will first derive the Hamiltonian responsible
for the nuclear relaxation in ferromagnets and then
calculate the relaxation time.

The indirect coupling between nuclear spins is ob-
tained from the second-order perturbation of

Hn'=3%2; A;(Sit1i+Si1it), @.1)

with respect to the electronic spin system. 4; in Eq.
(3.1) is the hyperfine coupling coefficient of site 7 and
considered as a function of strain because the electrons
of the atom have overlap and covalency with the

14 -
I 1 I [

12— Y CYLINDER ]

10—

81—

’ 1o ==1/3,@=7/2

61— —

4 }— —

2 —
—~ \
©° o= =t
= T 1;=0,0:=7/8 T
o 4f— $ -
< i

g ==1/3,®=7/8
s ts =0,0=37/8_

te=-1/3,8=37/8

T =0,0:=7/4

s =-1/3,@=7/4 .

o L
(o] | 2 3 4 5
Ho/4mM,

Fi16. 4. External field dependence of 1/G+(H) for the cylinder
sample with the symmetry axis parallel to the [001] axis. The

external field is applied in the (zx) plane. © is measured from the
[001] axis.

electrons of the surrounding ions. 4; is, therefore, ex-
panded in powers of the strain and is written as

Aj=A¢tedpt---, (3.2)

where ¢; is, for simplicity, the average strain neglecting
polarization effects. Applying transformations (1.4) and
(1.12) to (3.1), we have

Hul =3(S/N) 25200 2o
X Ajfett — (=)re 7] (e~ i+ coshg o

—eik i~ sinhjor)ar®W+cc.  (3.3)
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I I |
k<0
100 — —
60— —
t =%1/3,0=0
20— =
o = -
z s =0, ®=7/8
s 8
(O]
~

Mﬁl/l ®=7/8

61— —

al— ‘ —]
6 =0,0=7/4

2 6 =173, @=n/4.

o | | I

0 2 4 6 8 10

Ho /41klS

Fic. 5. External field dependence of 1/G.’(H,) for the negative
anisotropy constant, i.e., the easy axes are [100]. The external
field is applied in the plane constructed by the two crystal axes
and O is measured from a crystal axis.

r=0,@=7/4

e =t1/3,08:0

(Hg)

6=0,8=7/8

’
a
@

176,

5 =%1/3,8=7/8 _|

1 =%1/3,@=7/4 —

[¢] 2 4 6 8 10
Ho/4xS

F16. 6. External field dependence of 1/G.’(I1o) for the positive
anisotropy constant, the easy axis being [111]. The external field
is applied in the plane constructed by the two crystal axes and © is
measured from a crystal axis.
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The second-order perturbation of Eq. (3.3) gives

AE=(S/4N)2; Xy 21 A A jr (cosk- G—3')/wor®)
X[ (e29* ~I ;~+ 29k 1 ;F) sinh @y — 21,885
— (I ;m+I71;%) cosher], (34)

in which only the first term is responsible for the relax-
ation. Using (3.2) and (3.4), the relaxation Hamiltonian
for the direct process is written as

H'=(404:5/4N)T « T ;(sinhor/ o)
X [2€;(e2i4+] ;12 g2i¢k] ~2)
+ X (e+¢) cosk- (—73')

i'F7

X (¥ At I T,) ], (3.5)

The relaxation time through the mechanism (3.5) is
given by

1 6454 25°
Tl_ whi5d (g[.LBHo)z

XLLi(Ho)Fo(T)+2L(H))F5(T)], (3.6)
where
Li(Ho)= | N7 X x(gusH o/ hwsi?) sinhgpe?i®k|2, (3.7
Ly(Ho)=N7' 3 1 ((gusH o/ Tusi?) sinh i )?, (3.8)
r(ISII%))  (IS121+2))
FZ(T) = L. eZﬂhwo__ 1 1_e—-2ﬁﬁwo :I/
@M=, 69
F(B)IHT))  (BETH)(TT)
F3(T) = B e25hwo_ 1 1_ —2B8%w0 :I/

L= (3.10)
In deriving Eq. (3.6) we have used the fact that for
r=|j—3'|/a>>1, ao being lattice constant, the integra-
tion of the term cos[k- (3—3j')]/#wr® over the magni-
tude of k decreases exponentially with 7,? so that we can
take the value of raowo/v as very small compared to
unity.

Fo(T) and F3(T) which are shown in Fig. 1, behave
like F1(T) defined by (2.27), that is, for I=4% they are
proportional to temperature for k7> 5hwo and deviate
from the straight lines for lower temperature in a way
similar to the Fi(T) curve. At higher temperatures
Fy(T) and F3(T) are given by 2{4I (I+1)—3}kpT /5w
and 2I (I41)kpT/3%wo, respectively. The field depend-
ence of L;(H,) may be similar to G.(Ho) in Sec. 2.

We compare the order of magnitude of the relaxation
time 7T'1 ma obtained here with that of 71y in Sec. 2.
For the Case 1 defined by Eq. (2.28), Li(H,) in Eq.
(3.6) can be neglected compared to Ly(Ho) and T’y is

AKIO HONMA

142

given by Eq. (2.32). The ratio is
Tinw 96 Fs(T) Lg(Ho)/A 1)2
Tima S Fy(T) Ga(Ho) \Gy

32 Ly(Ho) /A2
= I(I+1) (——) )
S? Go(Ho)\G1

(3.11)

The last step in Eq. (3.11) is obtained by using the high-
temperature approximation. Since the order of magni-
tude of Ly(Ho) is the same as that of G,(H,) except for
r¢~0 and some special values of a;, 4; should have a
value of

A1~Gy1/10 (3.12)

in order that T ;nq be comparable to T'1s. For a rare-
earth ion, Gy has a value of 10 cm™, so 4; from (3.12)
becomes ~1 cm™ which seems to be too large compared
to Ap~10"% cm™. That Ly(H,) has the same order of
magnitude as G,(H,) may be certainly true for Go(Ho)
averaged over all angles contained.

IV. QUADRUPOLAR NUCLEAR SPIN-
LATTICE RELAXATION

The nuclear relaxation time arising from the quad-
rupolar energy has been calculated by Van Kranendonk?®
for the Raman process. In this section we calculate the
expression of the relaxation time for the nuclei which
belong to magnetic atoms in a ferromagnetic insulator,
considering only the direct process. In this case the heat
bath is the phonon system expressed by the Hamiltonian
(1.15) and the unperturbed nuclear Hamiltonian is
given by Eq. (2.12). The perturbation H’ is the quad-
rupolar energy expanded in powers of the displacements
of nuclei, retaining only the linear terms with respect to
displacements:

H'=3, Qu i Ay wjo
=(#/2MN)"? 200 Qu 205 2% 26 (Ayi €/ (02F)2)
X [, (exp(ik-j)—1)

+oi*(exp(—ik-)—1)], (4.1)
where the summation over j extends over all the nuclei
except the central nucleus =0 and wu; is the relative
displacement u;—uo with respect to the central nucleus.
Q. in Eq. (4.1) are given by

Qo=B3(I*P—I(I+1)],

Qu1=B[I{[++T1%£18]/2, (4.2)
Q42=BI#,
where
B=eQ/I(2I—1), eQ=(II|Qo|II).  (4.3)

In the point-charge model, the vectors A,; in Eq. (4.1)
are obtained as in Van Kranendonk’s paper® and written

9 J. Van Kranendonk, Physica 20, 781 (1954).
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as

Zu A Y, ()= (3¢/2RH[2(R; n)r
+@=5(R; )R], (44)

where
Yo(r)=322—72, V.1(r)=z(xxtiy),
V4o (1) = (xiy)?, (4.5)
and
R;=R/R;,

R; being the relative position vector in equilibrium from
the central nucleus. ¢ in Eq. (4.4) is the effective charge
of the ion and is assumed to be

9=vqo, (4.6)

in which go is the ionic charge and the multiplication
factor v includes both the Sternheimer antishielding
factor' for the nuclear quadrupole moment, and the
covalent and overlap effects on the central ion due to the
surrounding ions. From Eq. (4.4) we obtain the relations

AI"—J'= - AM' ) A—uj= Apj*o (47)

For the simple cubic lattice with lattice constant ¢ and
considering only the contributions from the nearest
neighbors, A,; are given by

A01= C(%)O)O) ) All: C(O,O,l) ]
A21=C(_%1 —%Z, 0) )

Aw=C(0,3,0) ’ A=C(0,0, —17), (4.8)
A22=C(_%i3 %; 0) )
A03=C(0, 0, ——1)) A13=C(1: —1, 0)7 A23=0)
with
C=3q/2a". (4.9)

By standard perturbation theory, the probability per
unit time Wo;myu of the transition that the quantum
number of the central nuclear spin 7 changes by u is

WM;m-l—u:Zk ZO (W(m; Nks - m+”7 Nk8+1)

+W(m, Nigs— mtpy Nype— 1))thermal averagey (4~10)
over phonons
where
W (m, N s — m~+p, Ni==1)
= (2n/12) | (m~+u, Nys=1|H'|m, N3,) |2
Xo(wiPFuwo). (4.11)

Using the matrix elements of H’ and the relation

2s(Auiens) (Aur* ers) =Au-Ap®,  (4.12)

we obtain

Wonimin= (T/MNh) lQMnlz Z:i z_::i' Zk(Aui‘Aw"*)
Xsink‘ Rj sink- Rj'E(Nk+ 1)6(wk1’—uwo)

+N 8 (wiP+pwo) wi?, (4.13)

10R. M. Sternheimer, Phys. Rev. 84, 244 (1951); 95, 736 (1954);
130, 1423 (1963) ; R. M. Sternheimer and H. M. Foley, Phys. Rev.
102, 731 (1956).
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where
Qum= (m'H‘lQulm) ’
Ni=1/(efrer" —1),

Expanding sink- R; in powers of k- R; and replacing the
summation over k by an integral, we have

(4.14)

| Qum l 2Mu (I-“"’O)3
S , 4.15
" Gmlnpd (1— gephen) ®19
where
M=% 27 (Ri*Rj) (A Ai®), (4.16)

and
d=MN/V.

The nuclear spin-lattice relaxation time 7 is given by

1 _ 22w W )

, 4.17
Ty ()= (m) @

where ( ) means the same operation as Eq. (2.22).

Using Eq. (4.15), we obtain

L_AeSE [«F@Q’—n» <<If@_"@>>] /
- »

1_ —uBhwo

Ty 6rh*d «

euﬂhwo_ 1

L@ =Ty, (4.18)

where ),/ means the summation over the positive
values of u and (, are defined by

Qu=B0y, (4.19)

B being the nuclear quadrupole moment expressed by
Eq. (4.3).
For the simple cubic lattice, the M, are calculated by
Eq. (4.8)
M1=16C?,a* M,=%2C%2.

Using these values in Eq. (4.18), we obtain
1 8(aBC)(4,S)®
—=——"—F(1),

T, 3rhtsd

(4.20)

(4.21)

in which
(B0:10-)) (1010w

ebhwo— 1

+E(<<I 10aQ-2)) ((IF @—2@2»)] /

2 e2Bhwo— | 1 — 26w

Fy(T) =[

1— g Bhwo

[Camm— . @)
The relaxation time obtained here is independent of
the external field, because of the assumption (2.4). The
F4(T)-versus-T curve which is shown in Fig. 1 is similar
to F1(T) in Sec. 2, that is, for =% F,(T) is proportional
to T for kzT>4hwo and deviates slightly from the line
for lower temperatures. The high-temperature value of
F4(T) is expressed by 27 [4I (I4-1)—3]ksT/10%u,.
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V. ISOTOPE EFFECT AND COMPARISON
WITH EXPERIMENT

In order to compare with the experiment on the
powder EuS}! in which the nuclear spin-lattice relax-
ation time was determined by measuring the trans-
mission of polarized neutrons through the sample, we
extend our results obtained in the previous sections to
the case that there are two isotopes. We assume these
isotopes have the same lattice vibrations and are dis-
tributed at random on the lattice sites. Specifying them
by the superscripts ¢ and b and introducing the pro-
jection operator P (v=a, b):

Ppr=1, if the site j contains a » nucleus, 5.1)
=0, otherwise,
the unperturbed nuclear Hamiltonian HyV is written as
HoV=—3;2 Pho It (5.2)
where
hw,=A¢"S. (5.3)

Since the relaxation process through the indirect nuclear
spin interaction is not effective for a rare-earth atom as
stated in Sec. 3, we consider two other mechanisms.
In deriving the expressions of the relaxation time, we
will assume that the cross relaxation time' between
these two isotope systems is short compared to the spin-
lattice relaxation time of the individual system, i.e.,
these two systems have a common spin temperature.

A. Relaxation to the Quasiphonon System
The perturbation H' is given by

=522, PrAy(SitL,+Si1,%).  (5.4)

Using the transformation (1.4), (1.12), (2.7) and con-
sidering only the quasiphonons with the assumption
(2.23), H'’ becomes

1(S/N)“”Z Z' X X PrAgets

s =12 v=a,b

X[ (= Yoo ooy

X cos® s (I, coshg or—I;,7¢i** sinhj o)
X [Ers® 4 (=) 4@ * ] Fc.c.

which is the extension of Eq. (2.16) to the case con-
sidering here. As in Sec. 2, we obtain the relaxation time
T, for the case that the anisotropy energy can be
neglected, i.e., under the condition (2.28), as follows:

1 SG2G.(Ho)
—— 3 (4¢")°Fu,(T),
T1M 8whtvSd (g,U.BII())z v=a,b

(5.5)

(5.6)

1t A, Abragam and W. G. Proctor, Phys. Rev. 109, 1441 (1958);
N. Bloember%en, S. Shapiro, P. S. Pershan, and J. L. Artman,
Phys. Rev. 114, 445 (1959).
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where (LAY, (L)
FIV(T)=C”(‘°"2Z"[ ebror— 1 - 1— g Bhwy jl/
S et Z LI TNA, 61

which corresponds to Eq. (2.32). In Eq. (5.7) ¢, is the
natural abundance of the isotope 7, i.e., the ensemble
average of P”, and {{ )), means

{0.)),=Tr0,efter1%/ 7,

Z,=Tresrr Tk ©8)

B. Relaxation Through Nuclear Quadrupole Energy

The perturbation for the central nucleus is written as

Z ZP"Q,, ZAM o

v=a,b pu

= (h/2MN)" 3 Z Prosy zk: 2 (Aujere/ (@iF))

X (ks (e™ 1= 1)+bis* (e 1—-1)], (5.9)
where P* is the projection operator for the central
nucleus and Q,” are given by

Qw=B,[3(15)*~I,(I,+1)],

Qu1’=B,[I5 #+1,£1,5]/2,
Qu2"=B,(I,*)?,

B,=eQ,/I,(2I,—1),

eQ,= (I.1,|Qv|1,1,).

These equations correspond to Egs. (4.1)-(4.3). By the

same method stated in Sec. 4, we obtain for the simple
cubic lattice

1 8(aC)2s?

T1q

(5.10)

T BHAGCELD),
S oy B AT (T)

{LAQrQ_r)),

efrar—1

(5.11)

where

F 4v(T)=Cyw,22,[ (50O

1— ¢ Bhoy

By {502 0-2)y (I50-202))y

A 1— g—26ho )]/
z Cywy2Zy[<< (Iy{)z»v_ «Iy{'»‘}] )

(5.12)

with
Qﬂrz QI‘V/BV .

The Eqg. (5.11) is the extension of Eq. (4.21).

To apply our results to the powder sample, it is
necessary to take averages of Eq. (5.6) over all angles
and the shapes of the single crystals composing the
powder sample. We assume that the powder sample
consists of a number of single crystals, each of which
has, for simplicity, the sphere-shape with the crystal
axes orientated at random with respect to the direction
of the external field. In this case y3 determined by Eq.

(5.13)
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18 i l i ' Ao T T T T 2
2.0~
16—
} 1.6
14— ‘Iﬁa L2
£
: o
12 >
T &l
8 10 %
% (Ho / 4x Mo) ™3
= 8 F16. 8. External field dependence of T'1y given by Eq. (5.15).
<
t with
sl Fy(T)=F4,(T)+0.49F ,(T). (5.18)
" Fu(Mx 1072 In Eq. (5.15) we use G1; instead of G related by Eq.
(2.48) and Gy measures in cm™. According to the
ar 7 experiment,! T’y is expressed by
T\~H3/T?, (5.19)
o _
for the ranges of 7=0.05-0.15°K and H,=7-17 kOe
and has the value of several hours at 0.05°K and 17 kQe.
o é 41 L ; | F1(T) and F4(T) given by Egs. (5.16) and (5.18) are

kg T/hwg

F16. 7. Curves of F1(T) given by Eq. (5.16) and F4(T) given by
Eq. (5.18) versus kBT /hwa, where fiwqa means 4,5 for Eulsl,

(2.40) has the value of one and I; Eq. (2.37) are inde-
pendent of angles, so we have only to take the average
of G.(H,) over a;, obtaining G,(H,) as

Go(Ho)=(9/280)[ (16—4r¢+23r 21,

+ (8+12r6+1576%) (Io—I5+14)], (5.14)
where I; are given Eq. (2.37) with ;=1 and N;;=N,
— 1

In EusS, the isotopes a and b correspond to Eu'® and
Eu's with I,=I,=3, and S=1. ¢, and ¢, are 0.478 and
0.522, respectively. Taking A4,*=0.298X10"%2 cm™,
A*=0.144X 1072 cm™, d=5.7 g/cm?, 47 M = 14 kOe,?
Q.=12X10"% cm? Q;=2.5X 102 cm?* lattice con-
stant ao=2a=35.974%" go=2¢ and v=19X 10*5 cm/sec,
we have from Eq. (5.6) with Eq. (5.14) and Eq. (5.11)

T1y=0.351X 10-8(G1i2/e?)

- X (4rMo/Ho)*Go(Ho)F:(T), (5.15)
wit

Fi(T)=F1a(T)+2.66X 102F1,(T), (5.16)
and

T1¢7'=1.05X10"2(y?/0%)F4(T), (5.17)

12§, H. Charap and E. L. Boyd, Phys. Rev. 133, A811 (1964).

13 For example, G. E. Pake, Solid State Physics (John Wiley &
Sons, Inc., New York, 1956).

14 G. Busch, P. Junod, M. Risi, and O. Vogt, in Proceedings of
the International Conference on the Physics of Semiconductors, Exeter,
1962 (The Institute of Physics and The Physical Society, London,
1962), p. 727. S. Van Houten, Phys. Letters 2, 215 (1962).

shown in Fig. 7 as the functions of ksT/#w,, where #w,
corresponds to 0.015°K. Fy(T) is proportional to T for
T>0.1°K and convex towards the T axis. F4(7T') has the
similar behavior as F1(T'). The field-dependent part of
T1ar, namely (Ho/4wM)2/Go(Ho), is shown in Fig. 8 as
the function of (Ho/4wM )", 4wM o being 14 kOe. We see
the Thp is proportional Hy"? in the range of Ho="7-17
kOe. The values of Ty and Tiq at 0.05°K and 17 kQOe

are
1 Gy 0.855 for rg=0,
——=—X10"" (5.20)
TlM ‘1)05 1.06 for fo=""%,
and
T1q7'=3.17X107(y2/vb). (5.21)

Taking vo=2, which may be a reasonable value from
®p=204°K, Ty and Tiq are the same order as the
experiment when Gy;= 20 and y=10%. Since the experi-
mental relaxation time depends strongly on the external
field, ¥ may have a value of 10? or less.!® That the value
of Gu1 is of the order 10 is reasonable for a rare earth
ion. The agreement of the calculated T with the
experimental one seems to be fairly good.
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