and

$$\lambda(\gamma) \equiv \frac{2}{\pi} \int_{0}^{\infty} d\omega' \xi(\omega') \left\{ \frac{\sin\frac{1}{2}(\omega'+\gamma)\iota \cos\frac{1}{2}(\omega'+\gamma)\iota}{\omega'+\gamma} - \frac{\sin\frac{1}{2}(\omega'-\gamma)\iota \cos\frac{1}{2}(\omega'-\gamma)\iota}{\omega'-\gamma} \right\}.$$
 (A6)

Now, for $t \gg \mu^{-1}$ (we recall that t=0 corresponds to the onset of coupling between TLS and LM), the main contribution in the integration of Eq. (A4) comes from the immediate neighborhood of $\omega' = \mu$, and since $\xi(\omega')$ is a slowly varying function in the neighborhoods of $\omega' = \omega$ and $\omega' = \nu$, we have

$$X(\mu) \approx \frac{2}{\pi} \xi(\mu) \int_{-\infty}^{\infty} d\omega' \frac{\sin\frac{1}{2}(\omega'-\mu)t \cos\frac{1}{2}(\omega'-\mu)t}{\omega'-\mu}$$
$$= \xi(\mu) , \qquad (A7)$$

where μ stands for ω or ν . As stated in the inequality (22), the driving field frequency ν under consideration is close to ω . For the sake of simplicity, we assume that there is a negligible difference between $\xi(\omega)$ and $\xi(\nu)$, so that

$$X(\omega) - X(\nu) \approx 0. \tag{A8}$$

By arguments similar to those used to obtain Eq. (A7), it follows that

$$\lambda(\gamma) \approx \xi(|\gamma|), \quad \gamma > 0, \lambda(\gamma) \approx -\xi(|\gamma|), \quad \gamma < 0.$$
(A9)

Since $\lambda(0)=0$, and $\xi(|\gamma|)$ approaches zero as γ approaches zero, this is a continuous function of γ . As are as κ is concerned, it is seen that for sufficiently large t, the cosine terms in the integrand of Eq. (A5) make a negligible contribution to the integral except at the points $\omega'=0$, $|\gamma|$. Since $\xi(0)=0$, the contribution at $\omega'=0$ is also negligible; at $\omega'=|\gamma|$, the cosine terms have the effect of converting the integral into a principle value integral, yielding

$$\kappa(\gamma) = \frac{2}{\pi} \int_0^\infty d\omega' \xi(\omega') \left[\frac{1}{\omega'} - \omega' \frac{\varphi}{\omega'^2 - \gamma^2} \right]. \quad (A10)$$

The derivation of Eq. (23a) has thus been outlined. Equations (23b) and (23c) are obtained similarly.

The behavior of κ and λ under time inversion may be observed in Eqs. (A5) and (A6). κ is invariant while λ changes sign. This indicates that κ is a reactive constant and λ is a resistive constant.

Errata

Mössbauer Cross Section of Fe⁵⁷ in Iron, S. S. HANNA AND R. S. PRESTON [Phys. Rev. 139, A722 (1965)]. The second sentence in the third paragraph from the end should read: "With $f_a = 0.79$, one obtains $\sigma_0 = (2.42 \pm 0.19) \times 10^{-18}$ cm²." This numerical change in σ_0 does not affect any of the other numbers in the paper.