
P H VS 1 CAL REVI E%' VOLUME 142, NUM B ER 1 FEB RUARV 1966

Nonlinear Spin-Wave Theory for Antiferromagnets*
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The spin-wave interaction in simple antiferromagnets is studied at higher temperatures by a method
similar to that of Bloch for ferromagnets. It is shown that the energy spectrum, the sublattice magnetization,
and the internal energy of the system depend on a renormalization parameter cz(T). This parameter satisfies
an implicit equation from which its dependence on the temperature may be determined. It is found that the
equation has a solution only up to a temperature T «which is within a few percent of the theoretical values
of the Noel temperature. At very low temperatures the theory reduces to the Oguchi theory after all quan-
tities are expanded in powers of the temperature. The parallel and perpendicular susceptibilities are also
calculated.

I. INTRODUCTION

~ 'HK correct theory for the spin-wave interaction
in ferromagnets at low temperatures was first

worked out by Dyson. ' He showed that, by a suitable
transformation of the operators, the spin Hamiltonian
may be cast into an ideal boson Hamiltonian with
quartic interaction terms. A perturbative treatment of
the quartic terms leads to the now famous T' term in
the magnetization. In a,bold attempt, Bloch' truncated
the Dyson Hamiltonian and found a solution of the new
Hamiltonian at elevated temperatures. A remarkable
result of this theory is that a solution is only possible
up to a certain maximum temperature which compares
rather well with the other estimations of the Curie
temperature. At very low temperatures the results of
this calculation agree with the Dyson theory. Although
the theory does not seem to apply near the Curie point,
it may not be a bad extrapolation theory to rather high
temperatures.

Ke sought to extend the Bloch theory to simple anti-
ferromagnets. As in the case of ferromagnets, one can
find a nonunitary transformation' 4 which transforms
the spin Hamiltonian into an ideal boson Hamiltonian
containing quartic interaction terms. This Hamiltonian
is then solved within the random phase approximation
by using a formalism similar to the Gorkov theory of
superconductivity. ' The result is shown to be the exact
analog of Bloch's theory. The maximum temperature at
which the equation for the renormalization parameter
has a solution is within a few percent of other theoretical
values of the Neel temperature. At very low tempera-
tures where all quantities are expanded in powers of the
temperature, the results agree with the Oguchi theory of
antiferromagnetic spin waves. '

*Work was performed in the Ames Laboratory of the U. S.
Atomic Energy Commission, Contribution No. 1794. Part of this
work was done at the IBM Watson Research Center, Yorktown
Heights, New York.

' F. J. Dyson, Phys. Rev. 102, 1217 (1956); 102, 1230 (1956).
z M. Bloch, Phys. Rev. Letters 9, 286 (1962).
3S. V. Maleev, Zh. Eksperim. i Teor. Fiz. 33, 1010 {1957)

LEnglish transl. : Soviet Phys. —JETP 6, 776 (1958)].' R. A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 95 (1962).
5L. P. Gorkov, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958)

LEnglish transl. : Soviet Phys. —JETP 7, 505 (1958)j.' T. Oguchi, Phys. Rev. 117, 117 (1960).

H=&P;Pt St; Ss,;+s+J PtPs Sr,;+, S», (1)

where the indices 1, 2 refer to the two sublattices; i, j
denote the lattice sites; and the index for the nearest
neighbor of s is i+8. It is assumed that the spontaneous
magnetization of the sublattice 1 is in the —s direction
and that of the sublattice 2 in the +s direction We.
make the following transformation to ideal boson
operators' ':

Sr, ——(25)r/'Lbt; —(25) 'br;*br;bt;),
+ (2g) 1/2b

~r'= —~+br *br.

~s =(2~)r/'Lbs *—(2~) 'b»*b»*b»j

5»+= (25)'/sb»,

52 ——5—b2;*b2;.

(2)

It is easy to show that all the commutation relations
between the various spin operators are preserved but
the Hermitian conjugate relation between 5+ and 5—is
no longer valid. It is also clear that the above trans-
formation introduces nonphysical states because the
occupation numbers of the harmonic oscillators may be
larger than 25. This alters the kinetic interaction be-
tween the spin waves and makes the theory inapplicable
near the critical temperature. The operators 5+ connect
the physical states to the nonphysical states while the
operators 5 do not.

Next, we introduce the spin-wave operators

b&.—(2/fir)&/s P & ez& nlz

.= (2/Q)&/s Q

and their Hermitian conjugates, where R»; is the position
of the ith site of sublattice 1 and similarly for R». The
periodic boundary condition requires

(k,k„,k,)= (hr/L, rrzzr/L, r/7r/L),

II. THEORY

YVe take for our model a cubic, two-sublattice anti-
ferromagnet with nearest-neighbor interaction. The
Hamiltonian has the form

l42 267



S. H. LrU

where f, 222, and 22 are integers and L is the number of (assumed to be cubic). In terms of these new operators,
lattice sites in a linear dimension of each sublattice the Hamiltonian becomes

H = N~—sS'+22» 2 k Pck*ck+dk*dk+y(k) ck*dk'+y (k)ckdk]
JsN 'g'kktq $47(k k)—ck*ckldkpq dk~pq+r(k+g)c&& ckck~yqdkyq+r(k+q)ck. +q*ck*ck.dk+2*

+7(k)ckdk *dk+qdk -q+v(k)ck*dkpq*dk -q*dk ], (4)

where E is the total number of lattice sites, s is the
number of nearest neighbors, and

y(k) = 2
—' QO e'k',

where 6 is a vector connecting nearest neighbors.
We define the following matrix Green's function:

(Gll(k, r) G12(k, r))

(G21(k,r) G22(k, r)/
where

Gll(k, r) = (Tck(r) ck'(0) ),
G12(k~r) = (Tc„(r)d„(0)&,

G„(k,r) = (Tdk*(r)ck*(0) &,

G-(k, )=(Td.*( )d.(0)&

The operator T is the chronological operator for the
imaginary time r, the Heisenberg operator is defined as

A(r)=e'+Ae '+,

G(k T) = (1/P)Z. G(k,~.)c '""' (10)

where 10 = 2222T/p and 22 is an integer. It is rather easy
to show that

Gll(k, oo„)=G22(k, —lo„),
G12*(k,co„)=G21(k,oo„) .

There are at least two ways to calculate the matrix
Green's function. One way is to treat the quartic terms
in Eq. (4) as perturbation and use the diagrammatic
method; another way is the equation-of-motion method
with the random phase or decoupling approximation.
We choose to present the latter method because it is
simpler in the lowest order calculation. In higher orders
the diagrammatic method is more systematic.

The equation of motion for G is easily found to be

and the thermal average is defined as

(8&= tr(e t'~B)/tr—(e P~), —

P = (kT) '. The Green's function can be Fourier
analyzed:

1 0 ) (TLH, ck(r)]ck*(0)& (TLH, ck(r)]dk(0)) )—G(k, r) = 8(r)i i+
dr (0 —1J (T(H,dk*(r)]ck~(0) ) (TLH, dk*(r)]dk(0) &/

Working out the commutators, we 6nd

(12)

Gll(k)r) ~(r) IleLG11(k)r)+ y(k)G21(k)r)7+2h. (NS) ' Q "r(k—k')(Tck. (r)dk+q*(r)dk~+q(r)ck (0))
dT k'q

k/q k'q

+h, (2NS) ' Q y(k)(Td„+,*( )d ~ *( )d„,( ) „*(0)& (1g)
k'q

+h~(2NS) —' p y(k'+&)(T k (r)'k+, (r)dk pq(r)ck*(0))+h, (NS)-' g y(k+21)(Tck+,*(r)ck (r)dk+, *(T)c„*(0))

and similar expressions for the other components. We
use a shorthand notation h, for the exchange Q.eld 2JsS.
At this point we make decoupling approximation to the
higher order Green's functions, e.g. ,

(Tck (T)dk+q*(r)dk+q(r)ck*(o)&

5kk'Gll(kyar)(dk+q dk+q&+~qoG21(k, r)(ck~dk~& ~

(T".,*(.)"(.)d",*(.)"*(0)&
—8kk~G11(k~r)(ck+q dk+q*)+8qOG21(k~T)(ck~ Ck~&,

etc. The complete symmetry between the two sub-
lattices implies

(Ck Ck)=(dk dk)=Bk (Ckdk) (dk Ck )= gk ~ (14)

Then the equation for G may be written as

/1 01—G(k, r) = S(r)
~

dr
'

&0 —1)

where

1 7(k)—h, (1+n)
i G(k,r), (15)
k—y(k) —1

= —2(NS) '&. L +v(a)$,].
The solution of this equation is, in terms of the Fourier
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transforms,

1 h, (1+rr)+i(a —h,7(k)(1+n) )
G(k,ce„)=

re„'+reg' —h,7(k)(1+n) h, (1+o.)—i&e

(17)
where

~.=h.(1+~)L1—7'(k)]'".

By definition, Eq. (7),
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rr =(1/p)Q„G, (k, „)e'""'
=-'[1—y'(k)] 'i' coth-', Pre~

t.= (1/P)Z- G»(k,~-)' "'
= —-', p(k) [1—y'(k)] '" coth-', Pre|„

8=0+.

(19)
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Fxe. 1. The renormalization factor and the sublattice mag-
netization of a simple cubic antiferromagnet as calculated from
the theory.

Substituing into Eq. (16), we find
From this we ind the energy and the magnetization

n=(25) 'f1—21V ' Qg [1—y'(k)]'I' cothsP(vg}. (20)

(63),V[|(4)] (k s

E 2 & ~'r)'5(1+rrs)s i h

|-(2) /k
!

2~sr)s(1+rrs) s ( h,
(21) m= mo—E= —is 1VSh.(1+n) '.

The solution of this equation gives n as a function of
the temperature. s'r)'(1+ns)' i&, J

The internal energy may be calculated in the same
approximation. By definition, E=(H). If we evaluate
the thermal average of the quartic terms in the Hamil-
tonian by the decoupling approximation, we find, after
a lengthy calculation, (26)

The sublattice magnetization per spin may be found
in an analogous way. The result is

m=5+ ', 1V ' Pj, [1—y'-(k—)]—'I' coth-,'Peag. (22)

3~-(2)l-(4) t kP
~4ri'5(1+rrs)' i h, )

III. LOW-TEMPERATURE LIMIT

At absolute zero,

mrs= (25) 'f1—21V ' gq [1—y'(k)]'i'} =c/2S. (23)

The ground-state energy and magnetization are

Es=—s 1VSh,(1+c/25) '
(24)

ms ——S—1V ' Pg f [1—y'(k)]—'i' —1}=S—-',c'.

where the quantity p has been de6ned and tabulated
by Oguchi. The last term of each expression arises from
the spin-wave interaction. The terms arising from the
nonparabolic shape of the dispersion curve have been
left out. These reduce to the Oguchi results if we ignore
np in the spin-wave interaction terms.

0.6

The quantities c and c' have been calculated for cubic
lattices by Anderson and Kubo. ' These results are in
agreement with Oguchi.

At Gnite but low temperatures we may And an itera-
tive solution for the small quantity a—np. This gives

3I.(4) /kTi 4

Q=Ap—
~'r)'5(1+o.s)'E h, J
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FIG. 2. The renormalization factor and the sublat tice mag-
netization of a body-centered cubic antiferromagnet as calculated
from the theory.
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TABLE I. Comparison of T, with estimations of TN. terms of spin-correlation functions as

Lattice

Simple cubic
Body-centered cubic
One-dimensional

kTN/J
BPW

approx.

2.00
3.18
None

kTN/J
Tyablikov
approx.

1.98
2.87
None

kT, /J
Present
theory

2.21
2.91
0.84

where

X„=(gran)$' (TSp'(~)Sp'(0))d~,

Sp'=/V —'PP, 5& +P, 5„'7
=N ' Qk [ck*ck—dk*dk7,

(27)

(28)

IV. HIGH-TEMPERATURE RESULTS

At high temperatures the equation for n has been
solved numerically and the dependence of the quantity
(1+n) on the temperature is plotted for simple cubic
(sc) and body-centered cubic lattices in Figs. 1 and 2.
On the same graphs we also plot the sublattice mag-
netization per spin. It can be seen that, just as in the
ferromagnetic case, the magnetization drops with in-
creasing temperature faster than the renormalization
factor (1+n). Also, the equation for n has no solution
above a certain temperature T, , whose value is found
to be (for 5=-', )

kT, /h, =0.369&0.001 for sc,
=0.364&0.001 for bcc.

after a transformation to the spin-wave variables. It
can be easily verified that 50' commutes with the
Hamiltonian, so

gasp pkk'((ck ck dk dk)(ck' ck' dk' dk')) ~

After taking the thermal average, all terms with krak'
cancel out in the sum. The terms with k=k' can be
calculated by transforming to the quasiparticle opera-
tors and using the standard method. The result is

X~~
——2gpsP Pk e~"kLee k —17 ' (29)

In a similar manner, the perpendicular susceptibility
has the expression

x =g»&' P'Sp'( )Sp*(0))«

It is interesting to note that these values are very close
to the other theoretical estimates for the Neel tempera-
ture. A comparison is given in Table I where the first
column lists the estimations of Li' based on the Bethe-
Peierls-Weiss (BPW) approximation and the second
column the values based on the Tyabilikov approxima-
tion. The latter theory as was first proposed by Pu' and
later elaborated by Lines. '

Since the present theory ignores the kinematic inter-
action between the spin waves, the nature of the in-
stability at T, is quite different from the phase
transition at the Keel temperature. However, as can be
seen from the 6gures, the magnetization decreases
rapidly toward zero near T, , which is just the ex-
pected behavior of a real system near TN. This may be
the reason why the two temperatures are so close. In a
one-dimensional system it is easy to verify that the
sublattice magnetization diverges. Also, most existing
theories predict that the system has no phase transition.
The present theory, however, gives kT,„/J=0.84 for
5=—,'. Therefore, when the magnetization does not exist,
T, also loses its meaning. It seems likely that the
instability at T, has no physical significance but is
rather a consequence of the approximation.

V. SUSCEPTIBILITIES

Using the Kubo method for linear response function, "
we can write the parallel susceptibility of the system in

8 Y. Y. Li, Phys. Rev. 84, 721 (1951).' F. -C. Pu, Dokl. Alod. Nauk SSSR 130, 1244 l1960l [English
transl. : Soviet Phys. —Doklady 5, 128 (1960)j."M. E. Lines, Phys. Rev. 135, A1336 (1964)."R.Kubo, J. Phys. Soc. Japan 12, 570 (1957).

where
=gps/V'P(Sp'Sp ),

Sp ——jV-'Pg; Sr; +g; Ss,*7,

(30)
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Fzo. 3. The theoretical temperature dependence of xil and x~
for a simple cubic antiferromagnet.

Si, =s(Sx;++Si; )
= (5/2)'I'Lbg;+by, *—(25)—'b„*b„.b„7, (3])

Ss'= (5/2)'"Lbs *+bp,—(25) 'bs.*bp *bs 7

The thermal average is easy to evaluate and the result is

xq= s(gpslv)spL1 —2(/vs) pk ek7(2mp+2tp+1) . (32)

The factor
SL1—2(/VS) 'Qkek7=m

is just the sublattice magnetization per spin. The quan-
tities np and fp both diverge but the sum 2ek+2/k+1
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FrG. 4. The theoretical temperature dependence of X|I and Xq
for a body-centered cubic antiferromagnet.

has a finite limit as k —+ 0. This limit is found to be

Thus,
2no+2ko+1 = [Ph (1+n)7 r

~

&r =m(glunS)/2h. (1+n) . (33)

At low temperatures both Eqs. (29) and (34) reduce to
the Oguchi results. Figures (3) and (4) show the be-
havior of the susceptibilities at high temperatures. The
initial T dependence of Xit and the initial drop of xj are
as predicted by the Oguchi theory. However, it appears
that X.& drops too drastically and X» rises too sharply
near T,„.This seems to indicate also that the theory
does not apply in this temperature region and the
instability at T -„ is unrelated to the phase transition
at the Noel temperature.

VI. DISCUSSION

There is one simple antiferromagnetic model that
permits some rigorous analysis, i.e., the one-dimensional
model for spin —', . This serves as a gauge to measure the
success of any theory of antiferromagnetism. For the
Hamiltonian in Eq. (1), the exact ground-state energy is"

Ep(exact) = —(2 ln2 ——,')XJ= —0.8863%7,

and the excitation spectrum at O'K is"

re~(exact) = (s-/2)
~

sink
~

= 1.57
~

sink
~

.

From the present calculation we find at O'K that

This gives the approximate ground-state energy and
excitation spectrum

Eo ——,
'——1VJ(2—2/s. ) ' = —0.926cVJ,

cog ——(2—2/7r)
~

sink
~

=1.36~ sink ~,

whereas the Anderson theory gives

Eo = —(s —2/m) 1'= —0.863'J,
pop =

i
SIIlk

i
.

—-', Xh.(S+c))Ep) —-', Sh, (5+c+c'/45) .

Since c'/4S is a 1% correction, we may conclude that
the simple spin-wave theory should give a very accurate
value for the ground-state energy of three-dimensional
antiferromagnets.

Korringa'4 suggested a different correction factor for
the spin-wave spectrum in the long-wavelength limit.
Following the argument of Ikeffer and I.oudon, " he
postulated that the correction factor to the spin-wave
energy should be the same as that for the ground-state
energy in the simple spin-wave theory. The latter factor
is easily found to be (1+2n) and so he obtains

pp„= (1+2n)[1—ys(ir) 7'&'

For a one-dimensional system, this works out to be

ppI, ——1.72
~

sink ~,

(34)

which is rather close to the exact result. Unfortunately,
his theory, which gives support to Eq. (34), does not
seem to apply to one-dimensional systems.
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