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Ordering in Linear Antiferromagnetic Chains with Anisotropic Coupling
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Some reasonable conjectures are made concerning the Gnite-temperature pair correlations of spins with

anisotropic antiferromagnetic coupling. These conjectures provide a general description of the ordering.

Using them together with the Gnite value of the zero-temperature susceptibility, one obtains

Sg &S3 «. . . 0 . . . «S4 &Sl,
where

S =1—(—1)"co„+2Z(og,

co~ is the zero-temperature pair correlation, and s&„ is the infinite-/ limit of
~

a~i ). Bonner and Fisher's finite-

chain extrapolations for &oi are in agreement with this result. Using their values of cut (f = 1&2P&4& ~ ) and the

inequality, bounds are computed for u5. The further conjecture that the rate of decrease in the absolute
value of the correlation with distance is monotonic leads to a contradiction near the Heisenberg limit. The
role of co„ in the inequality and its derivation is particularly interesting since the limit l ~ ~ followed by
T -+ 0 of the pair correlation of spins separated by t-1 spins is probably zero and not co . When the correla-
tions approximate their zero-temperature value out to a distance g such that (cps )

=id„and decrease slowly

thereafter with increasing separation, then Tx is approximately zero.

1. INTRODUCTION

&~ESPITE the simplicity usually associated with
one-dimensional problems, the linear magnetic

chain is in a sense more complicated than magnetic
systems of higher dimensionality. The lack of long-range
order at any finite temperature mak. es theories, such as
spin-wave theory, which are based on deviations from
an ordered state, inappropriate. Because of the absence
of complete ordering at finite temperatures, the linear
chain represents a favorable system for studying the
increasing amount of short-range ordering that occurs
with decreasing temperature.

The temperature dependence of the pair correlations
is known only in the case of Ising coupling. ' Falk' has
shown that the absolute value of the nearest-neighbor
correlations are nonincreasing functions of temperature
for Heisenberg coupling. Because of the paucity of
results for these correlations and their special relevance
to this problem, it is reasonable to make some general

conjectures concerning them in order to test their con-

sequences and gain some insight into the manner in

which the order increases with decreasing temperature.
An answer will be suggested for the question, How does

the finite-temperature order approach the zero-tempera-
ture order?

Bonner and Fisher' have used machine calculations on
finite linear magnetic chains with anisotropic coupling to
estimate the properties of infinite chains. In particular,
for antiferromagnetic coupling they have estimated the
zero-temperature pair correlation functions in zero

*National Science Foundation postdoctoral fellow. Present
address: IBM Watson Research Center, Yorktown Heights,
New York.' A. S. Edelstein, J. Chem. Phys. 40, 488 (1964).' H. Falk, J. Math. Phys. 5, 1478 (1964).' J. C. Bonner and M. E. Fisher, Phys. Rev. 155, A640 (1964).
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external magnetic field defined by

ni ——4 lim —(g SPS;+P), 7=0.
N~co g

It should be noted that Orbach4~has calculated cog

exactly in the case of infinite X and Walker' has
extended his work to find an expansion for co„. The
quantity oi„ is defined as the limit of

~

oi&
~

for large t and.

has been used by several authors, ' ' as a measure of the
long-range order. It is thought that cv„vanishes only for
isotropic coupling. The likelihood that co„/0 requires
that special care be tak.en in estimating certain sums

discussed below.
The Hamiltonian for a linear chain with anisotropic

coupling is
K X+X (2)

where

Xz ———2J g LS S;+,'+y(S,'S,+r +S,&S;+is)), (3a)

N

BCz ———gP Q S'H, J(0, 0(y(1, (3b)

and the magnetic field H is in the Z direction. The treat-
ment will be restricted to the case of spin -,'.

The zero-field susceptibility X(T) will be related to
the finite-temperature, infinite-chain, pair correlations.
The limit T —+ 0 such that gPH(&kT will be taken. One

must first consider pair correlations at infinite separa-
tion before the limit T—& 0 is taken. Certain reasonable
conjectures will be made concerning this double limiting
process which provide a general description of the order-

ing. From these conjectures and the fact that X(0)A oo

4 R. L. Orbach, Phys. Rev. 112, 309 (1958).' L. R. Walker, Phys. Rev. 116, 1089 (1959).
s T. W. Ruijgrok and S. Rodriguez, Phys. Rev. 119, 596 (1960).
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a set of inequalities involving the coz s will be obtained.
The special role played by the long range order ~„ in
these inequalities and their derivation is significant. The
long range order does not enter the problem in what
would seem to be the most obvious way. One would ex-
pect the physically relevant quantity to have the limits
taken in the opposite order. As will be discussed later, if
the limit of infinite separation is taken before the limit
T—& 0 then the result is probably zero and not ~„.

The fact that Bonner and Fisher's extrapolated
values' 'of co~ (l=1, 2, 3, 4, ~) satisfy these inequalities
supports the correctness of the conjectures. As an
example of one use of these inequalities, they will be
used in conjunction with the Bonner and Fisher values
of orz to compute bounds on co5.

1 N

~)(X,K)=——(g o;o;+(),
X ~=~

(9)

where K=J/2kT.
Despite the shift in indices in Eq. (9)

N—1

One might question the validity of Eq. (8) in the limit
T~ 0. Walker' has shown that the point y= 1, T=O,
H= 0 is a special point since the ground state energy as
a function of 7 is nonanalytic at y=1. Also, GriS.ths'
work' makes it highly likely that the magnetization is
not analytic at this point. The limits H —+ 0, T —+ 0 will

be taken such that gP~H ~((kT. Hence the point T=0
is of necessity excluded. The pair correlations are
defined by

2. GENERAL FORMULATlOÃ AND
CONJECTURES

)t(T)= lim P ng(X, K)
(gP)

" t=p
(10)

since all the pair correlations included in Eq. (8) are
correctly included in Eq. (10). In the subsequent treat-
ment, Swill be restricted to S even, but this should not
affect the result for X infinite. The difference between
the solution for S even and S odd goes to zero with
increasing S in the case of Ising coupling. ' GriKths"
has shown that in general the free energy of a spin
system is proportional to S for large S.

For 2X spins arranged in a ring o.2N+q=—0-q. Hence,
from the symmetry property vz= v z, it follows that

The low-temperature limit of the zero-field suscepti-
bility per particle,

(4)x(T) =lim lim
K~0 N~oo g QLIf2

where F=ln Tr[e ~'"r) will be used to test a set of
conjectures about the finite-temperature pair correla-
tions. From the differentiation one obtains

N

4k'(T)/(gP)s= lim —( P o,~;)
N g os~ ~(21V K)= ttl(2X, K), 0(l&$.

where

1 (2kT r)—lim lim —
~

F, (5)
rr-p &-~ 1'�(gp el~

'
Hence, from Eq. (10),

cr;= 25

(0)=Tr[oe ~~~" )/Tr[e ~a~s ) (gP)'

(6) 4kTX(T) = lim [1+2 Q og(2,V,K)+o~(2N, K)) (12)
N ~oo Z=1

The limit B~ 0 has been taken in the first term of Eq.
(5) by considering a Taylor's series in the Zeeman
Hamiltonian X, for gP~H~((kT. Each term of the
expansion is a product of a function of H and a function
of E. Hence the H —+ 0 limit can be taken before the
limit E—+~ is taken.

The second term on the right of Eq. (5) is proportional
to the square of the magnetization. In the limit H ~ 0
it is certainly zero. There is no spontaneous magneti-
zation in one dimension. Since the discussion is limited
to antiferromagnetic coupling the magnetization would
be zero even if there mere spontaneous sublattice
magnetizations since the sum of such magnetizations
would be zero.

Hence'

4kTX(T)/(gP)'= hm —( g o,o").
N-&oo g

7 J. C. Bonner (private communication).
s M. E. Fisher LPhil. Mag. 7, 1731 (1962)g has obtained an

equation of nearly the same form as Eq. (8). The derivation has
been repeated to emphasize that Eq. (8) is still valid for kT« (J (

provided that gp~H &&kT.

N—1
= lim Q [n, (21',K)+v,~r(21V,K)).

N ~ec Z=o
(13)

1. lim Q [n((2N, K)+n(+, (2V,K))

= lim lim Q [n((2V', K)+n(+, (21P,K)).
N~~ N~~~ Z=o

R. B. GrifIIths, Phys. Rev. 1M, A768 (1964)."R.B. GriKths, J. Math. Phys. 5, 1215 (1964).

It should be noted that from Eq. (9) it follows that
ttp(2$ K)= 1. Because the spins are in a ring, all the
correlations appear twice except the first and the last.
Equation (13) illustrates a property that will be
important, namely that the correlations appear in pairs.

We will consider the low-temperature limit of Eq. (13)
in order to illustrate what properties of the ordering are
important. In this limit it is necessary to first let S—+ ~
and then E—+ —~. The conjectures which will be
used are
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2. The limit N~oo of v~(2N, K) exists and will be
denoted by e&(K).

3 I.i+t(K) I & I si(K) I (14)
4. The correlations alternate in sign; i.e.,

'Us~at(K) (0(vs~(K) .
5. v&(K) converges uniformly to the zero-temperature

correlation co~ for / contained in all closed intervals of
the form

I O,M) for any M. This means that for any
e&0 there is a E~ depending upon M such that for
IK I ) I Ksrl, I tz(K) —

a&El (e for any 1&M.
6. For any e&0 there is an 3f, and E, such that for

l&M, and IKI + IK, I, Is&(K)+e&+&(K) I
&e

7. The second difference of lsg(K)l because of con-
jectures 3 and 4 can be written

~ ls (K) I= ls- (K)+~ «) I

—ln (K)+~+ (K) I (»)
This second difference as a function of / changes sign a
finite number of times.

Because these conjectures will be employed to con-
struct mathematical proofs, they are stated in a form
which facilitates their use; however, their content is
simple and reasonable. For example, the alternating
signs of conjecture 4 are almost certainly necessary if the
usual idea of an alternating spin arrangement is in any
sense valid. Certainly one expects the correlations to
decrease with separation but in Eq. (14) it is further
asserted that this decrease is monotonic. Conjecture 6
can be viewed as saying that as the separation becomes
very large, the small percentage increase in / caused by
increasing it by one causes a very small change in the
correlation. In the limit of large l the second difference
Aslv~l is just the second derivative of Is~(K) I

with
respect to l. The pair correlations would have to be very
"unsmooth" functions if conjecture 7 is invalid.

The manner in which s~(K) is presumed to converge
to &oq, conjecture 5, is illustrated in Fig. 1 where

I
s~(K)

I

is compared with or ~ I
.The correlation better and better

approximates
I
coq for larger and larger l with increasing

I
K I, but for any nonzero temperature it eventually de-

parts from I&ugl. The rate of this departure is tak.en to
decrease with increasing l and IKI; i.e., increasing
separation of the pairs and decreasing temperature. In
part these conjectures are just a restatement of the idea
that the short range order extends to greater distances
with decreasing temperature. The rapid broadening for

I
K

I )1 of the nuclear resonance line" of CuSO4 5HsO,
a substance approximating a linear chain, in a sense
supports conjecture 5, since the linewidth of such a
substance is strongly dependent upon the nearer
neighbor correlations.

The finite-chain results of Bonner and Fisher' support
these conjectures. For example, the agreement between
the extrapolated finite-E values of cog and co„and their
infinite-E value suggests the correctness of the second
conjecture. For E=6 and lV = 10 the last correlation is

"S.Wittekoek, N. J. Poulis, and G. E. Snip, Phys. Letters 11,
282 (1964).

1.0

Fro. 1. Approach of (eg (E) (
to (arg ) with decreasing temperature;

i.e., with increasing (XI.

larger in absolute value than the next to last. This
is probably due to the two possible paths around
the chain. Conjecture 3 concerns the infinite 3l limit,
and in the limit this end effect probably vanishes. At
y = 1.0, (I ~s

I

—
I ~4)/a&4 for N = 10 is 30%%u~ smaller than

(Icosi —Icosi)/(us for N=6, and this percentage differ-
ence is even greater for smaller values of y. Fisher" has
suggested that there is a possibility that conjecture 3
may be incorrect.

Of the conjectures, the first is probably the least
intuitive. By expressing some of the other conjectures
in terms of the infinite N limit of s&(2N, K), conjecture 1
can be eliminated. This has not been done for simplicity
and because the different conjectures would only be
sufBcient and not necessary.

If v~(K) is continuous, then

lim v~(K) =a&~.
X~oo (16)

Equation (16) by itself is not sufficient to take the low-
temperature limit or, in fact, to provide a satisfactory
understanding of the ordering. One question which
presents itself is: What is the value of

I
v~(K)

I
in the

limit of l —+ and then E—+ —? For Ising coupling '

Hence,
v (K)= (—tanhlKI)'.

lim limleg(K)
I
=0 for p=o.

If,~oo g~oo

(17)

These limits do not give co„ for y=0; i.e., unity. The
author believes that Eq. (18) is correct for all values of
y. If this is the case, then what is the significance of ~„?
The above conjectures will provide one answer to this
question, give a more complete description of the order-
ing, and lead to a restriction on the zero-temperature
pair correlations.

Note: the following proofs only use conjectures 3 and
4 in their limiting form E—+ —~. They were assumed
valid for all E to simplify the proofs slightly and to
suggest general properties.

"M. E. Fisher, Phil. Mag. 7, 1731 (1962).
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4»X(T)/(aP)'=2 L (K)+, (K)j—=5(K). (19)
l=0

Because of the pairing property, the general term is
vi(K)+ vi~i(K) and not 2oi(K).

In order to show that the sum S(K) converges in the
low temperature limit and get bounds on this limit, two
preliminary lemmas are necessary.

Lemma 1:For all e)0 there exists an M» such that
for 3f& JIJ/I»

IV~(K)—S„l««r IKI&IK~+il,
where

Vjr(K) =1+2 Q v—i(K)+~.M~i(K),
t,=»

(20)

Sxi—=1+2 Q ioi—(—1)~&o„. (21)

The quantity K~+» depends upon 3f.
Proof: For convenience the explicit dependence of iti

on E is not shown.

I v~(K) s~l = I2 2(~,——~,)y~,~+,

—Go~+i+co@gyi —(—1) M
I (22)

&2 + I
i'i ~il+ I o~+i ~~+il

+ I ~~+i—(1)"~-
I (23)

By de6nition there is an M» such that for M)3f»,
I coiir~i —(—1)~oi„

I
(e/3. By conjecture 5 there exists a

K~+i depending upon M such that for IKI) IK~+il
and 1&M+1 one has

I
ni cubi I

(c/—3 (M+1). Therefore

2M+1 e

i Via (E) Sia i
( e+——

3(M+1) 3

&e for M&Mi, IKI) IK~+iI .

Lemma Z: The lim„„S„exists and will be denoted by
S„,andS»&S, «. -S„« . S4&S2.

Proof: Equation (21) can be written S„=(1—ar„)

+2 P si, where si=cui —(—1)'cu„. Using the asymptotic
)=1

form of conjectures 3 and 4, one can show' that

I» i

= (—1) '(u —
cu

3. CONSEQUENCES OF THE CONJECTURES

The conjectures are now employed in an investigation
of the low temperature limit of Eq. (13). It will be
shown that this limit exists even if co„/0, and bounds
on this limit will be found. - These bounds are functions
of the zero-temperature pair correlations and include
ar„ in a crucial way.

Using Eq. (13) and the first two conjectures one has

pi= ei+iii+i (25)

Note that, as stated in connection with Eq. (19), the
general term for large I must be in the form y&. Because
of the decreasing and alternating of v& the terms y& also
alternate in sign. Further, y~ increases or decreases in

magnitude with increasing / in regions in which &2I ni
I

I
see Eq. (15)$ is negative or positive, respectively. Con-

sider the division of C (E) into partial sums in each of
these regions. Because of the monotonic character of y&

in regions in which 52I vil is of constant sign and also
because of the alternating signs, the partial sums (and
the last infinite sum) are each bounded by the rnaxirnum

y& in the region. Hence

lc(K) I &(p+1) lal & /3,

where p is the maximum number of times
changes sign for any value of K. That such a p exists
follows from conjecture 7. The quantity Q is the maxi-
mum y& for /&M. By conjecture 6 we can choose
M&M. and IKI & IK I

so that (p+1) Igl «/3.
By Lemma 2, Is~—S„l&e/3 for M&some M2.

By Lemma 1
I
viiI(K) Sitr I (e/3

IK I
& IK~+il .

For

M=msx{M, ,Mg, M,}, IKI)max{ IK, I, IKiir+il) (26)

all these conditions are simultaneously satis6ed. Hence

I
S(K)—S„l(e for K satisfying Eq. (26).

Using this theorem, Eq. (19) and the previous
definition K=X/2kT one has

S„=lim 4&TX(T)/(gP)2. (27)

GriKths' and Bonner and Fisher' have estimated that
JX(0)/(gP)'=0. 05066 for y=1. Bonner and Fisher's
work shows that X(0)=0 for y(1. Hence from their
work S„=O.

«nce Isi+il —Isil = (—1)i+i(~,+,y~,)(0 also s2$+],(0
& s&&. Thus S„ is an alternating series of steadily de-

creasing terms. Therefore,

51(53.~ ' ' ' (52~1(52m( ' ' ' (54(52. (24)

A»o IS+ 5 I(2ll~ +ii ~
I

for alive)1 The c»-
vergence now follows from the definition of co„and the
bounds from Eq. (24).

Theorem: limrr „S(K)=5„.
Proof: To facilitate the proof, S(K) is divided into

2 parts as follows:

is(E)—s„l= iv (K)—s„+s —s„
+ (i iir+i+ i ~g2)+ (i ~+~+ i iir+3)+

&
I v~«) —s~ I+ I

s~—5- I+ lc (K) I

where V~(K) was defined by Eq. (20) and C(K)
=yiir+i+giiry2+ ' ' '
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TABLE I. Values of S„for Q1ip 2y 3p 4.

S1 S2 S3 Errors'

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

—0.184—0.188—0.170—0.137—0.098—0.055—0.024—0.008—0.001
0.000
0

0.316
0.296
0.260
0.197
0.114
0.039
0.008
0.006—0.'001
0.000
0

—0.068—0.074—0.050—0.021—0.006
+0.001—0.004

0.000—0.001
0.000
0

0.232
0.214
0.176
0.119
0.060
0.017—0.002
0,002—0.001
0.000
0

~0.01
~0.01
~0.01
~0.02
~0.02
~0.02
~0.01
~0.005
~0.001
~0.0001

0

a Errors in co~ from Ref. 7. The errors in S~ could be larger.

Note that if one could find the minimum
~

E(e)
~

satis-

fying Eq. (26), then the theorem provides an upper
bound on the susceptibility, namely 2

~

J
~

&( (gP)'
&& e

~
E(e)

~

.This could be useful since it is possible that X

vanishes as K~~ for Heisenberg coupling. '" From
Lemma 2 it follows that

S (S3( (S„=0( (S4(S2.

Values of S„(e=1, 2, 3, 4) are shown in Table I based
on Bonner and Fisher's values' ' of co~ for various values
of p. The values of S„bracket zero very closely for
p(0.5. They violate Eq. (28) by amounts well within
the estimated errors' in the ~~'s.

Since for yW1 the limp p X(T)~ 0 exponentially, '
it is quite possible that the limiting behavior described

by conjectures 5 and 6 is also exponential.
As a demonstration of one use of these relations

Table II shows lower bounds on cps based on
~
cps

~

(
~

cp4
~

and upper bounds based on Eq. (28); i.e.

5s——54+ 2 (cps+cp„) (0,
G05( —~S4—co .

(29)

(30)

TABLE II. Sounds on u5.

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

Lower
bound

404

—0.150—0.180—0.225—0.297—0.405—0.545—0.695—0.825—0.921—0.980—1.0

Upper
bound—S4/2 —cd„

—0.116—0.143—0.198—0.287—0.402—0.546—0.693—0.825—0.920—0.980—1.0

Upper
bound

—0.000—0.036—0.112—0.227—0.372—0.537—0.694—0.824—0.921—0.980—1.0

Errors'

~0.01
~0.01
~0.01
~0.02
~0.02
~0.02
~0.01
~0.005
~0.001
~0.0001

0

a Errors in ~~ from Ref. 7. The errors in the bounds could be larger.

"Z. G. Soos, J. Chem. Phys, 43, 1121 (1965l.

For comparison purposes values of —co are also shown

as upper bounds. It is seen that Eq. (30) gives much
better bounds.

Because of conjecture 3, the absolute value of the
correlation ~vi~ is a decreasing function of /. If the
further conjecture is made that the rate of this decrease
is monotonic, then As

~
vc

~
)0. With this added condition

a simple proof shows that Eq. (28) is also correct if S
is replaced by

Gn E (oil+eel+i) .
lM

(31)

Conjecture 6 is necessary to prove the convergence of
6„,but is not necessary to obtain the bounds.

Because this conjecture, 6&
~

vc
~
)0, can be seen from

Eq. (17) to be correct for Ising coupling one might
think it is generally correct. However, using Bonner and
Fisher's values one finds that G3)0 for y greater than
about 0.5; i.e., the inequality is not satisfied. Hence,
for these values of y, it is likely that the slope of

~
v&

~
is

not monotonic. This implies that As
~

vi
~

has at least two
zeros near the Heisenberg limit. These zeros probably
occur at relatively small / values before v& takes on an
asymptotic form. " Conjecture 7 depends upon the
large l behavior.
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4. DISCUSSION

A reasonable set of conjectures concerning the pair
correlations w'hich provides a general picture of the
ordering has led to a set of inequalities, Eq. (28). These
conjectures are merely sufficient to derive Eq. (28).
Slightly different conjectures would also lead to this
equation. It is hoped that future work will verify these
conjectures and that Eq. (28) can be used as a rigorous
relation to test approximate calculations. Equation (28)
can also be used to place upper bounds on co„ if accurate
values of co~ become available.

The inequalities are consistent with present predic-
tions for the quantities involved. This agreement
suggests the validity of the conjectures made. In the
inequalities and their derivation, ar„plays a funda-
mental role. This role partially explains the importance
of cp„even though lim&~„~ v&(E)

~
is probably zero for

T&0.
When the correlations approximate their zero-tem-

perature values out to a distance j such that ~cps~ =cp„
and decrease slowly thereafter with increasing separa-
tion, then TX is approximately zero. This follows from
the proof of the theorem. In the worst case, y=1.0, co4

is already within 15% of cp„=0. Therefore, it seems
reasonable that values as small as 20 may suflice for P.
The correlations vc for /) $, which are, in general, less
than ~„, tend to cancel one another in pairs.


