
COLL I S I ON —I N DU CE D M I XI N G I N STATES OF Na AN 0 K

Collision
partners

Na-He
Na-Ne
Na-Ar
Na-Kr
Na-Xe
K-He
K-Ne
K-Ar

Noble gas pressures (in Torr)
needed to ensure 65, 80, and 95% mixing

80% 95%

7 16 75
15 32 152
10 21 99
10 23 107
12 26 125

8 32
24 51 215
12 26 108

TABLE II. Noble gas pressures needed to ensure various degrees
of mixing. The degree of mixing is de6ned as the fraction of the
high-pressure limit of the Dz/Dz ratio observed at a given buBer
gas pressure, and under conditions of pure D~ excitation.

limit to the degree of mixing between hyper6ne structure
magnetic sublevels in those optical pumping exper-
iments' in which an alkali vapor is exposed to resonance
radiation while immersed in a noble gas. We elect to
define the "degree of mixing" as the fraction of the
high-pressure limit of the Ds/Dr ratio observed at a
given buffer gas pressure, and under conditions of pure
D& excitation. The high-pressure limit is just twice the
Boltzmann factor and appears as 2E in Eq. (2). Table
II lists the buffer gas pressure required for various
degrees of mixing. The fact that relatively high pressures
are required to achieve 95% mixing simply reflects the
algebraic rather than exponential nature of Eq. (2).

their particular need for accurate wave functions of the
alkali —noble gas quasimolecule. "

The present data can be used to predict an upper

'e W. R. Thorson (private communication).
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A survey is given of techniques for spectroscopic analysis using intensity Quctuations. Particular attention
is given to counting times, the role of macroscopic sources and detectors, and the electronic constraints placed
on the observations.

I. INTRODUCTION

ARIOUS techniques have been suggested in the
past few years for applying the study of intensity

Quctuations to spectroscopic analysis. An excellent re-
view of these has been given by Wolf and by Glauber. '
We have recently provided a quantum-mechanical
description' of intensity correlations in connection with

* Supported in part by grants from the U. S. Air Force Once of
Scientihc Research, the U. S. Atomic Energy Commission, and
the National Science Foundation.' E.Wolf, Proceedings of the I.C.O. Conference on Photographic
and Spectroscopic Optics, Tokyo, Japan, 1964, J. Appl. Phys.
(Japan) (to be published); R. J. Glauber, in Qzzantzzm Optics and
Rtectronzcs, edited by C. DeWitt et al. (Gordon and Breach
Science Publishers, Inc. , New York, 1965).

'M. L. Goldberger, H. W. Levris, and K. M. Watson, Phys.
Rev. 132, 2764 (1963).This paper will be referred to as I.

a method for measuring the phase of a scattering ampli-
tude in x-ray scattering. We shall here apply this
quantum-mechanical analysis to several of the proposed
spectroscopic techniques. We have in mind particularly
the observation of the shape and width of a single
spectral line. Although the relevant machinery was
completely discussed in Ref. 2, we shall utilize some
notational simpli6cations which have been developed in
some later work. ' 4

We shall consider measurements of intensity Quctua-
tions and time correlations in detectors at separate
space points. The classical theory of these is described

I M. L. Goldberger and K. M. Watson, Phys. Rev. 137, 81396
(1965).This paper will be referred to as II.' M. L. Goldberger and K. M. Watson, Phys. Rev. 140, B500
(1965).This paper will be referred to as III.
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tector have small angular apertures in the sense that

L,/F&(1, Le/I'((1. (2.2)

Detector
Source

The photon flux (number of photons/cm' sec) at a
point y= Y+n at a point in the detector is

Filter F(y) =E&/4try', (2.3a)
Fro. 1. Schematic illustration of photon counting.

by Born and Wolf. ' The study of Quctuations in connec-
tion with spectroscopy has been reviewed by Mandel. '
The use of space correlations is essentially the technique
of Hanbury-Brown and Twiss. ' A related method in-
volving interference of Fourier components in a non-
linear device has been suggested by Forrester. '

In Sec. II we review' the general features of the
problem, paying particular attention to the effect of
macroscopic sources and detectors and to electronic
limitations. The presentation will be reasonably self-
contained, but will not include the derivation of some
basic formulas which were given in I, II, and III.
Specific applications will be discussed in detail in Secs.
III and IV. In Sec. V we describe the use of lenses and
other optical instruments in such experiments.

where E& is the equivalent isotropic source intensity.
The corresponding differential Aux at frequency or,
ln de, is

dF =F(y)g (co)ceo, (2.3b)

where the spectral function g(co) is normalized to unity:

(2.4)

d~Lg(~)j' (2 5)

LThe definition of hcoz is somewhat arbitrary; for a
Lorentz shape

The spectral width of the source Aced~ is defined in terms
of gby

II. THE OBSERVATION OF INTENSITY
CORRELATIONS

In this section we review those results of II and III
of relevance to the present study. Our discussion will

hopefully be su%ciently complete that reading papers I,
II, and III is not necessary unless missing derivations
are desired.

We consider a quasicoherent source, ' 5, of optical
radiation, as illustrated in Fig. 1.Light from the source
is detected by a photon counter D after passing through
a filter which restricts the radiation to an angular fre-
quency interval Ace& at a frequency coo. We suppose that

Acog+Qco o . (2 1)

The source-detector separation is described by a vector
Y from a 6xed point in the source to a fixed point in the
detector. Arbitrary points in source and detector are
designated by vectors s and u, respectively, measured
from the fixed reference points (see Fig. 1). The linear
dimensions of the source (detector) are characterized by
the parameter L, (Le) while the corresponding areas are
written as Z, and Z~. We imagine that source and de-

' M. Born and E. Wolf, Prittciples of Optics (The Macmillan
Company, Inc. , New York, 1964), 2nd ed.

'L. Mandel, in Symposium on Electromagnetic Theory and
Antennas (Pergamon Press, Inc. , oxford, England, 1963).

"I R. Hanbury-Brown and R. Q. Tvriss, Phil. Mag. 45, 663
(1954); Proc. Roy. Soc. {I.ondon) 243A, 29I (195').' A. T. Forrester, J. Opt. Soc. Am. Sl, 253 (1961l.' We used the term "incoherent" in II and III to describe what
is often called "quasicoherent" radiation in optics. In this paper
we revert to the more conventional notation.

Following the notation of our earlier papers, we
represent the detector Lcalled detector 1 since we shall
shortly introduce a second detector 2j by the counting-
rate operator at time T:

Gl(71) = dti Li(&i—ti) d'yi 7r(yl)

et'xttg(yi xt)e iKttt. (2—.6)
L=I

Here the sum on l runs over the e photons emitted by
the source during the time interval T of a given observa-
tion. The quantity x& is the space coordinate of the /th
photon, and K& is its kinetic-energy operator. The
integral on y& runs over the volume of detector 1. We
shall assume that yy, a factor taking into account the
eKciency and calibration of the counter, is a constant.
Finally, L& is the transient response function of the
counter, which we write as

" dQ
Li(r) = —Br(n)e-'n',

— 2x

Li(r) =0, for r(0.
(2.7)

" dO—lB (Q)l'.
„2x

(2.g)

A characteristic response time hr„ for the detector is
defined by the expression
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[For a simple RC 61ter, where

L(s) = (exp( r/—RC))/RC, hr„= 2RC

The wave function at time t for the n-photon system
is LSee Eq. (2.1) of IIj

Delay
line

Detector I

(2.9) Correlator

Detector 2

or
Bi(0)=1,

Bi(0)=0,

(2.12a)

(2.12b)

corresponding to placing a dc blocking filter in the
detector output. The latter choice is convenient when
discussing Quctuation experiments, so it is worthwhile
to de6ne the mean counting rate in the absence of a
blocking filter, namely,

(Gi)o= (Gi)/&i(0) . (2.13)

An explicit evaluation of the counting rate, Eq. (2.10),
in terms of the wave function of the system, Eq. (2.9),
yields

(2.14)(Gi) +1(0)+ltel'Il+X (1)
where

n= (is), (2.15)

wi is the detector thickness, and Lsee Eq. (2.19), 111$

y (1)= ((C;*(yi,h)c;(yi, 4)))
=Rn/4s-cyis, (2.16)

with c the velocity of light. The point y& may be taken

is We nse the notation Zq. (2.15), III to indicate Zq. (2.15) oi
Paper III, etc.

where C; is that for the sth photon. The symbol 8 means
to take the symmetrized product of the C's. As in I and
II, we are interested in the ensemble average of many
observations, each conducted for a time interval T. We
suppose that on performing the ensemble average, the
C; have random phases and are effectively orthogonal.
Mean beam properties such as the photon Qux are
considered to remain constant during the interval T.
There are some delicacies associated with a coordinate
space representation of photons which we shall not go
into here. They are of no quantitative significance.

The mean rate of counting photons is then

(G )=((4(0) G (T )f(0))),
where ( ~ ~ ) denotes the ensemble average. By assurnp-
tion this rate is independent of T1 and has the form

i
see's Kq. (2.15), III]

(Gi) +i(0)~i'pi+(~1) ~ (2.11)

Here ZI is the area of the active detector volume and
tii is the detector efliciency. Actually Eq. (2.11) is just
a definition of q1 since all of the other factors must enter
into the counting rate. In our previous papers we
assumed either

FIG. 2. An intensity correlation experiment.

anywhere in the detector volume because we have
assumed that x(1) is constant over the detector and also
independent of the time ii in deducing Eq. (2.14). By
comparing our two counting rate expressions, Eqs.
(2.11) and (2.14), we complete the definition of the
eKciency p1 or, as we prefer to use it, p1.

xi= (c/~i) Vi. (2.17)

Although the counter thickness m1 does not enter into
our results in a critical way, it is worthwhile saying a
little about it. Since our counting rate operator G1
defined by Eq. (2.6) does not take into account the
stopping of photons in the detector, we interpret m1 as a
measure of the depth of penetration of the photons into
the counter, assuming this to be less than the actual
counter thickness.

We turn now to the description of an intensity corre-
lation experiment, schematically illustrated in I ig. 2.
Here we have added a second detector, referred to as 2.
This will be described by a counting-rate operator,
Eq. (2.6), etc. , but distinguished by a subscript 2. In a
correlation experiment, both detectors are used simul-
taneously to count photons from the source. We imagine
the instantaneous output from detector 1 to be fed into
a delay line and then mixed with that from 2 in a
correlator which multiplies the two outputs. The
correlator output in turn is represented by the operator

Gis(~) =Gis(Ts, Ti) Gs(Ts)Gi(Ti). (2.18)

Here v = T2—T1 is the delay deliberately introduced by
our delay line. In writing Kq. (2.18) we are tacitly
assuming that the counting operators G1 and 62 com-
mute. This is not rigorously true, but this particular
quantum-mechanical effect does not lead to quantita-
tively important corrections. A precise formulation of
the theory of correlated counting rates is given in an
earlier paper. '

A special case of the experiment just described is that
in which a single detector is used. In this case we
imagine that the detectors 1 and 2 referred to in Kq.
(2.18) coalesce into one. To do such an experiment, one
might split the detector output into two equal signals,
pass one through a delay line, and then mix them in a
correlator. $A specific example will be discussed in
Sec. IV.j Formally we may go from the general two-
detector analysis to the single-detector case by equating
the subscripts 1 and 2 at an appropriate point.
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Of Order rM„/EMr, . We may alSO Write I, aS Fourier integral, in which case we have

I.bb(P) = dM g(M)e'k" "'iP (3.3b)

with

I,bb(P) = dM g(M)e'"

where coo, the central line frequency, is defined by

Mp= dM Mg(M) . (3.5)

In the measurement of the autocorrelation function
with a single detector Lwhere P reduces to —(Ts—Ti)7
or the use of two detectors, the measured quantity, in
fact, is I,bb(P). Unfortunately, an observation of

I,bb(P) is not sufficient to determine the spectral func-
tion g(M) uniquely, since the phase of the integral over

g(M) is unspecified. This "phase problem" arises in a
number of contexts, most notably in x-ray structure
analysis. It has been discussed in the present context by
Wolf."It was argued in I that the observation of I,bb

can be used to deduce a finite set of g(M). It is possible
that the correct one of these can be found from physical
considerations, such as the non-negative character of

g (M). This seems to be usually the case in x-ray structure
analysis. On the other hand, there are a number of
features of the line that are independent of the phase
question, and are therefore best suited to an initial
exploration of intensity interferometry. For example,
the second moment of the line is determinable from the
dependence of the correlation function on I' for small E,
as illustrated by

(dI,bb/dP) ) P p 0,
(3.6a)

(d I~b/dP ) ~P-p= —2 dM(M —Mo) C(M) ~

where we recall the previous definition of Mp, Eq. (3.5).
A probably useful example can be discussed, in which

a collision-broadened line is further Doppler broadened
in the center. Such a line may be observed in the
emissions from a hot plasma; we can simulate its shape
(for a narrow line) by

B(M) = dM'g(M'+M)a(M')

It is easy to see that if g(M) is concentrated in a line of
width AM&. , G(M) has practically zero amplitude outside
the interval —28 Mr, &M &+28Mr, . It is this feature that
makes intensity-correlation experiments less sensitive
to the geometrical alignment problems than are classical
interferometric techniques.

The all-important signal-to-noise ratio may be ob-
tained from our general expression, Eq. (2.40). We use
)from Eqs. (2.11), (2.3a), and (2.8c)j

(Gi)p= (Gp)p=gZeRn/4s Y',

I,= Ys) s/Z, Zp,

and also set I,=1.We find

S/N= (S/N)bb= srl(Thr, ) i —(VR~/47rZ, ) . (3.7a)

This expression may appear surprising, since it does
not depend on the source-detector distance F or on the
detector area Z~. The reason is that we have assumed
the limit o.((1 in Eq. (2.28c). For large enough Y, I,=1
and S/N becomes

S/N= ,'rl(Thr, )"(R—rrZn/4rrYs) . (3.7b)

It is clear that to maximize the ratio S/N one should
choose hv-„as large as possible consistent with the
restriction 67„heel(&1. Had we considered the case
0 r,hM i»1 we should have found that S/N was reduced
by a factor (hr, hMr) ', so that the maximum signal-
to-noise ratio is obtained for hT AMy

For a source with black-body (BB) intensity on the
spectral line of frequency coo and temperature 8 we Gnd
from (3.7a)

(S/N) nn ——(5M &,/2rr) rl(TQr, )"
X{exppsMp/8j —1}—'. (3.8)

where

a(M) =
2m3/2

kr'= 3fe'/2M psk T

~2 Q2

A~
(M —M p

—s)'+ I"'/4
(3.6b)

S/N =50r)+T, (3.9)

As another example, let us assume the mercury-arc
source of Forrester et c/." We take Ar„= 1.0 " sec,
R~/4s. Z=2X10" photons/cm' sec, )k=5.48X10 ' cm,
and obtain

is the Doppler-broadening parameter. For this shape,
according to Eq. (3.3b), the correlation function is

(P)—e 1'P Pl 2as——(3.6c)

so that both the Lorentzian parameter I' and the
Doppler parameter n are directly determined by a
measurement of the correlation function.

It is sometimes convenient to write I,bb(P) as a

'4 E. Wolf, Proc. Phys. Soc. (London) 80, 1269 (1962).

where T is measured in seconds.
Up to this point we have assumed that Aco~=du~.

Another case of interest is that where the electronics is
still fast insofar as the line is concerned t i.e., hr, hMs(&11
but her~ is so broad that

A7 „AGogp+1 . (3.10)

"A.T. Forrester, R. A. Gudmundsen, and P. O. Johnson, Phys.
Rev. 99, 1691 (1955).
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