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TasLE II. Noble gas pressures needed to ensure various degrees
of mixing. The degree of mixing is defined as the fraction of the
high-pressure limit of the D,/D, ratio observed at a given buffer
gas pressure, and under conditions of pure D; excitation.

Noble gas pressures (in Torr)

Collision needed to ensure 65, 80, and 959, mixing

partners 65% 80% 95%
Na-He 7 16 75
Na-Ne 15 32 152
Na-Ar 10 21 99
Na-Kr 10 23 107
Na-Xe 12 26 125
K-He 4 8 32
K-Ne 24 51 215
K-Ar 12 26 108

their particular need for accurate wave functions of the
alkali-noble gas quasimolecule.!8
The present data can be used to predict an upper

18 W. R. Thorson (private communication).
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limit to the degree of mixing between hyperfine structure
magnetic sublevels in those optical pumping exper-
iments® in which an alkali vapor is exposed to resonance
radiation while immersed in a noble gas. We elect to
define the ‘“degree of mixing” as the fraction of the
high-pressure limit of the D,/D; ratio observed at a
given buffer gas pressure, and under conditions of pure
D, excitation. The high-pressure limit is just twice the
Boltzmann factor and appears as 2K in Eq. (2). Table
IT lists the buffer gas pressure required for various
degrees of mixing. The fact that relatively high pressures
are required to achieve 959 mixing simply reflects the
algebraic rather than exponential nature of Eq. (2).
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A survey is given of techniques for spectroscopic analysis using intensity fluctuations. Particular attention
is given to counting times, the role of macroscopic sources and detectors, and the electronic constraints placed

on the observations.

I. INTRODUCTION

ARIOUS techniques have been suggested in the
past few years for applying the study of intensity
fluctuations to spectroscopic analysis. An excellent re-
view of these has been given by Wolf and by Glauber.!
We have recently provided a quantum-mechanical
description? of intensity correlations in connection with

* Supported in part by grants from the U. S. Air Force Office of
Scientific Research, the U. S. Atomic Energy Commission, and
the National Science Foundation.

1 E. Wolf, Proceedings of the I.C.0O. Conference on Photographic
and Spectroscopic Optics, Tokyo, Japan, 1964, J. Appl. Phys.
(Japan) (to be published); R. J. Glauber, in Quantum Optics and
Electronics, edited by C. DeWitt ef al. (Gordon and Breach
Science Publishers, Inc., New York, 1965).

2 M. L. Goldberger, H. W. Lewis, and K. M. Watson, Phys.
Rev. 132, 2764 (1963). This paper will be referred to as I.

a method for measuring the phase of a scattering ampli-
tude in x-ray scattering. We shall here apply this
quantum-mechanical analysis to several of the proposed
spectroscopic techniques. We have in mind particularly
the observation of the shape and width of a single
spectral line. Although the relevant machinery was
completely discussed in Ref. 2, we shall utilize some
notational simplifications which have been developed in
some later work .34

We shall consider measurements of intensity fluctua-
tions and time correlations in detectors at separate
space points. The classical theory of these is described

3 M. L. Goldberger and K. M. Watson, Phys. Rev. 137, B1396
(1965). This paper will be referred to as II.

4M. L. Goldberger and K. M. Watson, Phys. Rev. 140, B500
(1965). This paper will be referred to as III.
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Fic. 1. Schematic illustration of photon counting.

by Born and Wolf.5 The study of fluctuations in connec-
tion with spectroscopy has been reviewed by Mandel.®
The use of space correlations is essentially the technique
of Hanbury-Brown and Twiss.” A related method in-
volving interference of Fourier components in a non-
linear device has been suggested by Forrester.®

In Sec. II we review the general features of the
problem, paying particular attention to the effect of
macroscopic sources and detectors and to electronic
limitations. The presentation will be reasonably self-
contained, but will not include the derivation of some
basic formulas which were given in I, II, and III.
Specific applications will be discussed in detail in Secs.
IIT and IV. In Sec. V we describe the use of lenses and
other optical instruments in such experiments.

II. THE OBSERVATION OF INTENSITY
CORRELATIONS

In this section we review those results of II and III
of relevance to the present study. Our discussion will
hopefully be sufficiently complete that reading papers I,
II, and III is not necessary unless missing derivations
are desired.

We consider a quasicoherent source,® .S, of optical
radiation, as illustrated in Fig. 1. Light from the source
is detected by a photon counter D after passing through
a filter which restricts the radiation to an angular fre-
quency interval Awp at a frequency wo. We suppose that

2.1)

The source-detector separation is described by a vector
Y from a fixed point in the source to a fixed point in the
detector. Arbitrary points in source and detector are
designated by vectors s and u, respectively, measured
from the fixed reference points (see Fig. 1). The linear
dimensions of the source (detector) are characterized by
the parameter L;(L,) while the corresponding areas are
written as 2; and X4 We imagine that source and de-

AwpLwy.

8 M. Born and E. Wolf, Principles of Optics (The Macmillan
Company, Inc., New York, 1964), 2nd ed.

6 L. Mandel, in Symposium on Electromagnetic Theory and
Antennas (Pergamon Press, Inc., Oxford, England, 1963).

7?R. Hanbury-Brown and R. Q. Twiss, Phil. Mag. 45, 663
(1954) ; Proc. Roy. Soc. (London) 243A, 291 (1957).

8 A. T. Forrester, J. Opt. Soc. Am. 51, 253 (1961).

® We used the term “incoherent” in IT and III to describe what
is often called “quasicoherent” radiation in optics. In this paper
we revert to the more conventional notation.
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tector have small angular apertures in the sense that
L/V<K1, Lg/V<K1. (2.2)

The photon flux (number of photons/cm? sec) at a
point y=Y-u at a point in the detector is

F(y)=Rp/4ry*,

where Rp is the equivalent isotropic source intensity.
The corresponding differential flux at frequency w,
in dw, is

(2.3a)

dF=F (y)g(w)de, (2.3b)

where the spectral function g(w) is normalized to unity:

/dwg(w)=1-

The spectral width of the source Awg is defined in terms
of g by

(24)

1
—- / dlg(@) ] (25)

WB

[The definition of Awp is somewhat arbitrary; for a
Lorentz shape

g(w)=/2m)[ (0—wo)*+T?/4],

Following the notation of our earlier papers, we
represent the detector [called detector 1 since we shall
shortly introduce a second detector 27] by the counting-
rate operator at time 7':

Awp=Tr].

00

Gi(Ty)= dt Ll(T1—i1)[ d*y1 v1(y1)
1

—00

XY eKing(y—xp)e K, (2.6)

=1

Here the sum on / runs over the » photons emitted by
the source during the time interval 7" of a given observa-
tion. The quantity x; is the space coordinate of the /th
photon, and K; is its kinetic-energy operator. The
integral on y; runs over the volume of detector 1. We
shall assume that 3, a factor taking into account the
efficiency and calibration of the counter, is a constant.
Finally, L, is the transient response function of the
counter, which we write as

L= 2p @)

T)= —B;(Q2)e?7,

' o 21 ' 2.7
Li(r)=0, for 7<0.

A characteristic response time A, for the detector is
defined by the expression

1 ® dQ
= — 1 2_
f_ 5@

Ty w0 &

(2.8)
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[For a simple RC filter, where
L(r)=(exp(—7/RC))/RC, A7,=2RC.]
The wave function at time ¢ for the #-photon system
is [See Eq. (2.1) of IT]

lﬁ(t)-_—' $ ﬁ q)i(xist) ’

i=1

(2.9

where ®; is that for the ¢th photon. The symbol 8§ means
to take the symmetrized product of the ®’s. Asin I and
II, we are interested in the ensemble average of many
observations, each conducted for a time interval 7. We
suppose that on performing the ensemble average, the
®; have random phases and are effectively orthogonal.
Mean beam properties such as the photon flux are
considered to remain constant during the interval 7.
There are some delicacies associated with a coordinate
space representation of photons which we shall not go
into here. They are of no quantitative significance.
The mean rate of counting photons is then

(G)=(@(0),GL(T1)¥(0))}, (2.10)

where (- - -) denotes the ensemble average. By assump-
tion this rate is independent of 7'y and has the form
[see!® Eq. (2.15), I1T]

(G1)=B1(0)ZmF (Y,). (2.11)

Here 2 is the area of the active detector volume and
71 is the detector efficiency. Actually Eq. (2.11) is just
a definition of 7 since all of the other factors must enter
into the counting rate. In our previous papers we
assumed either

B1(0)=1, (2.12a)

or

B1(0)=0, (2.12b)

corresponding to placing a dc blocking filter in the
detector output. The latter choice is convenient when
discussing fluctuation experiments, so it is worthwhile
to define the mean counting rate in the absence of a
blocking filter, namely,

(G1)o=(G1)/B1(0).

An explicit evaluation of the counting rate, Eq. (2.10),
in terms of the wave function of the system, Eq. (2.9),
yields

(2.13)

(G1)=B1(0)Zswyyriix (1), (2.14)

where
Aa={n), (2.15)

w; is the detector thickness, and [see Eq. (2.19), IIT]

x(1)=((@* (y1,)®:i(y1,11)))
=RB/41T6y12 , (216)

with ¢ the velocity of light. The point y; may be taken

10 We use the notation Eq. (2.15), III to indicate Eq. (2.15) of
Paper III, etc.
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FiG. 2. An intensity correlation experiment.

anywhere in the detector volume because we have
assumed that x (1) is constant over the detector and also
independent of the time #; in deducing Eq. (2.14). By
comparing our two counting rate expressions, Egs.
(2.11) and (2.14), we complete the definition of the
efficiency 7, or, as we prefer to use it, v1:

v1= (¢/w1)n. (2.17)

Although the counter thickness w; does not enter into
our results in a critical way, it is worthwhile saying a
little about it. Since our counting rate operator G
defined by Eq. (2.6) does not take into account the
stopping of photons in the detector, we interpret w; as a
measure of the depth of penetration of the photons into
the counter, assuming this to be less than the actual
counter thickness.

We turn now to the description of an intensity corre-
lation experiment, schematically illustrated in Fig. 2.
Here we have added a second detector, referred to as 2.
This will be described by a counting-rate operator,
Eq. (2.6), etc., but distinguished by a subscript 2. In a
correlation experiment, both detectors are used simul-
taneously to count photons from the source. We imagine
the instantaneous output from detector 1 to be fed into
a delay line and then mixed with that from 2 in a
correlator which multiplies the two -outputs. The
correlator output in turn is represented by the operator

G12(1)=G12(Te,T1)=Gao(T2)G1(T1).  (2.18)

Here 7=T'»— T is the delay deliberately introduced by
our delay line. In writing Eq. (2.18) we are tacitly
assuming that the counting operators G; and G, com-
mute. This is not rigorously true, but this particular
quantum-mechanical effect does not lead to quantita-
tively important corrections. A precise formulation of
the theory of correlated counting rates is given in an
earlier paper.?

A special case of the experiment just described is that
in which a single detector is used. In this case we
imagine that the detectors 1 and 2 referred to in Eq.
(2.18) coalesce into one. To do such an experiment, one
might split the detector output into two equal signals,
pass one through a delay line, and then mix them in a
correlator. [A specific example will be discussed in
Sec. IV.] Formally we may go from the general two-
detector analysis to the single-detector case by equating
the subscripts 1 and 2 at an appropriate point.
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If the correlator in Fig. 2 were a simple square-law
device and if the signals were added linearly ahead of it,
the relevant quantity for our intensity correlation
experiment would become

Gsr(To,T1)=[Gu(T1)+G(T) I
= [GU(T) P+ [Go(T2) P+4-2G1o(T, T1) . (2-19)
Evidently all of the terms in Eq. (2.19) may be obtained
from suitable specialization of Gi2(7s,T4), for example
by setting 2 equal to 1 and getting G2
For subsequent order-of-magnitude estimates we
shall feel free to set
z 1= 22 = 2,1 y
WIR W= W,
B 1= B 2= B y
Y1z Y2‘f‘v’ Y y

(2.20)

although in practice this is entirely unnecessary.
The average correlator output during an interval T,
as obtained in I and II, in the notation of IL,* is

(G12(7) = (G1){G2)+372 / ) / @2)|x12)]z. (2.21)

Here we have written

()= f ) dhLy(T1—t) / Py, (222)

and similarly for 2, and [compare Eq. (2.16)]
x (12) = (@ (y1,1)P:(y2,t2))
RB dss
=47r6’ﬁ,/,‘5' Vle(S)Dz(Sg) /dw g(w)
Xexp{iw[ (1/¢)(Da2(s)—Di(s))— (te— 1)1} ,
(2.23)

where
Di(s)=y1—s,

D:(s)=y.—s, (2.24)

and the integral over source points extends over the
source volume V.

For analytical (and presumably practical) con-
venience we shall assume that the experimental geome-
try is so chosen that [here A=2mc/wo, and strictly
speaking | V1— Y| should be replaced by max|y;—ya| ]

2| V1—Y,| AV, (2.25a)
and
(Aws/c)0a(Z )KL, (2.25b)

where 6 is the angular spacing of the two detectors as
seen from the source (or simply theangularsize (£4)2/Y
in the case of a single detector). It is also true that

11 See Eq. (2.37), I1.

142

except in oscillating exponentials the replacement

1)1z Y] N .D2z Yz , (225C)
is harmless.

It follows from the conditions (2.25) that the funda-
mental quantity x(12) defined by Eq. (2.23) may be
split into a purely geometrical factor and one which
depends intrinsically on the beam spectral function
g(w). [See Eqgs. (2.26), III for further discussion.|] We
find

x(12)=x, (12)0(12), (2.262)

where

Rp
% 12)=——— [du gt
47['077,Y1Y2

Xexp liw[%(yz)—-yl)—— (ta— tl):” , (2.26b)

and

d33 o
S Vs [

We may now express the average correlator output
(G12(7)), Eq. (2.21), in the form

(Gua)= (Gr){Go)+ 271, / o f @0, @27

where [see Eq. (2.31), IIT]

d*; [ d*,
zs=f-—/——|Q<12)lﬁ-
1 E1 2 22

Here vy is the projection of uy=y;—Y: on a plane
perpendicular to Yy, etc. I, is a function of the dimen-
sionless quantity o=YVA2/2,2; (taking Vi=V,=YV
here) and has the limiting values

I=1, a>1, (2.28b)

=VN/23,;, oKl. (2.28¢c)

We shall henceforth assume that ¢<<1, so that the limit
Eq. (2.28c) applies.

It will be convenient to assume in what follows that

we put a dc blocking filter in the detector outputs which
means

(2.28a)

B1(0)=B:(0)=0, (2.29)

so that (G1)=(G2)=0 [see Egs. (2.11) and (2.13)].
Then

<G12>= <AGlz>p[s N (230&)
where [as given in Eq. (2.30 III)]
(GIZ>p= %(Gl)o(Gg)o[v s (230b)

I.=

d’y ddy
: / ’ /dw/dw'
12101 J 2 Zows

X g(w)g(w)B1(w'—w)Ba(w—w')
Xexp{i(w—w)[(1/0) pa—y1)— (T2—T1)J}. (2.31)
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It should be possible and it is desirable to design
sufficiently thin detectors, well enough aligned, so that
we may set ys—y1=V,—Y; in the exponential of
Eq. (2.31). The precise tolerances involved here clearly
depend on both the electronic and spectral bandwidths,
but they do not appear too severe. We shall assume in
what follows that it is legitimate to write, in place of
Eq. (2.31),

= / dw / do'g(w)g(e') B1(w' —w) Be(w—w')

Xexp {i(CO*w’)li%(Yz— V)— (Te— Tl)]} . (2.30c)

We note in passing that the average value of the square-
law correlator output, Gy, is obtained from Egs. (2.30)
in the form

<GSL>= %IS{ <G1>02Icl+ (GZ>02lc2+ 2<G1>o<Gg>oIc} , (232)

where

Icl=/dw/d“"g(w)g(w')lBl(""—‘*’)lZ’
(2.33)

L= f de / 4o/ g(w)g ()| Bale/—) 2.

The signal-to-noise ratio is of vital importance in
analyzing a correlation experiment of the sort under
consideration. To discuss this we first define, as in III,
the quantity

T
Gav(T)=/ dT]Glz(Tl-l—T, Tl) . (2.34)
0

Thus,
(Gav(7))=T(G12(7)). (2.35)

The fluctuations in G,, have been computed in ITI®

from

(Ga’)= (@ (0),Go?* ()¢ (0))). (2.36)
The result obtained there for the large source case, 6<<1,
Eq. (2.28¢), is

(Goi’)=(Gar)=T(G1)o{G2)oM , (2.37)

where

M= f @12 Ba(0)| [—(W—/Z—)] . (239

‘and we have set B1(0)=B;(0)=0 according to Eq.

(2.29). Under the conditions that our previous replace-
ment of yo—y; by ¥:—Y; [i.e., going from Eq. (2.31)
by Eq. (2.30c)] is justified we can take for M,

M~1/A7,, (2.39)
where Ar, is the detector response time. Then we find

12 The quantlty (Gav® was given in I for the limit of “narrow-
band electronics.”
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for the signal-to-noise ratio

S/N=(Gav(1))/{{Gav’)— (Gav)}'}'*
=3I J { A1, T{G1)o{G2)o} 2. (2.40)

III. THE BROAD-BAND (bb) LIMIT

Let us suppose that g(w) describes a spectral line of
width Awy at frequency wo superimposed on a back-
ground of low intensity, as is illustrated in Fig. 3. Since
we are interested in measuring the line shape we, of
course, assume that Aw_ is less than Awg, the frequency
band passed by the filter. In this section we are con-
cerned with the limiting case

AT, A0 K1, 3.1

corresponding to the bandwidth ahead of the correlator
being broader than the spectral linewidth. This is the
best situation for tracing out the line shape, but one may
in practice have to be content with Ar,Awr~1.

The band-pass characteristic By~ By~ B is illustrated
schematically in Fig. 4. We have again taken B(0)=0.
We suppose’® B=21 in the interval AQ;SQS (A7)
where we assume

AL Awr,. (3.2)

Let us first consider the case that the filter is so chosen
that Awp= Awr. Then we obtain from Eq. (2.30c)

L= Tan(P)= [ / do g(@)e?| 082/ A0r), (3.30)

where
P=1/c)(Yo—Y1)— (To—Ty). (34)

Because of the condition (3.2) we shall drop the terms.

1.0

F16. 4. Electronic re- B

sponse function.

|
AQy (A'rr)—K

13 The actual scale factor by which B should be multiplied is
irrelevant.
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of order AQ,/Awr. We may also write 7, as

2

Tan(P)= ‘ / deo g(w)eile—o0P (3.3b)

where wo, the central line frequency, is defined by

wo= / dw wg(®). (3.5)

In the measurement of the autocorrelation function
with a single detector [where P reduces to — (Ts—71)]
or the use of two detectors, the measured quantity, in
fact, is Isb(P). Unfortunately, an observation of
I, (P) is not sufficient to determine the spectral func-
tion g(w) uniquely, since the phase of the integral over
g(w) is unspecified. This “phase problem” arises in a
number of contexts, most notably in x-ray structure
analysis. It has been discussed in the present context by
Wolf. It was argued in I that the observation of 7 b
can be used to deduce a finite set of g(w). It is possible
that the correct one of these can be found from physical
considerations, such as the non-negative character of
g(w). This seems to be usually the case in x-ray structure
analysis. On the other hand, there are a number of
features of the line that are independent of the phase
question, and are therefore best suited to an initial
exploration of intensity interferometry. For example,
the second moment of the line is determinable from the
dependence of the correlation function on P for small P,
as illustrated by

(@I bp/dP)| p=0=0,

(3.62)
(@) AP pg=—2 / do(o—o0)g (@),

where we recall the previous definition of wo, Eq. (3.5).

A probably useful example can be discussed, in which
a collision-broadened line is further Doppler broadened
in the center. Such a line may be observed in the
emissions from a hot plasma; we can simulate its shape
(for a narrow line) by

(w) e / i de, (3.6b)
s (w—wo—e)*+T2/4 © .

a?=Mc*/2wlkT

where

is the Doppler-broadening parameter. For this shape,
according to Eq. (3.3b), the correlation function is

Ioop(P)=e TP-PIa? (3.6c)

so that both the Lorentzian parameter P and the
Doppler parameter « are directly determined by a
measurement of the correlation function.

It is sometimes convenient to write Imp(P) as a

¥ E, Wolf, Proc. Phys. Soc. (London) 80, 1269 (1962).
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Fourier integral, in which case we have

T (P) =/ dw G(w)e™?,
with "

G(w)= f 06§ +)g (o).

It is easy to see that if g(w) is concentrated in a line of
width Awz, G(w) has practically zero amplitude outside
the interval —2Aw;, <w <42Aw;. It is this feature that
makes intensity-correlation experiments less sensitive
to the geometrical alignment problems than are classical
interferometric techniques.

The all-important signal-to-noise ratio may be ob-
tained from our general expression, Eq. (2.40). We use
[from Egs. (2.11), (2.3a), and (2.8¢)]

(Gi)o= (Golo~nZsRp/47Y?,
I,=V2/2,3,,
and also set 7,~1. We find
S/N2(S/N)ww=19(TA7,) 2(MRp/47Z;). (3.7a)

This expression may appear surprising, since it does
not depend on the source-detector distance ¥ or on the
detector area Zp. The reason is that we have assumed
the limit 0<<1 in Eq. (2.28c). For large enough ¥, I,=1
and S/N becomes

S/N=1n(TAr )2 (RpZp/4xT?).  (3.7b)

It is clear that to maximize the ratio S/N one should
choose A7, as large as possible consistent with the
restriction A7,Awz<<1. Had we considered the case
A7,Aw>>1 we should have found that S/N was reduced
by a factor (A7,Awz)™), so that the maximum signal-
to-noise ratio is obtained for Ar,Awi=~1.

For a source with black-body (BB) intensity on the
spectral line of frequency wo and temperature § we find
from (3.7a)

(S/N)BB= (A“’L/ZW)W(TATT 1/2
X{expliwe/0]—1}1.  (3.8)

As another example, let us assume the mercury-arc
source of Forrester ef al.'® We take Ar,=10710 sec,
Rp/47wZ=2X10% photons/cm? sec, A=>5.48X10~% cm,
and obtain

S/N=500\/T,

where T is measured in seconds.

Up to this point we have assumed that Awp=~Awy.
Another case of interest is that where the electronics is
still fast insofar as the line is concerned [i.e., Ar,Awp<1]
but Awp is so broad that

AT Awp>1.

3.9

(3.10)

15 A. T. Forrester, R. A. Gudmundsen, and P. O. Johnson, Phys.
Rev. 99, 1691 (1955).
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We now write
gw)=gr(w)+g.(), (3.11)

where gz, represents the line spectrum and g, the con-
tinuous background contribution passed by the filter.
The spectral width of g, is Awg. We suppose the line to
be much more intense than the background.

Our basic quantity I., Eq. (2.30c), involving both the
electronics and source characteristics, becomes

Ic=IcL+Icc; (3.12)
where
2
I.= /dw gL(w)ei"’P (313)
Icc=/dw/dw'gL(w)gc(w')
X Bi(w' —w)Ba(w'w')eiw—e"P4cc,  (3.14)

Making use of our assumptions about Ar,Aw; and
A7.Awg, Egs. (3.1) and (3.10), we have, approximately,

ICC%I: / dw gL(w)ein] / dw'ge(w”)

XB1 w’—‘wo)Bz (wo'— w')e‘"“"'P—I—C.C.

=~ (f/ATTAwB)[/dw gL(w)ei“’P]-i-C.c. , (3.15)

where f is the [small] ratio of continuum to line
intensity. Thus to the extent that f/A7,Awp<1,

122, (3.16)

and the background gives a negligible contribution to
the observation.

The condition on the electronic resolving time im-
posed by the requirement Ar,Awp<<1 is a severe one. If
no gain is required between the detectors and the
correlator, wave guide or coaxial line couplings might
be used to achieve A7, as small as 10~ sec. If gain is
required, there are available photodetectors followed
by traveling wave amplifiers having bandwidths of
about 10% cps.’® We conclude that with ‘“‘conventional
electronic techniques” the method described in this
section is restricted to the analysis of linewidths not
much broader than

Awr/2w~10% cps.

IV. THE NARROW-BAND LIMIT

Let us suppose that a single photoelectric detector is
followed by a tuned circuit and then by a square-law
detector, as illustrated in Fig. 5. The two detector situa-

16 See, for example, D. E. Caddes and B. J. McMurtry, Elec-

tronics 37 125 1964), for a review of wide-bandwidth light
demodulators.
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F1G. 5. Use of a tuned circuit in counting photons.
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tions may be similarly analyzed. The function B1(Q)
= B, (Q2)=B(2) will peak at the resonance frequency Qo
and will be taken to have a bandwidth 2. We suppose
that 6Q is very much less than either Aw;, or Awg. In
this case we set ¥1="Ys and T'1= T in the expression for
I,, Eq. (2.30c), which becomes

=/dw/dw'g(w)g(w’)B(w'—w)Bg(w—w')
. / de f 42 g t+1)g(0—30) | B@)|*

z[ / do g(w+%ﬂo)g(w—%ﬂo):l / d2| B(@)|?

=G(Qo)(Ar)7, (4.1)

where we have introduced the previously defined func-
tion G(Qo), and our old definition of the resolving time
(A7) Eq. (2.8). We expect that (Ar,)1~5Q.

The function §(Qo) can thus be measured by varying
the frequency Qo of the tuned circuit.'” As we have noted,
G(Q0) is just the Fourier transform of 7.,(P) so that
measurement of G is in principle equivalent to measuring
I b [see equations following 3.6a)].

The signal-to-noise ratio is again obtained from Eq.
(2.40) but now with I, given by (4.1). For macroscopic
sources and detectors [i.e., I=0<1] we have

S/N=(S/N)w[§(Q0)/A7.], 4.2)

where (S/N)w, is the broad-band ratio given by
Eq. (3.7a).

In conducting the experiment described in this sec-
tion, one might use a resonant cavity to provide the
tuned circuit illustrated in Fig. 5. Both the photo
detector and the square-law detector would then be
coupled to the cavity. By such means it seems feasible
to study linewidths up to 10" cps. The choice of §Q will
depend on the precision with which it is desired to
measure G(Qo) and on the acceptable counting times.
Since G(Qo) has a width of the order Awp and g(w) has
magnitude ~ (Awp)™Y, G(Qo)~ (Awp)! [recall that
G=JSdw g(w+Q0)g(w)] and also Ar,~1/62, so we may

17 The observation of H (Qp) has been suggested by L. Mandel, in
Electromagnetic Theory and Antennas, edited by E. C. Jordan
(The Macmillan Company, Inc., New York, 1963), Part 2,
p- 811. A related suggestion has been made by Forrester, Ref. 8.
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write (4.2) roughly as

S/N~(S/N)u,(6Q/Awg) . 4.3)
V. USE OF SUPPLEMENTARY OPTICAL
INSTRUMENTS

Such optical devices as half-silvered mirrors, lenses,
and diffraction gratings may be inserted between source
and detectors, as may be convenient, in intensity-
correlation experiments. To take account of these we
need only replace x(12), as defined by Egs. (2.26), by

RB dds
x(12)=———/ ‘——/dwg(w)
dren¥Y 1Yo ) s Vs

1
Xexp{iw[—(Vz— Vl)‘~ (tz“"tﬂj”’ , (51)
¢
where [here u(y) is the refractive index at point y |

Vi= /Yi u(x)dx, (5.2)

etc., is the optical-path-length integral (eikonal)'® taken
along the ray path leading from point s in the source
to point y; in detector 1. The appropriate distances Y3
and Y, in Eq. (5.1) may be deduced from the photon
intensity at the detectors, or from an analysis of the
geometry used [in principle these are given by the
eikonal treatment].

Let us write V1° and V,j for the respective values of
V1 and V, when the point s is chosen to be s=0, the
fixed reference point in the source. Then for a source of
small aperture we have

Viet—s-yi°+ V10,
Voit—s-y'4+ V20,

where y19 and y»° are the respective directions of those
ray paths from s=0 to the points y; and y.. This permits
us to write, as in Egs. (2.26),

x(12)=x,(12)Q(12),

(5.3

(5.4a)

xp<1z>=;r£%;2 Jaos@
Xexp{z'w[%(Vz"— V19— (tg—tl):” , (5.4b)

Q(12)= /; %;;exp[i(—?(?}lo—gf)-s]. (5.4¢)

18 See, for example, Ref. 5, p. 109, or Steven Weinberg, Phys.
Rev. 126, 1899 (1962), for a very general discussion of the eikonal
treatment.
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F16. 6. Tllustration of the use of an optical system.

On interpreting =, and =4 as “effective areas” defined

by the ray paths and on replacing Eq. (3.4) by

P=(1/c) (Vo= V1) — (T~ T»), (5.5)

we see that the discussion given in Secs. I, ITI, and IV
is unchanged, except for detail.

We illustrate this with the example shown in Fig. 6.
An ideal lens is placed between the source and the two
thin detectors, with the source near the focal point of the
lens. A point on the source is a distance d from the
center of the lens. A point on detector 1 is at Ly4uy,
where L; is the vector from the center of the lens to a
fixed point on detector 1. An image of the source point
disat 7, a distance S from the lens center. The phase of
a wave arriving at u; from d is (w/c)V1, where

Vi= (u—1)H seca+ (d+S)—qi. (5.6)

Here u is the refractive index and H is the thickness
of the lens at its center, « is the angle between d and
the direction of (—Li), and ¢ is the distance from the
image to u;. Assuming that S is very large and that the
source and detectors are small, we obtain again Egs.
(2.30) for the correlated counting rate, but with ¥
replaced by the focal length of the lens in Egs. (2.28).

A different arrangement is to focus the source on a
single detector. In this case we obtain, instead of

Eq. (5.1),

RB d3s .
X(lZ):—————f ————/dw g(w)eiotu—ta)
47rCﬁY1Y2 K Vs

|:J 1((wD/2¢) sinal)][f 1((wD/2c¢) sinas)
x (wD/2¢) sinay (wD/2¢) sinas

:I . (8D

Here D is the lens diameter and «; and a» are the
angles formed at the lens center between the image of
the point s and the respective points u; and u; on the
detector. In this case it is the area of the lens, rather
than that of the detector, which appears in Egs. (2.28).



