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Zero-Field Nuclear Quadrupole Spin-Lattice Relaxation in the Rotating Frame
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Nuclear quadrupole spin-lattice relaxation rates in different frames of reference for pure electric quad-
rupole coupling are evaluated in terms of spectral density functions of lattice vibrations. The rate is deter-
mined in each of three important reference frames deGned with respect to (1) the axial crystalline Geld in the
laboratory, (2) a strong rotating radiofrequency field, and (3) internal dipolar Gelds following adiabatic
demagnetization in the rotating frame. For spin states established by pure quadrupole coupling, modi6ca-
tion of the relaxation behavior in the diferent frames does not conform to the behavior obtained from spins
bound in pure magnetic Zeeman states. The density-matrix perturbation formalism is applied. In order to
transform the total Hamiltonian into the interaction representation of the main quadrupole interaction, a
convenient representation is devised for quadratic exponential unitary operators which do not directly carry
out simple rotations. The transformation permits an approach to the rigorous analysis of dynamic nuclear
quadrupole resonance phenomena which usually have been qualitatively described by comparison with
analogous phenomena in pure magnetic resonance. The new representation is presented explicitly for spin
I=-, . Experimental measurements of CPS pure quadrupole spin-lattice relaxation times in chlorate salts
in the three reference frames are compared with the theoretically determined relaxation rates.

INTRODUCTION

'HK concept of spin temperature" is especially
helpful in experiments where spin-lattice relaxa-

tion times in solids are to be analyzed. If the spin levels
by themselves happen to remain populated in ratios
determined by the Baltzmann factor during the relaxa-
tion process, a spin temperature can be de6ned. If the
perturbing lattice alone should cause the spin popula-
tions to deviate from their Boltzmann ratios, a larger
perturbing nuclear dipole-dipole interaction can provide
the mechanism for maintaining internal-spin thermal
equilibrium, signified by a spin temperature, while the
spin-lattice relaxation takes place. The spin-temperature
concept applies not only in the laboratory frame of refer-
ence, but also in other frames of reference where the in-
teracting nuclear spins are dined as magnetic energy
reservoirs (a) with respect to strong rotating radio-
frequency (rf) magnetic fields, ' or (b) with respect to
internal dipolar magnetic 6elds. ' The lattice degrees of
freedom constitute a separate energy reservoir at a con-
stant lattice temperature, and the lattice heat capacity
is taken to be exceedingly larger compared with that of
the nuclear-spin energy reservoir. Coupling of spins to
lattice therefore causes the spin temperature to ap-
proach the lattice temperature in a characteristic spin-
lattice relaxation time Ti, if the two temperatures are
initially different upon coupling the two systems
together.
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Spin-lattice relaxation times in most experiments are
measured in the laboratory frame of reference. The type
and number of matrix elements which describe the per-
turbing interactions can depend very much upon the
representation or measuring axis chosen for the Hamil-
tonians of the interacting reservoirs. If experimental
means are available for preparing the spin system so
that it is in thermal equilibrium in frames of reference
different from the laboratory frame, it is possible for T&

to acquire a value which is diGerent from its value in
the laboratory frame, and is unique for the reference
frame chosen. The altered relaxation times in some cases
are related to the laboratory spin-lattice relaxation time
by a functional relationship' ' which is independent of
the particular spin sample being studied. This is shown
not to be the case in this investigation, particularly for
pure nuclear quadrupole coupled spins, although the
lack of such a relationship is not excluded for mag-
netically coupled spins. Measurements of relaxation
times in the rotating frame would be particularly
valuable in determining components of spin relaxation
which direct laboratory-frame measurements do not
yield. Although it would appear that in nuclear mag-
netic resonance (NMR), the pure magnetic relaxation
of systems with spin I=~ in dc magnetic fields are
fundamental cases for studying transformed spin-lattice
relaxation, we con6ne our attention here to cases where
electric nuclear quadrupole relaxation in pure nuclear
quadrupole resonance (NQR) is dominant in solids.
Therefore, the influence of paramagnetic impurities is
avoided, which is too often a controlling factor for pure
magnetic relaxation in solids. Lowe and Look' have

5 Reference 1, p. 560. In work by W. I. Goldburg and B. C.
Johnson in an unpublished thesis by Barent C. Johnson, The
Pennsylvania State University, 1965, this is shown specifically
to be the case for pure nuclear quadrupole relaxation in cubic
crystals. In Ref. 1, p. 560, this relaxation property is shown for
pure magnetic relaxation only.

David C. Look, thesis, University of Minnesota, 1962 (un-
published).
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carried out unpublished initial NMR studies of changes
in T~ for pure magnetic relaxation in the rotating frame,
where the relaxation is determined by localized molecu-
lar random motions.

The specific cases of concern are the pure nuclear
quadrupole relaxation times of Cl" nuclei in KC103,
Ba(C10s)s Hs0, Ba(C10s)s Ds0, and NaC10s. The
CP'(I=-', ) site structure is noncubic, and the axially
symmetric electric 6eld gradient at these sites produces
an NQR frequency in the range of 30 Mc/sec. No ex-
ternal dc 6elds are applied. The laboratory-frame relaxa-
tion establishes a thermal distribution of population
among the quadrupole levels, in equilibrium with the
lattice, as determined by internal crystalline fields. The
laboratory-frame quadrupole spin-lattice relaxation time
will be referred to hereafter as T~L.

The definition of two other frames of reference should
now be introduced briefly. For a variety of spin systems
it is possible to take a nuclear magnetization Mo, which
is 6rst oriented along an applied dc magnetic Ho, and
reorient or "spin lock"~ Mo along a rotating rf 6eld Hi.
A quadrupole system can be similarly processed. It has
been shown' that a spin I= ~ system, with the two
m= ~2+-+ m= ~—, degenerate quantum-level transi-
tions identical in frequency, is equivalent to two rotat-
ing magnetization vectors, one precessing clockwise,
and the other precessing counterclockwise. If two rotat-
ing rf 6elds H& are manipulated by proper 90' pulses
and phase shifts, the two rotating magnetization vectors
can be oriented parallel to these fields and reach thermal
equilibrium with respect to each H& field in its respec-
tive rotating frame. This equilibrium corresponds to a
very low spin temperature which is subsequently raised
by spin-lattice relaxation toward the lattice tempera-
ture. This is the 6rst type of spin-lattice relaxation in a
transformed frame of reference, denoted by T»L,
where SI denotes "spin-locked. "

If the spin-temperature hypothesis is correct, then
one should be able to reduce the nuclear quadrupole
magnetization to zero in the rotating frame' (ADRF),
i.e., by slowly turning off the applied rf field Hi. The
spin order, which is initially in the rotating magnetiza-
tions, is now transferred to the dipole-dipole interaction
reservoir, where individual spins of the ensemble are
now oriented along internal local 6elds. The energy of
the system resides completely in the magnetic dipolar
reservoir, prescribed as being in internal thermal
equilibrium at a low spin temperature. This temperature
is subsequently also raised because of spin-lattice re-
laxation, and the time constant for this process is de-
noted by TiAD, where AD refers to "adiabatic de-
magnetization (in the rotating frame). "

In the case of pure magnetic or quadrupole relaxation
for nuclei oriented in a large dc field, a spin-temperature

7 S. R. Hartmann and E.L. Hahn, Phys. Rev. 128, 2041 (1962).' M. Bloom, B. Herzog, and E. L. Hahn, Phys. Rev. 103, 148
(1956).

TABS,z I. Nuclear quadrupole spin-lattice relaxation times
for CP' in alkali chlorates at 20'K and 77'K.

Chlorate

KCIO& (at 77'K)

KC103 (at 20'K)

Ba(C10,)g H20 (at 77'K)

Relaxation times (sec)

T1L
T18L
TIAD

0.42~0.02
0,65~0.02
0.43~0.02

T1L 39.5 ~0.5
T18L 56.0 ~0.5
TIAD 40.5 ~0.5

T1L 1.65~0.02
T18L =0.3
TIAD =0 1

Ba(C10,)2 D,O (at 77'K)

NaC10 (at 77'K)

T1L
T18L
T1AD

T1L
T18L
T1AD

1.65~0.02
1.97~0.06
1.00~0.08

1.87~0.02
4.8 ~0.2

13.0 ~1.0

assumption applied to these relaxation processes would
argue that the spin-locked magnetization should relax
like a magnetization would' if directed along a dc
laboratory field Ho. In other words, T&L ——T»L. Of
course in the case of conventional adiabatic demag-
netization in the laboratory frame, the relaxation rate in
the demagnetized state is essentially t~ice that in the
polarized state, because not only are the spins them-
selves Gipping at the rate T~z, ', but the local fields along
which they are oriented are also Gipping at the same
rate. By analogy, therefore, the theory of rotating frame
relaxation would maintain that TIAD=, T»L. That this
is definitely not the case for pure nuclear-quadrupole-
coupled nuclei is shown by the data in Table I, and by
the theory which is presented in the next section.

The data for values of T&L in Table I are obtained by
first saturating the CP' NQR resonance with a series of
90' rf pulses. After a time t a single 90' rf pulse is applied
and the height of the ensuing free-induction signal is
measured. This signal is proportional to the population
difference between the two degenerate m levels, ~~3
and ~—,'. The T»L data were obtained by 6rst applying
a 90' pulse of rf 6eld H& to the sample, and then suddenly
shifting the phase of Hj. by -,'x in a time short compared
to the nuclear I.armor period about H~ in the rotating
fram. e. With H~ chosen large compared to the local di-
polar fields, the Cl" magnetization 3f is locked along the
direction of Hi for a time t, but relaxes accordirg to the
expression M(t) =M(0) exp —(t/TtsL). When Ht is sud-
denly turned o6 at time $, a free precession signal pro-
portional to 3f(t) is measured. In order to measure
T~AD, the procedure for spin locking is first carried out
as described above. The Zeeman interaction energy
reservoir (—M, Hi) is adiabatically converted into a
dipolar interaction reservoir of lower energy by turning
oB H& slowly, but in a time much less than T&&D. After
a time t' the 6eld H~ is turned on, and adiabatic remag-
netization of 3f(t) along the direction of EIt is accom-
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l. THEORY

The total Hamiltonian' of the spin system is given by

i%=Xo+Kpf+XgJ+Ki ) (1)
where

BCo ——gi ho;,

ho, =E[3I.i o—I(I+1)7,
Kpf =Qj hpf j i

(2a)

(2b)

(3)

plished. The magnitude of M(t) =M(0) exp( —I/Ti~n)
is then measured in terms of the free induction signal
which appears after B& is abruptly turned off.

It is significant that the values of relaxation times in
Table I show, with one exception, that T~gL& T~L, and
that TiAD) oTlsL The one exception, Ba(C10o)o.H20,
gives anomalous results for special reasons to be dis-
cussed later. In general the rotating-frame relaxation
times for pure NQR prove to be longer than those times
predicted from general arguments used in pure NMR."

The detailed analysis which follows in the next sec-
tion reveals why the three relaxation rates T~~, T~HL,
and Tj&D should differ. In our study there appears to
be no predominance of spectral components of lattice
noise which peak near or at the rotating-frame fre-
quency ( yHi) during spin-locking, or at the local
field frequency ( VHr) during ADRF, where y is the
gyromagnetic ratio of the relaxing nuclei, and IIL, is the
local field. Although this may be an important relaxa-
tion effect, dependent upon the temperature, ' where
particular atomic groups such as H20 or CH3 undergo
rotations in solids, such effects do not appear to affect
the quadrupole relaxation data here because the tem-
perature is low enough in our experiments to suppress
such rotations, i.e., of 020 and H2O. The reason for
changes in relaxation times, which is very much con-
nected with systems involving pure nuclear quadrupole
coupling, arises from the anisotropic e6ect of lattice
vibrations. A given component of lattice vibration in the
laboratory frame of reference can be ineffective or effec-
tive, depending upon whether it, respectively, does or
does not commute with the laboratory-frame inter-
action Hamiltonian. The roles of commutation of some
terms of these perturbations are reversed or their mag-
nitudes are altered upon making a physical transforma-
tion to a new representation or reference frame, and
different relaxation times are therefore evaluated. The
change is found to be in the direction toward longer re-
laxation times. Possibly a similar study of pure mag-
netic relaxation in systems of suf6cient asymmetry in
magnetic lattice perturbation might show a similar
behavior of transformed relaxation times. We do not
deal with such cases here, and restrict ourselves to pure
quadrupole relaxation.

K= e'pQ/4I(2I 1—), and the sum is over all spina j of a
given species. X,» defines the interaction between the
spins and the radiofrequency (rf) magnetic field,
summed over all spins j; 3C« is the dipole-dipole inter-
action, summed over all spin pairs; and 3Ci=g;hi;
is the spin-lattice relaxation perturbation Hamiltonian.
The s axis is de6ned as the direction of maximum elec-
tric field gradient, eq is the field gradient in that direc-
tion, and Q is the nuclear quadrupole moment (in cm').
It is specifically assumed in Eq. (2b) that the electric
field gradient is axially symmetric. Henceforth the
units of p, the gyromagnetic ratio, and K the quadru-
pole coupling constant, are dered so that 6=1, and
energy is expressed by oi in radians/sec.

The dynamics of the spin system and its relaxation
will be handled by the density matrix method, ""
which deals with a solution of the fundamental equation

&
—p(~)=Ã p(I)7
dt

(6)

eixpt~e-rcpt (7)

Equation (6) restricts itself to the influence of lattice
and rf field perturbations, but contains terms with a
coherent time dependence e'"" and e""p' where cop

is the transition frequency between eigenlevels of Kp.
These terms are dropped as nonsecular high-frequency
oscillations whose average effect upon p*(i) is negligibly
small, since we are interested in relatively slow changes
in p*(I). This truncation procedure will be signified by
the use of K*' in place of 3'.*. The random time de-
pendence of lattice variables contained in BC~* is still
included in K*', however, because terms in K~* con-
tribute to the relaxation in second order.

Particular attention must be given to the transforma-
tions indicated by Eqs. (5) and (7) when dealing with
pure nuclear quadrupole coupling as the dominant in-
teraction Hamiltonian. If the dominant Hamiltonian is
instead given by the familiar Zeeman term

3'-o= —VHo Z; I*i,

The density matrix p(t) lends itself conveniently to a
transformation into the interaction representation,
which effectively eliminates the main constant inter-
action term Ko from K, Eq. (1). Therefore p(/) trans-
forms to p*(t) according to

p*(&)=2'p(&)T '=e "p(&)~

Now p*(t) obeys the equation

' T. P. Das and E.L. Hahn, in Solid State Physics, edited by F.
Seitz and D. Turnbull (Academic Press Inc. , New York, 1957),
Suppl. I.

' Charles P. Slichter, Principles of Magnetic Resonance (Harper
R Row, Publishers, Inc. , New York. , 1963), Chap. 5.

» Reference 1, Chap. VIII.
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where IIO is the applied dc magnetic field, the trans-
formations (5) and (7) are linear in the spin operators,
and they therefore represent simple rotations. However,
if X() is given by the form of Eq. (2a), which is quadratic
in spin operator I,', the transformations (5) and (7) are
no longer simple rotations. Before such transformations
can be applied, a scheme must be devised in which the
usual rules for unitary transformations can still be used.
This method is outlined in a separate section to follow,
which is then applied to relaxation calculations in
different interaction representations applicable to our
experiments.

notation outlined above. If the relaxation term 3'.~ and
the dipolar term Xee in X, Eq. (1), are omitted for the
time being, we write

X=3E P;(o.,t'—o.b, /)

—2yHi Q L(V3/2)(o. ,t+o b,t)

+ ', (o.-„'+ot+t)) costdt, (12)

where the superscripts are particle indices and

Og= 0 ~&My.

The term —2'& cosset represents a linearly polarized
rf Hamiltonian X,t. According to Eqs. (3), (5), and (11),

II. TRANSFORMATION TO THE QUADRUPOLE
INTERACTION REPRESENTATION;

CASE OF I=2
T= exp{2igt P;(o.,t ob—,t))

T2, (13)

(8)

Each quadrant labeled a, I, l, and b will be chosen so
that it can be represented by any of the three Pauli
spin matrices o-, 0.„,0-, or the identity matrix e, given as
follows:

(9)

By adding the appropriate subscripts a, I, l, or b to the
matrices in (9), and combining them with the necessary
coefficients, the matrix given by (8) can be used to repre-
sent required expressions. For example, 0-, is the four-
by-four matrix with zeros in all quadrants, except the
upper left one in (8), namely:

0 1 0 0'
0„—= 1 0 0 0

0 0 0 0
.0 0 0 0.

For I= 2, the matrix representation of the operator I, is

3
2

0
0
.0

0 0
1 02

p 1

0 0

0
0 =2(o„+2—2.—+ob, 2eb). (—10)
0
2&

The quadrupole interaction, Eq. (2b), can be written as

ho ——3E(o„—ob,).
It will be useful for later calculations to obtain the

transformed density matrix and Hamiltonian, given by
(5) and (7), respectively, in terms of the Pauli matrix

Consider any four-by-four matrix, and let it be
divided up into quadrants, each of which is a two-by-
two matrix:

where T; = exp((2'itot)(o „' .oh,—')) If 0.
' is an operator

which acts only on the jth spin, then TO&'T '= T,O&'T;—'.
Furthermore, if 0' has only (2 and b quadrants Lsee (8)),
with zeros in the I and / quadrants, then using T of
Eq. (13),

TO&T—& —g&&to'ez I2O &e
—it/eto'Nz f2

Q

+e—t~«zz'/20»et~«bz'/2 (14)

Note particularly that (14) comes about because of the
general property that any a operator acting on any b
operator gives zero, and vice versa. The first term in (14)
is a rotation of 0,' in a given direction about the s axis,
and the second term is a rotation of O~&' in the op-
posite direction about the s axis. Therefore, the con-
cept of two rotating frames precessing in opposite
directions can be retained: One direction involves
the ms~ ———,'+-+-'2 transition and the other direction in-
volves the mz= ——,

' ~ —-,'transition. The linearly
polarized rf field given in Eq. (12) is a sum of two cir-
cularly polarized fields, each of which precess opposite
to one another, and couple only to those spins having
the corresponding sense of precession.

If some terms in the Hamiltonian to be transformed
are of the type O„or 0&, it proves to be easier to operate,
as in (14), by an explicit expansion of e{itottr„/2).
These expansions are

e(iczt/2) zzz (& +& )eiczt/2+ (& & )e icz t/2+ &—
and

e(i t/2) bzcz(zeb+g —
2 )eicz t/2+ (eb ~ )e iczt/2y 2

— (15)

These expressions apply as well for x and y substituted
for z, but do not apply if the a. operator in the exponential
is o„or a~.

With the transformation (13) now applied to the
entire Hamiltonian, Eq. (1), therefore Eq. (7) becomes

X*=(3E—-'(o)P (o.,/—ob„/) ——2,3yH, P(o..+o,.)
+Xde*'+terms in e'"' and e""' (16)

The truncated dipole-dipole Hamiltonian in this repre-
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sentation is expressed as

~de*'= Q kib*',
p&k

(17)
pS pL(tz)0/id 1) r (23)

= [kTs(t)$ '. At t=t„=0, the lattice (L) and spin (S)
temperatures are related by

+rf —g j krfj 2')1 Zj(trtty tfby ) ~ (21)

For &Hi)) ~BC&d*'~, one need retain only those parts of
Kdq*' which are secular with respect to BC,g*', which can
be denoted 3C~d*". In this event, however, because of its
form, p*(t„) will comxnute with K,f*'+3Cdq*", with the
consequence that for t& t„, the order represented by the
two magnetizations will persist in time, except that it is
slowly diminished by spin-lattice relaxation e6ects not
yet included.

The assumption of a spin-locked rotating-frame spin
temperature Tz leads to the use of the density matrix

(22)

where 3C,f*' compares to Ko of Eq. (18), and Ps(t)

where h, l,
*' is the spin-pair interaction. Exact rf reso-

nance, 3K—~~cv=0, will be assumed. Again the non-
secular high-frequency terms in e'"' and e""' are
dropped. When a short intense rf pulse is applied, it is
assumed that B~ greatly exceeds the dipolar field, and
the term (17) appearing in (16) is neglected during the
pulse. At time t=0, the initial equilibrium density
matrix is

p(0) =e f'L t)/Trp=( —3PL(0)E/Tr1)
& Z;(-..--.), (»)

where PL(0) = (1/kTi, ), and Ti, is the lattice tempera-
ture. The high-temperature approximation is made,
and the identity operator is dropped because operators
whose expectation values will be of interest are trace-
less. With p(0) = j)*(0) and the spin temperature fixed at
its initial value, it follows from Eqs. (5) and (14) that

p*(t) = ( 3pi (0—)E'/Tr 1)Q;(ef'""/2) "*'
yg jg( itzrt/2—)zzzt g(itzrt/2)trbzrzbztgf —trait/2)zbztX (19)QZ J&

where b)x=V3yHi. Although the ensemble consists of a
pair of two-level systems, each behaving as though the
spin I=—'„ the operator connecting the levels introduces
a factor V3 because of the degenerate levels associated
with the actual spin I= 2. Each term in (19) represents a
rotation of magnetization about Bq along the x axis
in the rotating frame, associated with a given sense
of rf field precession. At the rf pulse-width time
t = t„=(fr/2M)), a 90' pulse transformation follows from
Eq. (19), giving.*(t.) =(-3P.(0)~/T 1)Z,( ..'-, '). (20)

The spin temperature becomes a function of t for t) t .
Each rotating frame now has a magnetization along its
respective y axis. Spin locking is subsequently achieved
if the phase of the applied rf is shifted by 2r/2 at t„ in a
time At(&t„. Therefore, the rf Hamiltonian (16) becomes

and Ts corresponds to a lower spin temperature. The
spin-locked state sets the stage from which order in the
rotating magnetization can be transferred to the dipole-
dipole interaction reservoir. This is carried out, as pre-
viously described, by turning off II& slowly. The initial
spin temperature in this state (ADRF) is again a low
one, expressed as

Ps(ADRF) =Pi,
2} —i/2

Tr(BC~~*'}'
(24)

where Xzz*' is given by Eq. (17).

SI)in-Lattice Relaxation Times

A generalized procedure has been established" for
the evaluation of relaxation times from a master equa-
tion for the density matrix. A second-order perturba-
tion evaluation of the relaxation rate is carried out when
the irreversible relaxation process is determined by
stationary random functions of lattice and spin varia-
bles. The quadrupole relaxation term of the total
Hamiltonian [Eq. (1)j is written as

X.,(t)=P / k„(t)=P, Ff-2)(t)A «), (23)

—0*(t)= ——', Q J,(a)„«))[B„f—y), [B„«),tr*(t)]j, (26)
dt QtP

where
fr*(t)=p (t)—p*(~), (27)

and p*(t) is given by (22). Note that for the Pauli
matrix notation of Sec. II the use of 0. is distinguished
from its symbol as a density matrix by the use of sub-

where k»(t) =Fjf ')(t)Ajfy). Any contribution to pure
magnetic relaxation involving fluctuations in lattice
coordinates of 3Cdg is assumed negligible, and magnetic
relaxation is therefore excluded. The F«'(t) terms rep-
resent stationary random functions of lattice vibra-
tions which impose Auctuating electric field gradients
arising from sources such as ionic vibrations, torsional
vibrations of molecular groups, fluctuations in co-
valency, or hindered rotations. The superscript (t7)
designates a given change in spin quantum number Am

at which a given component of lattice vibration is effec-
tive. The A«) terms represent the quadrupole spin
operators which allow these relaxation transitions.
When 3«) is associated with the appropriate spectrum
of lattice frequencies which are at the allowed quadru-
pole transition frequencies, the relaxation transitions
are most probable. In order that Ki(t) be Hermitian,
the restrictions F«) =J ( "*and A «) =A ( &) ~ are made.
The master equation for the density matrix in operator
form is
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I (pp (s))— dr g, (r)e"" 'i"', (29)

and g, (r) is the autocorrelation function of p'p)(1):

g (z) —(p(p) (~)p(p) ()i z) ),

This represents an ensemble average over many spins,
and it is independent of the time t when a slowly chang-
ing spin temperature is de6ned. An arbitrarily chosen
even function of r is prescribed for g,(r), so that it
follows from Eq. (29) that I,(o)„«)=I,(—rp„«').

III. LABORATORY-FRAME SPIN-LATTICE
RELAXATION

In the laboratory frame the spin-lattice relaxation
process involves the axially symmetric quadrupole-in-
teraction Hamiltonian

pep ——3E P; (o.,& o.p,&), —

as obtained from Eqs. (2) and (11).The matrix nota-
tion introduced in Sec. II is applied to the determination
of T~L. By usual perturbation methods the result for
T&L has already been obtained. " However, a rede-
termination of T~z, here is instructive because it will be
carried out in the new interaction representation, and
will aid the reader in obtaining clearer understanding of
the new calculations of TigL and T~AD to follow. For
any time t the spin temperature has a slow time de-
pendence, so that the density matrix is now

p(&) = (—3&Ps(&)!Tr1)Z (ir-' —o'p. ') (32)

which is identical to the form of Eq. (18). Because BCp

and p(t) above commute with one another, Eqs. (5)
and (27) imply that p*(t) =p()!) and that

o.*(t)= o (t) = (—3E/Tr1) [i9s (~)—PL)
&& Z (&-'—~p') (33)

"M. J. Weber and E. L. Hahn, Phys. Rev. 120, 365 (1960);
M. J. Weber, J. Phys. Chem. Soiids 17, 267 (1961}.

scripts. At thermal equilibrium, Ps ——PL and the density
matrix is defined by p(~ ).Any deviation of the density
matrix p(i) from thermal equilibrium at time t is defined

by o.(t), while p*(t) and o*(t) are the corresponding
quantities in the interaction representation. The terms
8„«) are related to 3 «& by

A«(t)=e~p'dip)e —~p'=p B„«)e'"""' (28)

where B~«)=P;B„«)(f).Subscript p sums over the
eigenfrequencies of the spin system, and co„«) signifies
frequencies in the lattice spectrum for which the 2 «)

operators can connect eigenlevels of Xo as secular
terms. High-frequency nonsecular terms are dropped in
Eq. (26). The spectral density function is given by

Upon substituting the sums of single spin operators
into the master equation (26), the commutators will be
nonhero only when all operators pertain to the same
spin. Therefore, for simplicity in notation, the sum-
mation index j over the spins may be dropped. If the
double commutator [B„& p), [B„'&),(a„—o&,)]j of Eq.
(26) reduces to some factor multiplied by the operator
(o.„—ap, ), which commutes with (32), then the per-
turbing lattice does not cause the spin system to depart
from a state of internal equilibrium. Instead the relaxa-
tion development in time of the spin system rejects a
smooth change in the spin temperature Tg, and a
unique relaxation time is specified from the equation

h, (&)= p p&—p)(t)A«) (34)

2 ")=3I,'—I(I+1),
A &"')=-'+6(I,I~+I~I,),

A+'= —',+6Ig',
P (P ) (1)—i V'„

P~")(~)=(1/V'6)(V*.~'V,.),
P'+"(t)= (1/2+6)(V..—V„„+2iV „).

"A. Abragam and W. G. Proctor, Phys. Rev. 106, 160 (1957);
R. L. Mieher, Phys. Rev. Letters 4, 57 (1960};Phys. Rev. 125,
1537 (1962}.

igs(1) = — [as(i)—PLj.
dt T1L

However, if the commutator does not commute with the
main interaction Hamiltonian, and a common spin tem-
perature can still be defined, then the internal dipole-
dipole interaction among the spins must provide the
mechanism ' by which a spin temperature is main-
tained. In such a case the rate equation of the total spin
energy must be solved, which involves the derivative of
the expectation value of the energy. In the determina-
tion of the three relaxation times T~L, T~sL, and T~gD,
of concern in the pure quadrupole relaxation of Cl",
the total spin energy need be considered only in the de-
termination of T~~D. The unique times T~L and T~gL
are measured when the ~m degenerate levels of the
quadrupole system are equally excited, and when the
sum of the population diGerences associated with both
the +ms and —m levels is measured. "An apparent spin
temperature in NQR can then be defined for the case of
I= , (without requiring -the mechanism of dipole-dipole
coupling) with respect to a main independent interac-
tion energy reservoir which is (a) quadrupolar in the
laboratory frame, or (b) is Zeeman, with respect to the
rf 6eld H~ in the rotating frame of the quadrupole
system.

The single spin-relaxation Hamiltonian [Eq. (25)]
for equivalent spin sites is
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Here the electrostatic potential V is a random function of the time. Its subscripts indicate derivatives with re-
spect to the given coordinates. The constant axial component V„ is included in ho, Eq. (2b).

Now the transformation of (26) to the interaction representation is obtained, using T of Eq. (13):

hi'"(t) =Thi(t) 2
—p(p)(I)3(o o b )+p(—1)(I)(3/~2) (o eto ot & e i~ot)—+p(+i) (I)(3/v2)(o e

—itoot o. ~itoot)

+p(—2)(I)(3/i)2) [(p~+o )e'"ot+ (e o ~t)e
—'"ot]+p(+o) (I)(3/it2) [(pl o io)e'"ot+ (pl+o lo)e

—'"ot] (36)

TiL '=2(Wi+Wp). (37)

The Attt= &1(m= &-', ~ ttt= &$) transition rate is
Wi = 18J'i (tt) p) the Attt = &2 (tot = W 2 ++ ttt = &pP) transi-
tion rate is Wp = 18J2((op), and J is defined from Eq. (29).

By using Eq. (28), the operators 8„«)may be identified
from an inspection of Eq. (36). Eqs. (33) and (36) are
used to evaluate the commutators of Eq. (26), which
yield zero or (o.„—o b,) times a number. These numbers,
when summed, produce 3E/T)L. Note that since A( '

commutes with o*(I), the lattice vibrations represented
by F(') can not contribute to the relaxation. The re-
laxation rate is finally obtained as

IV. SPIN-LATTICE RELAXATION IN THE
ROTATING rf FRAME

Calculation of the spin-locked relaxation rate 1/TisL
proceeds along the lines used to obtain the rate 1/Tii, .
The total Hamiltonian, Eq. (1), is now used, and the
K,f term is retained and transformed according to Eq.
(21).The applied rf frequency(o is assumed to be at exact
quadrupole resonance. First, the main interaction term
Xo is transformed away, which converts the perturba-
tion term Iti(t) into the first interaction representation
term hi*(t), given by Eq. (36).With the retention of the
rf term, Eq. (21), which appears as a constant inter-

action after the transformation, a second transformation is made into another representation in order to eliminate
h fj . Again, using expressions for single-particle interactions, hi (I) is transformed to

hi*~(t) = T,(hi*(t)T,t '

=F( )(t)2[(o„+io«—o b,+io b,)e'""+(o„t'o«. —ob, —t'o b,)—e '""]
+F' "(I)(3/V2) {-',[(o..—t'o..)e'"'—(o b.+bob, )e '""]e '"—"+-'[—(o .+t'o.,)e'"" (ob. t'o —b.)e '"—"]e-
+$g peimot $g boe tarot j+-H—ermit)an conjugate+F( —P)(I)(3/i/2)[p(& +o p)(ei&oot+e —tarot)eivtt

+-,'(p~ —o. „)(e'""+e '"")e '""+o„,e'""—o,e '""]+Hermitian conjugate, (38)

where

f g (&&1&I2) (&ay—&by)rf (39)

The same procedure for evaluation of the relaxation rate
coefficient in Eq. (26) is ca,rried out as before in the
determination of I/TiL. It should be noted that the
II=0 term of hi*(t), Eq. (36), now does not commute
with the new density matrix given by (40), and, as a
consequence, there will be a contribution to the relaxa-
tion from the q=o component of vibration. The q= ~1
term is now the double commutator of an I+ operator
with an I„operator, whereas for the 1/TiL calculation,
I+ was associated with I,. The present commutator is
smaller by a factor of 2. For the q= ~2 terms, half of
thqm are dropped as a nonsecular because of exponential

The rf interaction is assumed to be very large compared
to the dipolar interaction, and therefore Kqq of Eq. (1)
plays no role in the calculation of T»L.

Using Eqs. (20), (21), and (27), the density matrix
during spin locking becomes

(rote(I) —eixrf ttg ot(I)e tPerf" t

=-3&(~.-~.)(...—.,) (40)

time-dependent terms which are functions of co~t. With
one exception all double commutators reproduce the
operator o,„—o b„, but even this exception (from
q=~2 terms) is cancelled when the property Jp(tp)
=I,(—p)) is used. The spin-locked relaxation rate
becomes

TisL '= 18Jp(ooi)+9Pi((op+(pi)+A(opp+ooi)
+~.(-.— )+~.(-.--.)] (41)

If coy((o)0 is assumed, then

T,si,-'—18[So((oi)+Ji((op)+ Jp(top)]. (42)

When this result is compared with Eq. (37), it is seen
that it is possible for T~SL to be as much as twice as
large as T~L.

V. SPIN-LATTICE RELAXATION AFTER
ADIABATIC DEMAGNETIZATION IN

THE ROTATING FRAME (ADRF)

The third relaxation time T~AD is the most dificult
to analyze because the interaction representation
Hamiltonian- —after transforming out the quadrupole
term [Eq. (2)]—is now the truncated secular dipole-
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dipole Hamiltonian K~~*', which is a sum of two spin
operators. Only one spin species is assumed to be present.
If a second species (denoted by 8 spins to distinguish
from the primary species, the A spins) were included,
the complexity of the calculation would be greatly and
unrewardingly increased. However, the presence of 8
spins is more often the real case in experiments, and
can, as we shall see, have a profound effect upon the
apparent relaxation of the A spins.

The spin pair dipole-dipole interaction is

h, k=~'r;k 'L~ kI* I*k+& k(I+ I k+I I+-k)-
+ Cjk(IzjIyk+I+jIzk)+Djk(IzjI k+I j—Izk)—

+&jkI+;Ipk+I'jkI ;I k); -(4-3)

kg'y= 1—3 cos 8q

8;k= —~(1—3 cos'8)

C&@=D&.y = —
~ sing cos88

E&'Is= F&Ic = —
g sin 88

8 and y are spherical coordinates of the r;~ distance
connecting j and k spins. Transformation of h;I, to the
interaction representation is indicated by Kqs. (16)
and (17), giving

hjk j &jk {+jkIzjIzk+Itjk[ 4(& a+Oa—

+O'u &a+—+&k+ &k +&—kO'k+ -)+&u&i+,—+&ty &a j—
+C,k(I„o„"+.o &'I,k)+C;k*(I„oip"+oi~zIzk)

+& k['(~-~jo~"+~~j .+')+o- j~--'5-
+&j,*[3(~ jo k+o jo. k)+~,+jo+k3). (44)

The once-transformed Hamiltonian is

Se*'=g hj,*'+P h„*(t),

where hi;*(t) is the transformed lattice perturbation
given by Eq. (36). The master equation, Eq. (26),
is now presented with the summation over k spins:

dt
d7(Pk~&i(t)I k~ a&(t—r)). [exp(i Pi hik*'t)Ak«'(t) exp( —i P„h k*'t),

[exp[i g„h„k*'(t—z-) jAk
—&'(t—r) exp[—i Q, h;k*'(t —z) j,o**(t)j]. (45)

The lattice vibrations affecting spins at site k determine
the autocorrelation function of FI„and are assumed to
be randomly independent of similar vibrations at other
equivalent sites. The expressions in F and 2, given by
Eqs. (29), (30), and (28), respectively, implicitly carry
the summation index over P. In analogy to Eqs. (33)
or (40),

o**(t)=o*(t)= —[&s(t)—&(~)3 Z h'* (46)

where the simple operator 0. ,—0.~, or o- „—0-~„ is re-
placed by K«*'=pj&k h;k*'. The second transformed
density matrix in the ADRF representation of 3C«* is
given by o-**(t).Now we must take note of the fact that
a transformation of A k«' of the type given by Eq. (28),
when X«*' replaces BCO, is not possible in Eq. (45).
A k«&(t) itself is expandable in a series of terms signified

by the sum over p, where the o~~ transition frequencies
are between discrete levels established by the large
quadrupole interactions BCO. When 3C«*' replaces BCO,

the ~„would correspond to one frequency out of a con-
tinuum of dipolar frequencies in the spectrum of the

p*(t) = Ps 2 h'*- '— (47)

is assumed, and we consider the time rate of change of
the dipolar energy:

d dPs—Tr{p~X«*'}= — Q Tr{hjk*").
dt &~'

(48)

Now with the properties that dp*(t)/dt =do *(t)/dt
=do**(t)/dt, and the summation rule pj&k= —, pj„k,
Eq. (45) is now written as

dipolar linewidth. These frequencies are negligibly
small compared to accompanying quadrupole resonance
frequencies, and we shall drop them for the same reason
that cubi is dropped relative to o~o in Eq. (41), which yields
Eq. (42). Therefore, in Kq. (45) we let exp{Rib,k*'t) = 1,
where q is any of the indices summed over.

The double commutator in Eq. (45) does not repro-
duce h;k*', and therefore with Eq. (46) the master equa-
tion does not reduce to a simple rate equation in the
density matrix. Instead, the density matrix

do**(t)

dt
dr(I'k'"(t)I'" "(t—r))-[~""(t)L~k' "(t—~) o**(t)jj

Therefore, Eq. (48) yields

—dPs(t)/dt = 2'k~n '[Ps(t) —PL],
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where

Zt(F«~ (t)P&-0& (t—r) )., Tr{[A;«& (t) [A, &-0~ (t—r),h;&*'j]h;&*') . (49)
TiAn Z, )0 Tr{&40'") 4» o

The A «&(/) terms are obtained from Eq. (36) and h, p*' is obtained from Eq. (44). Equation (49) is evaluated and
the result is

TiAz& ' ——[ppr 0 '(25A 0'+68BA+80~c A )+68jE 0'~] 'QArp [36J0(0)(36B0'+36~L~'1'~)

y36J,(~0)(10A;, +68B;, + 56l C;,2I+68I Z;,21)+36J2(~0)(40A;,2+ 68B;, +114IC;,2I+ 68IE,,21)]. (5O)

Upon substituting the definitions of A, A, B;0, etc. from Eq. (43) into (50), 1/T1An finally becomes

T1An —[QA r 0 (67.5 72Z4&—+121.5Z, 0 )$ Q& r & [36J0(0)(22.5—54Z, &2+40.5Z;04)

+36Ji(400)(52 5 36—Z 02+40 5Z 40)+36J (2M)o(82 5—18Z.A'+112 5Z404)] (51)

and Z;I, is the direction cosine between the s axis and r;~.
An exact numerical lattice sum required by Eq. (51)

for a specihc case is not applicable to our measurements,
where more than one spin species is present, nor would
the effort be justifiable. The similarity of the terms in
both the numerator and denominator of Eq. (51) sug-
gests possibly that the value of 1/TiA& may not be very
sensitive to the specific form of the lattice. It suKces to
present an approximate crude expression for 1/T 1An

by assuming that the distribution of spin sites around
a given spin is spherically symmetric. The angular func-
tions Z of 0 may be averaged over a sphere giving

Zsv = (cos 8)av= 0 q

and

Z, '=(cos'0), =-,'.
Therefore, with this approximation,

TiAn '=6.7Jp(0)+25.8J1(400)+52.6J2(400) . (52)

VI. DISCUSSION OF RESULTS AND
CONCLUSIONS

The particular mechanisms which cause quadrupolar
relaxation are of no concern to the present analysis, but
they do account for the relative magnitudes of the spec-
tral density functions Jo, J& and J2 which appear in the
derived relaxation rates. To a large extent all the lattice
excitation frequencies are represented by a smooth spec-
trum, and the spectral density function J,(M) should be
essentially constant over the range of NQR frequencies
present. In Eq. (41) we assume Jp(401)= Jp(0), which
implies a constant spectral density at the low-frequency
end of the spectrum. This applies as well to Eq. (50)
where the Jp(0) term corresponds physically to the
spectral density function over local dipolar frequencies
near zero. The three relaxation rates from Eqs. (37),
(41) and (52), now collected together, are, respectively,

T .-'=36[J ( .)+J.( .)j,
(53)

TlsL 18[JO(0)+Ji(000)+J2(400)g p

and

TiAn '= 6.7Jp(0)+ 25.8Ji(40p)+52. 6J2(000) ~

From measurements of T~L and T~gz, , the spectral
density function Jp(001)= Jp(0) may be obtained di-
rectly as

1t 2
J,(o) =—

I

36 ~T1SL T1L/
(54)

where T~~&2T~L, since J&0 for any J. The low-
frequency spectral distribution function Jp(a») =Jp(0)
is a new parameter which can be determined; it never
plays a role in affecting usual laboratory-frame T&L
measurements. Where low-frequency perturbations are
particularly important, the shape of Jp(401) could be
measured as a function of 001 if Jp(401) is not necessarily
Rat near zero frequency.

It is worthwhile to compare the experimental results
of Table I with the predictions of Eqs. (53) in spite of
the rather inexact expression for 1/T1An. Eqs. (53) to-
gether with the data for KC103 at 77'K, yield the fol-
lowing spectral intensity function values:

Jo(0) = (1.93+0.41)X 10 ' sec '

J1(000)= (4.78+0.68) X 10—' SeC ',
J2(400) = (1.83+0.47) X 10 ' sec '

Ji/ J2=2.61&0.76)

and at 20'K, the values are

Jo (0)= (2.89&0.13)X 10 4 sec '

Ji(000) = (5.31&0.19)X 10 ' sec ',
2 2 (40 p) = (1.72&0.13)X 10 4 sec ',
Ji/ J2= 3.08&0.26,

where J1/J2 is roughly independent of the temperature.
By an independent method, "the ratio Ji/J2=3. 4&1.3
for Cl'5 nuclei in KC103 was determined at 77 and 298'K,
apparently independent of the temperature. This rough
agreement with the present estimate of J1/J2, although
possibly accidental, justifies some confidence in the use
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of the spin-lattice relaxation rates given by Eqs. (53),
particularly because the inexact expression for 1/T r~ rr

is not involved. There is an additional consistency which
is found when the relaxation data for Ba(C103)2'D20
are used to obtain Jo, J&, and J2 from Eqs. (53). Al-

though a small negative value of J~(oro) is found, which
is forbidden, and not surprising because of our crude
estimate of 1/T&~rr, we set J~(ohio)=0 as a justi6able
physical possibility. As seen from Eqs. (29), (30), and
the definition of F ""in Eqs. (35), this implies that
lattice vibrations of Field gradient components V„and
V„,contribute very little to the relaxation rate. We have
not justified this property from a detailed study of the
actual Geld gradient characteristics in Ba(C103)2 D20.
If use is made of the measured 1/Trs L to solve for J2(ohio),
and if the measured 1/TrL is used to solve for Jo(0),
a predicted value of T&err can be found from the 1/TgAD
equation. The results for Ba(C103)2 D~O are

J,(~,) =0,
J2(ohio) = (1.68~0.02) &&10 ' sec—'

Jo(0) = (1.14+0.09)X 10 ' sec '

Tr~rr(predicted) = 1.04&0.04 sec,

T'LAn(measured) = 1.00+0.08 sec.

No independent measurements of Jq/J2 are available in
this case, but the consistency between T&err(predicted)
and Tqzrr(measured) is evident on the basis that
Ji(oro) =0.

The above apparent rough consistencies of relaxa-
tion rate theory with experiment are not to be taken too
seriously. At best the important conclusion to be
drawn is that there is no general relationship between
relaxation rates in the laboratory and transformed rep-
resentations which is independent of the particular
quadrupole system studied, because of the roles played
by the spectral density functions. Note in particular
that T~s L and T~~D are longer than expected from simple
arguments. Moreover, the reader is reminded that Eqs.
(53) are derived on the basis that a single species of
spins is relaxing, whereas actually several isotopes are
present in the chlorates which were measured. For II~
large compared to the dipolar field, the presence of such
foreign "8 spins" would not be expected to distort the
measured values of T~pL, because the 8 spins couple
and relax independently to the lattice. However, for
the determination of T~~D, all spin species form a
common coupled reservoir during the ADRF state, and
the apparent spin-lattice relaxation, reQected in the re-
covered Cl" signal, is determined by the 8 spins as
well and by their separate dipolar heat capacities. The
data in Table I for NaCIO3 indicate this effect, which is
more marked in this respect than that for I&C103 and
Ba(C10,), D20 In NaC.103 particularly, the gyro-
magnetic ratio y for Na" is 2 that of Cl", whereas in
the latter two compounds, the y of all foreign neighbors
of significant isotopic abundance is smaller than the y

of Cl". Consequently, the Na-Na dipolar interaction
has a much larger heat capacity than that of the Cl-Cl
interaction, and will contain a larger part of the spin
ordering during the ADRF state. The Na nuclear
quadrupole interaction in NaC103 corresponds to a fre-
quency in the range of 400 to 500 kc/sec about 75 times
smaller than that for Cl", so that Na would have a rela-
tively long spin-lattice relaxation time compared to Cl".
Consequently, upon remagnetization of the CI" nuclei,
the apparent T~~D of Cl" is longer than expected be-
cause the ADRF ordered state relaxes mostly according
to the lower relaxation rate of the Na nuclei. This effect
occurs even for TipL measurements because of the
difficulty of obtaining sufficiently large rf fields II& to
decouple C13' completely from the dipolar reservoir of
the Na nuclei. In addition, the effect manifests itself
by the fact that the measured decay functions are not
truly exponential.

The measured relaxation time of CP' in Ba(C103)2
~ H~O illustrates a case where the disappearance of C13'

signal is not due to coupling with the lattice, but rather
with the proton dipolar reservoir with its dominant heat
capacity. The proton spin-lattice relaxation time is
extremely long, and has no effect on the measurements.
In Table I, the value of T&L in the hydrate is the same as
in the deuterate, but the values of T&~L=0.3 sec and
T&&D=0.1 sec in the hydrate are shorter than the cor-
responding values for the deuterate. The measured
decay curves were far from exponential in character. In
the measurement of T~SL, even a 10 G rotating rf Field

H~ was insufhcient to decouple the Cl" spin reservoir
from the proton dipolar reservoir, with its associated
larger dipolar 6eld and heat capacity. After the Cl"
order transfers predominantly into the proton system,
little of this order could be restored to the Cl" reservoir,
following adiabatic remagnetization, because the rf
intensities H~ available in the experiment were in-
sufficient to make this possible, i.e., by imparting a
sufficient rotating-frame Zeeman heat capacity to the
Cl" nuclei.

The calculations of relaxation rates have been carried
out in the special case of exact quadrupole resonance. If
this condition is removed, and the off-resonance param-
eter were to be considered in our analysis, the relaxa-
tion rates will change in such a manner as to approach
the normal relaxation rate 1/TqL, as one gets farther off
resonance. Such a behavior is qualitatively observed in
our experiments, but no attempt is made here to in-
vestigate this effect. With this additional information,
combined with the on-resonance relaxation behavior,
it appears that the spectral density functions J&, J2,
and J3 could be more accurately determined. It is shown,
with the evaluation of different relaxation rates in dif-
ferent frames of reference, that one can measure in
principle the separate magnitudes of these density
functions or their ratios.

The lengthened spin-lattice relaxation times dis-
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cussed in this paper were in fact first observed in the
course of mak. ing nuclear double resonance measure-
ments. The fact that the lifetimes of ordered states are
in general lengthened favors the enhancement of the
sensitivity of double resonance experiments. '

The calculations in this investigation present a change
from the qualitative, phenomenological approach which
argues that nuclear quadrupole systems can be de-
scribed by analogy with ordinary pure magnetic reso-
nance phenomena. The unitary transformation one uses
to transform the total Hamiltonian to the interaction
representation is a simple rotation about the axis of the
applied magnetic field, when handling pure magnetic
resonance problems. Calculations for quadrupole sys-
tems can now be extended to the interaction repre-
sentation where the corresponding transformation for
pure quadrupole resonance is not a simple rotation, but
can be decomposed into a subset of unitary transforma-
tions by a superposition of Pauli matrices which repre-
sent the higher order quadrupole operators. The ex-

ample handled in this paper is explicitly for spin I=-,
in an axially symmetric, electric Geld gradient in zero
magnetic Geld. The new representation can be developed
to handle the problem of an asymmetric electric Geld

gradient combined with an applied magnetic field, and
it is applicable to some problems which involve spins
other than I=-,'. Other problems, not necessarily in-
volving spin-lattice relaxation, which deal with the
dynamic behavior of nuclear-quadrupole-coupled spin
ensembles, such as in nuclear double resonance experi-
ments, ~ should now be amenable to a more rigorous
treatment.
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General formulas are derived for the width of an exchange-narrowed magnetic-resonance absorption line
at a finite temperature where the Zeeman and/or exchange energies can be comparable to the thermal
energy kT. The perturbation which gives rise to line broadening also is allowed to be comparable to kT in
our treatment, and this marks a departure from previous theories of exchange narrowing. The relaxation-
function approach of Kubo and Tomita is used, and it is assumed, as in the in6nite-temperature limit, that
the appropriate correlation times are sutnciently short. We show that the correlation function (M (t)M, (0))
of the x component of the magnetization has an apparent relaxation rate which is given by an obvious ex-
tension of the Van Vleck moments formula to 6nite temperature. This relation holds for an arbitrary ratio
of perturbation energy to kT. However, it appears that only if the perturbation energy is much less than kT
can this relaxation function be simply related to M, (t), which describes relaxation of the macroscopic
magnetization. If this is the case, then an unambiguous result for the linewidth is obtained which is clearly
related to Van Vleck's in6nite-temperature theory.

I. INTRODUCTION

'T is well known' —3 that paramagnetic resonance lines
~ ~ are considerably narrowed under the inQuence of a
large isotropic exchange interaction between identical
spins. This e8ect is semiquantitatively described by the
formula

YLII= (Dos' )/ps„

where pAH is the linewidth expressed in frequency
units, (taco')'t' is the frequency width in the absence of
an exchange interaction, and co„ the "exchange fre-

'P. W. Anderson and P. R. Weiss, Rev. Mod. Phys. 25, 269
(1953).

2 J. H. Van Vleck Phys. Rev. 74, 1168 (1948}.' R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954).

quency, " is proportional to the exchange coupling ex-
pressed in frequency units. The physical interpretation'
of (1) is that the perturbation which gives rise to
(A&o') is randomly modulated by spin fhps occurring
at a characteristic rate &o,))(Ace')'t'.

The quantities (Aco') and co, are given in Refs. 1—3
for the in6nite-temperature limit, in which case

(Aco') =3IIs

~,= (cV4/Ms)'t'

where M2 and M4 are the Van Vleck second and fourth
moments, respectively. In this paper we investigate the
temperature dependence of AH, which involves a treat-
ment for arbitrary values of hco,/kT and hoop/kT, where


