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vectors are reduced to be within the 6rst Brillouin
zone (—sr, sr).

Let U be E or R. Then, the eigenvalue equation (the
ground-state energy is taken to be zero) e(—m, —q')=e(m, q). (16)

formation (7a) to (11), we easily see tha, t the state lb is
chars, cterized by —m and —q". Thus by (14) we obtain

HAPp= s(m, q)APp, (1,3) Similarly the transformation (7b) yields

is transformed by U into

HAi/is= e(m, q)Ago,
where

A=—UAU ', lbp
=—Ugp.

Thus the properties of the new eigenstate g—=Ago are
contained in A. .'

I.et us erst consider the case when nz is an odd
number. Then e is also odd. By applying the trans-

' Here we assume that the excitation energy e(rn, g) is deter-
mined only by m and g and does not depend on the choice of the
ground state. This the case if we have a nondegenerate ground
state.

e(—m, q") =- e(m, q) . (17)

Equations (16) and (17) are the main results of the
present note. If e(m, q) is an even. function of nt as for
the des Cloizeaux and Pearson spin waves, we conclude
from (16), (17), and (9) that e(m, q) is an even function
of q and has a periodicity of m for odd m. For even m

the similar reasoning leads to the relations of the form
of (16) and (17) where q' is replaced by q.

The author wishes to express his sincere gratitude
to Professor Irwin Oppenheim for the hospitality
extended to the author at MIT and for his continued
encouragement.
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The angular correlation between the two photons created by annihilating positron-electron pairs in
lattices with a basis is derived in various approximations. The effects of temperature as introduced through
the momentum distribution of the positrons and through lattice vibrations are examined. Self-consistent
electron wave functions with exchange are calculated for the LiH crystal in the cell approximation, The
resulting x-ray structure factors are in close agreement with the recent extensive experimental data of
Calder et ul. The positron wave function is obtained in the same approximation and the momentum distri-
bution of annihilating positron-electron pairs is calculated. The apparent discrepancy noted by Stewart
and March between their angular-correlation data and the electron density distribution in the LiH crystal
consistent with the x-ray structure factors can be traced to the phase relations between the wave functions
within the unit cell of a lattice with a basis.

INTRODUCTION

"j~REE therrnalized positrons in a crystal annihilate
almost exclusively via para-decay with electrons

of opposite spin into two photons. Because of momen-
tum conservation, the two photons are emitted in
directions 180' apart in the center-of-mass system of
the annihilating particles. If the center of mass is in
motion relative to the laboratory, an observer sees
angles between the photons which deviate from 180'.

+ Work supported in part by the U. S. Atomic Energy
Commission.

t Portions of this article are based on a thesis presented to
New York University by Leslie~Eder in partial fu161lment of the
requirements for the degree of Doctor of Philosophy.

Therefore two-photon angular-correlation measure-
ments give information on the momentum distribu-
tion of the annihilating positron-electron pairs, as was
discussed in detail first by De Benedetti et al. in 1950.
Since then, angular correlation studies have been
made by many investigators on a large number of
substances. '

' S. De Benedetti, C. E. Cowan, W, R. Konnecker, and H.
PrimakoB, Phys. Rev. 77, 205 (1950).

~ For recent reviews and extensive references, see P. R. Wallace,
in Solid State Physics, edited by F. Seitz and D. Turnbull (Aca-
demic Press Inc. , New York, 1960), Vol. 10, p. 1; M. Deutsch
and S. Berko, in A/phu-, Betu- und Gummu-Ruy Spectroscopy,
edited by K. Siegbahn (North-Holland Publishing Company,
Amsterdam, 1965), Vol. 2, p. 1583.
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In early work. on diatomic solids, FerrelP discussed
the angular distributions observed for alkali halides on
the assumption that the thermalized positrons become
bound to a negative ion and that the infiuence of the
positive ions can be ignored. He derived angular dis-
tributions of alkali halides with widths inversely pro-
portional to the radii of the negative ions. Stewart and
Pope' made an extensive analysis of the experimental
angular distributions of all sodium halides and alkali
chlorides, again without including the inhuence of the
positive ions. These authors And that the momentum
distributions of the annihilating positron-electron pairs
resemble the momentum distributions merely of the
valence electrons of the negative ions as calculated
from the Hartree-Pock wave functions of the free ions,
and therefore they are compatible with the electron-
density distribution calculated from x-ray diffraction
data.

More recently, Stewart and March' reported a new
observation in the annihilation of positrons in the
diatomic crystals of lithium hydride, LiH, and sodium
hydride, NaH. By an analysis similar to that just
described they uncovered a significant discrepancy be-
tween the momentum distributions of the annihilating
positron-electron pairs and that expected from the
electron density distributions in these lattices as ex-
tracted from x-ray diffraction data.

This observation poses the question as to what
aspects are missing in the theory of positron annihila-
tions in diatomic crystals, or, more generally, in crystal
lattices with a basis, which do not seem to be important
in some crystals as, e.g., in alk.ali halides, but are
important in others as, e.g., in alkali hydrides. It is our
purpose to investigate this question.

The annihilation of positrons with free H ions has
been studied in several papers, and some authors have
applied the results to the annihilation in LiH. Most
recently, Gol danskii et a/. ' have invoked excited states
of the free H—e+ system in order to correlate with the
lifetime spectrum" and the angular correlation data' in
LiH. Aside from a number of basic reasons to become
clear in the following, the mere size of the H e+ system
in the excited states so invoked, if compared with the
distance between nearest hydrogen neighbors in the
LiH lattice, does not recommend this model as a
realistic reQection of the general physical situation we

are confronted with in describing the positron-electron
system in a diatomic crystal.

The positron-electron system in lattices with a basis
is treated in Sec. 1, and the angular correlation derived

' R. A. Ferrell, Rev. Mod. Phys. 28, 308 (1956).
' A. T. Stewart and N. K. Pope, Phys. Rev. 120, 2033 (1960).
' A. T. Stewart and R. H. March, Phys. Rev. 122, 75 (1961).

V. I. Qol'danskii, A. V. Ivanova, and E. P. Prokop'ev, Zh.
Eksperim. i Teor. Fis. 47, 659 (1965) (English transl. : Soviet
Phys. —JETP 20, 440 (1965)g. This paper contains references to
previous work.

A. 3isi, A. Fiorentini, and L. Zappa, Phys. Rev. 131, 1023
(1963).

1. POSITRON ANNIHILATION IN A CRYSTAL
LATTICE WITH A BASIS

The lifetime of free positrons in a solid is equal to
the reciprocal of the spin-averaged decay rate F, which
we write as

N
I'=7m' Q

crassai
I
4 (xi, , x„, , xs, x+) I

X5 (xn —x+)d'xi d'x~ d'xvd'xg. (1)

I' is expressed in the unit of time h'/me'=2. 42&&10 "
sec, e being the fine-structure constant. Equation (1)
assumes the annihilation rate to be independent of the
relative positron-electron velocities. The summation
extends over all Ã electrons in the crystal. The wave
function %(x;~) describes the state of an annihi-

lating positron-electron pair. Since annihilation probes
4(x„;x+) at x„=x+, it is sufficient to consider 4' to be
only a function of x+, and to write 'll (x+); in the
following, we shall drop the subscript (+) for brevity.
In terms of the Fourier transform of %„(x), the mo-
mentum density becomes

d'x e„(x)e—'&' (2)

We can define an annihilation rate per unit volume in
momentum space,

such that

which follows directly from Eq. (1) by Parseval's
theorem.

Most angular-correlation data are recorded relative
to some (xys) coordinate system in the laboratory, in
the form

I(P.)= (2s-) ' v(p) pdpdv,
Pz

8 S. Berko and J. S. Plaskett, Phys. Rev, 112, 1877 (1958).

in various approximations. Effects of teInperature as
introduced through the momentum distribution of the
thermal positrons and through lattice vibrations are
considered in Sec. 2. The problem of the positron-
electron correlation is taken up in Sec. 3 and reduced
to that of obtaining an enhancement factor, which we
calculate in a statistical approximation. Encouraged
by the work of Berko and Plaskett' on monoatornic
metals, we set up, in Sec. 4, self-consistent calculations
in the cell approximation of the electron and positron-
electron wave functions in the LiH lattice and uncover
the reasons for the discrepancy noted by Stewart and
March.
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where p= (p,'+p„')'~') such that

I(P )dP =I"

Eq. (4), except for an unknown scaling factor for

I(p,); in such experiments, p, =ance, where 8 is the
deviation from m of the angle between the two photons,
typically of order milliradians. We can extract from
the data the quantity

( (P.)&= 4'P —(dl(dp. ) (6)

By changing the crystal orientation relative to the
laboratory, anisotropies in p(p) can be observed. ' In
some substances, such anisotropies are negligibly small

over the experimentally accessible range of p, and, of
course, they are averaged out in polycrystalline ma-

terials, where effectively y(p) = (y(p,)).
The theoretical problem then is reduced to deriving

IC (p) I' for the crystal and an injected positron. From
it I(p,) can be calculated, by Eq. (5), and the p de-

pendence compared with angular correlation experi-
ments on a relative scale in I(p,). The absolute mag-
nitude can be compared separately with experiment by
the annihilation rates, as given by Eq. (4).

It follows from the periodicity of the crystal lattice
that

Ic(p) I'=Z.,g(k+)Ex &u.,+~+xlc".+. '(y) I', (7)

where K is a reciprocal lattice vector; g is the wave

vector of the positrons with distribution g(k+), and
k the wave vector of the electrons ranging over all

occupied electronic states in the crystal up to some
maximum value (k ), . We shall abbreviate v. =k++ k
in the following. C,'(p) denotes the Fourier transform
of @„(x),as in Eq. (2), the integration now extending

only over the unit cell. We decompose C„'(p) by sub-

dividing the unit cell inta atomic cells, one centered
about ea,ch atom in the unit cell. If d; is the position of
the jth atomic cell in the unit cell, C„'(p) becomes

C,'(p)=Z;e ""V (p;u)=Z-e ""
P; (x; x)e

—'&'*d'x, (8)
tonic cell j

where p, (p; u) is the Fourier transform of %„(x) in the

jth atomic cell. The particular form in which Eq. (8)
can be employed depends on the approximations chosen

for 0'„(x) in typical situations, ranging from free elec-

trons in crystals of simple metals to tightly bound

electrons in molecular solids. We illustrate this for a
lattice with a basis of two atoms 1 and 2. The extension

to lattices with arbitrary basis is obvious.

(I) For free particles, 0'„(x) is a plane wave and

q, (p; u) is nonzero only for p= x; that is, the photons

carry away just the momenta of the annihilating

particles.

Speci6cally in lattices with NaCl structure,

I
C.'(p) I'y-.=x=

I v i(y) ~ v 2(y) I' (12)

For a more general admixture of atomic states, as it
appears in solving the degeneracy problem between
atoms 1 and 2, the interference term again will not
depend only on the difference (p—u) but on both

(p, r) separately.
Approximation (II) should apply if the states in

one atomic cell are almost degenerate with the states
in the atomic cells of the same kind in all surrounding
unit cells of the lattice (semiconductors, insulators).

(III) In certain solids, it suffices to choose a tight-
binding approximation for the entire unit cell of the
form f, (x; u) =pi(x)+f~(x), in which case,

I 4 '(y) I'u- -x=
I v i(y) I'+

I v 2(y) I'
+2I vi(p) I [v2(p) [cos(p di2). (13)

This form should describe substances like condensed

The cell approximation implies that the wave
function in the unit cell can be written in the form

P, (x; u) =pi(x; u)+&2(x; u) exp(ix d»), where&;(x; x)
=u;(x; &) exp(ix x), the function u;(x; x) being the
periodic part of the wave function in the jth atomic
cell. In the original form of the cell approximation, one
sets u, (x; x) u, (x; 0) and obtains

I
c '(y) I'.—.=x=[ui(K) I'+

I »(K)
I

'
+2[ui(K)I Iu2(K)[cos(K di2), (9)

where u, (K) is the Fourier transform of u;(x; 0) with
regard to (y —x)= K. Writing K in terms of the unit
reciprocal lattice vectors bi, b2, b3,

K=2~(hbi+kb2+lb3}, k, k, i=0, &1, &2,

we have specifically in lattices with NaCl structure that

Ic„'(y) I'y „=x——Iui(K)au2(K) I',

where the plus sign applies for (h+k+i) = even integer,
the minus sign otherwise.

In the general case, where the x dependence of
u, (x; x) is taken into account, forms similar to Eq.
(9) obtain, but u, (K) will then not depend merely on
the difference (y —x), but on both arguments (p,r)
separately.

One might expect that Approximation (I) applies
whenever an itinerant electron model offers an adequate
description of the properties of the crystal (metals,
intermetallic compounds, covalent and ionic crystals).

(II) If we use tight-binding approximations for each
atomic cell, in the sense that the wave function in the
unit cell is represented by P, (x; x) =P&(x)+$2 (x)
Xexp(ir. di2), we obtain instead of Eq. (9)

I
+.'(p) I'y-.=x=[v i(y) '+

I v 2(y) I'

+2[ &pi(p)I [y2(y)[cos(K di,). (11)
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I
C'„'(p) I'. The result is written conveniently in the form

IC„'(p)T) I's „ i&= Ip; e-'s' q)f(p; x)e-w'&" rl I'

+small damping term. s, (17)
whereFzo. 1. Restrictions imposed

on the summation leading to
Eq. (19).

2W;(K, T) =K'(Ux'(T));.

(Ux'(T)); denotes the mean-square amplitude of the
jth atom in the unit cell along the direction of K.
Unlike in x-ray diffraction, the momenta p resolved by
angular-correlation measurements do not extend far
enough to probe the range where the contributions
from K)0 become dominant, and normally the effect
of the Debye-Wailer factors can be neglected.

Observing the restrictions imposed by the 8 function,
cf. Fig. 1, we integrate Eq. (7) with Eq. (15) for a
spherically symmetric (k ), . Abbreviating P (T)=—1 (T)/lk I, , we obtain

p= K+k++ k

diatomic molecules interacting by van der Waals forces
(molecular crystals).

I ~(p») I'= &I~(l K—p I/
I--e(T)) l~. (p) I',—.-., (19)

I C.'(p) I',—.=x=
I v r(p) I'+

I ~s(p) I'. h.e

(IV) In extreme tight-binding situations within each
atomic cell, no phase relations exist within and between
the unit cells, and

This approximation should be good, e.g. , for highly
ionic crystals, diatomic van der Waals crystals, and ion
cores.

We note from these examples that, in the majority
of cases, a cross term appears which depends on the
geometrical structure of the unit cell. Such terms have
not been included heretofore in calculations of the
positron annihilation in lattices with a basis. Specih-
cally in the previous work on ionic crystals referred to
in the Introduction, Approximation (IV) had been
adopted with the additional assumption of an amenity
between the positrons and the negative ions so strong
that

I q,.,.;. (y) I'=0. Hut as our example LiH demon-
strates, such cross terms can play an important role in
the angular correlation of the two gamma quanta
created by the annihilation of positrons in crystals.

1 p
1+erfL(1—p)/pj — expL —(1—y)'/ps j

2

1—1—erfl (1+&)/Pj— expL —(1+y)s/psj
2 ~1/2y

(2o)

In the experimentally important ranges of y 1 and
P 0.1, the second bracket vanishes. Figure 2 shows
the function 8(y,P) for different P(T) of interest. At
low temperatures, P ~ 0, and we retrieve Eq. (7) with

Equation (7) had been derived for an adiabatically
rigid lattice and an unspecified distribution of positron
momenta g(k+). If at the time of annihilation the
positrons are in thermal equilibrium with the lattice of I
temperature T,

I.O—

where
a(4 T)= (~'"1) 'exp( —& '/V)

i-(T) = (2m, *k T)»s.

0.5

The effective positron mass is denoted by m+*, and k&
stands for Boltzmann's constant.

Each lattice point executes thermal vibrations about
its equilibrium position, of mean-square amplitude
(U'(T)), and Debye-Wailer factors appear modifying

0.5 l0 I

(K-p fr [k / .„
FIG. 2. The temperature function I(/ K—p [// Q [, p {Z'))
Eq. (20), for representative values of p(2'} =f(Z')/ jit (
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0.5

angular distribution, such as contributions from core
annihilations and experimental background. This sug-
gests the study of the difference function

AI =I (Ts) I(—Ti), (22)

which primarily retains the K=O part of the distribu-
tion. This function has a conspicuous maximum dI~
at some p=psr, as illustrated for different tempera-
tures Ti, T2 in Fig. 4. Under favorable conditions, the
quantities (rUsr, pxr) can be measured accurately. To
third-order terms the maximum is given by

aIsr(Ti, Tz) = 46Pzr+ —(7r='" ')—-
XL&Psr —&PnP+ (2/7r'") &Psi'j, (23)

with the abbreviations

P1,silly f (T1,2)/PM

g(h+) =8~,s, since

I
IK-1IlimSI, P I=5,, g +K.
lk I

(21)

This temperature effect is incorporated into the
angular correlation function I (p) by inserting Eq. (19)
into Eq. (5) and integrating. On further integration,
we retrieve the I' of Eq. (4) which is independent of P.
As illustrated in Fig. 3, the thermal distribution of the
positron momenta smears the distribution near

I
k

Here and in the following I(P) is always taken to be
normalized to unity at lpl =0. If applied to simple
metals for example,

I
k

I . is to be identified with the
maximum momentum kp of the Fermi distribution of
the conduction electrons. Even at the highest experi-
mentally accessible temperatures, the effect of the
lifting of the degeneracy of the Fermi distribution is

negligibly small compared to the smearing of I(P) by

g (k+,T).
Stewart and Shand' apparently interpreted the tem-

perature smearing of their angular correlation data on
Na in a similar manner, and found it to be consistent
with an average effective positron mass of (1.9&0.3)ms,
where mo denotes the free-electron rest mass.

Before such analysis, it is advantageous to subtract
out the normally temperature-insensitive parts of the

A. T. Stewart and J. B. Shand, Bull. Am. Phys. Soc. 10, 21
(1965).

p/lk I,„

FIG. 3. Effect of temperature on the angular correlation function
I(P), Eq. (5), normalized to unity at p=0.

IiPzr P23i Pllkf

Given (DID,p~), the effective positron mass can be
extracted by Eq. (23), and Ik I,„by Eq. (24).

lk-I-=L1 —(='"-l)P. P. jp . (24)

Although the condition Ik +k+I = lk I implies
that positrons with all momenta 0& Ik+ I

( lk I, are
being probed here, the exponential form of g(k+, T),
Eq. (15), insures that merely positrons with k+ 0
contribute significantly. Conversely only electrons with
Ik I very close to Ik I, participate. In this sense,
the experimental determination of the position of the
maximum, at psr, and its height Z,IJjr amounts to a
measurement of the effective mass m+" of positrons
withk+ —0. Moreover for metals, the measured Ik I

if compared with the free-electron kp, determines an

O.I5-

»(.p„e,'j

0.IO-

0.05.

1

l.5

I'zG. 4. Examples of the p dependence of the difference function
IiI(Pi,P2) for normalized angular correlation functions at repre-
sentative values of P(T). The positions of the maxima, nI~, are
indicated by arrows.
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effective mass m *of the electrons at the Fermi surface.
For example from the graphs of data on Na, ' taking
itsFermisurfacetobespherical, wereadthatm+*(k+ 0)
=1.7mp and I *(k.) =0.9mp, approximately.

On approaching the melting point the contributions
from the high-K components to the angular distribu-
tion are suppressed such that relatively more annihila-
tions appear in the K=O domain. Because of our
normalization convention, hI~ will then be smaller

than it would have been for the perfectly ordered

crystal of the same temperatures. That is, the effective
positron mass as determined by Eq. (23) will appear
to decrease in the melting range of the crystal, the
reduction being a measure of the loss of long-range
order in the lattice. To exploit this method further, it
may be possible to study the anisotropies of P(vs+*)
and of ~h ~-, along different crystal axes by perform-

ing experiments like those of Berko and Plaskett' at
various temperatures.

3. ENHANCEMENT

Since Bloch wave functions govern the positrons in

a crystal lattice, the positron-electron Coulomb inter-

action term in the Schrodinger equation for the elec-

trons in aunit cell is of order L ', where L is the number

of unit cells in the crystal; i.e., the positron-electron
interaction has no appreciable effect on any particular
electron. Still, the accumulative polarization effect on

all the E electrons in the lattice can be appreciable in

the proximity of the positron. This is confirmed by the

positron lifetimes in metals, for example, which in

many instances signify electron densities at the site of
the positron several times higher than the mean. The
large effective positron mass in Na just discussed indi-

cates that the positrons carry the burden of a polarized

electron cloud. However on scaling I(y), the measured

angular distributions follow very nearly the distribu-

tions calculated on the basis of unenhanced electron

wave functions. If we integrate the latter as indicated
in conjunction with Eq. (5), we obtain unenhanced

lifetimes which are at variance with experiment. This
observation suggests that enhancement is insensitive

to y; it manifests itself primarily in the absolute values

of I(p) and thus remains hidden in the arbitrary scale

of the experimental angular distributions. Because of

this circumstance, to be amplified further in the follow-

ing, we could present the preceding discussions without

direct reference to positron-electron correlation, except
in an average way by introducing an effective m+ in

g(Q). Inpreparation for the calculations to be reported
in Sec. 4, we now must consider enhancement explicitly.
The problem of enhancement in the uniform electron

gas has been studied extensively by FerrelP and

Kahana. ' For our purposes, we need to develop ways

of handling enhancement in nonuniform electron dis-

tributions, at least in an approximate manner.

Kah@z@, Phyp. Rpv. 117, 123 (1960); 129~ 1622 (1963).

where
+ (x) =P+(x)P (»)%'p (x), (27)

(x)=4'p (x) ep(xy, x„, , xy)

XG (fx,—»f, . ",~x„—xf,",f»—x~)
X5(x —x)d'x~ d'x„d'x- (28)

is the enhancement factor.
For our purposes, it suKces to estimate ((x) by the

statisticalmethod. The electrons, of total density pp(x),
if treated as free and on equal footing, form a local
Fermi surface corresponding to a Fermi momentum
k~(x). Denoting the density matrix elements by
p(x, x') and.

=(x,x') =$(x)P(x'),

Eq. (2) with Eq. (27) becomes

ie(p) i'= d'nPx'p~(x, »') (x,»')pp(xx')e-*'& &'—*'), (29)

where now

p (xx') = 8'"''* *'dPk'
(2.)' p&p, (.)

(3o)

Taking P+(x) to vary slowly over the distance ~x—x'~

in which pp(x, x') vanishes, we can average over a 5

function and obtain

ic(p)i'=2 d'xp. (x) (x)8(p—kp(x)), (31)

where O. (x) =(1/2) t-1—(x/~x~) j is the step function.
At finite temperatures the step function is to be re-
placedby8(p/k~(x);f(T)/kz(x)). Afterintegration we

» 0. Krisement, Phil. Mag. 2, 245 (1957).

Formally, a wave function enhancement factor can
be derived as follows. As did Krisement" for the elec-
tron gas, we construct the wave function, in Eq. (1),
of the interacting positron-electron system by intro-
ducing a pair correlation function G+ .

'(xy, , x„),xg,'Q) =~'p(»y, , x-), xg)
XG+-(I»—~l I»-—~l . . I»» —~l)x+(~)

(25)

where X+ is the wave function of the noninteracting
positron. 40 is the wave function of the electron system
taken to be unaffected by the presence of the positron,
by virtue of what has been said above. The ansatz

(26)

splits G+ into a part G+ which affects only the positron,
and a part G affecting only the electrons. We identify
6+X+ with the positron wave function/+ in the lattice
characterized by 4'o, and obtain for the wave function
in Eq. (2)
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obtain the angular-correlation function in the statistical
approximation

I(p) =— tpxp+(x) (x) e(p —kF(x))(k&'(x) —p'), (32)
4m

and with
%ps(x) =37r'pp(x),

the corresponding annihilation rate

F=7rns tpxp+(x) - (x)pp(x) . (33)

&'qL '(q, ; o( ))—1j-=, (34)

where e is the wave number and frequency-dependent
dielectric constant of an electron gas of density pp(x).
We have evaluated Eq. (34) with Lindhard's quantum-
mechanical dielectric constant of the electron gas." It
applies to the weak interaction case, i.e., as long as the
parameter x'(x)=(3s. pp(x)) 'i'(1, which holds over
the range of ps(x) encountered in the solids of interest
here. In this range, the approximate relation

~(x) = 1+1.153po
—'i'(x) (35)

represents the exact function to better than 0.3%%u~.

Ke conclude that for the problems at hand it should
be a good approxima, tion to simplify Eq. (27) by
setting 4„(x)=f+(x) 'i'(x)%s„(x), since in crystals
generally the positron wave function is large only in
domains where the electron density varies slowly. It is
small in domains where the electron density may vary
rapidly but in any case is high, and the errors made
in still using this approximation should be unimportant.

4. AN EXAMPLE: LiH

The lithium hydride crystal has attracted theoretical
interest for many years because of its simple electronic
configuration. The first investigation, by the cell

method, into the electronic structure was made by
Ewing and Seitz."More recently, Lundqvist' has cal-
culated the electron-density distribution by the molec-
ular-orbital method. In light of the observation of

"J.Reinheimer and W. Brandt, Snll. Am. Phys. Soc. 9, 354
(1964) ~ The results for the free-electron gas are identical to those
of J. S. Langer and S. H. Vosko, J. Phys. Chem. Solids I2, 196
(1959), obtained by a different technique.

"D.H. Ewing and F. Seitz, Phys. Rev. SO, MO (1936)."S. O. Lundqvist, Arkiv I"ys. 8, 177 (1954).

Equation (32) bears out the fact that the dependence
of I(p) on p is affected only weakly by the enhancement.

In linear-response theory, the enhancement factor
is given by

(x)= 1+(2s )-gps-'(x)

Z pi(x )
y'Coulomb(r) — +g tp&r

x—x
(37)

The first term is due to the nucleus in the cell, of
atomic number Z, the second to all electrons in the cell.

y'"'"'""( ) = —L(3/ )P,.l-..( )y", (38)

the Dirac approximation of the exchange energy,
assumes that locally the electrons behave as a uniform
electron gas of density p,l,„„(r):

(1—ln2)
y correlation (&)—

7r

/3 "' (0.89s-t)—1)
Xln 1+~ pvalence(~), (39)

Ew (1—ln2)

where t) = (4/97r)'". This correlation potential is based
on an interpolation formula first given by Lewis.""

&Jeff (1 /valence/S)
y'Madelung (r)—

E
(4o)

where 3f is the Madelung constant, R the nearest-
neighbor distance in the crystal, s the number of

"H. W. Lewis, Phys. Rev. 111, 1534 (l 938).' D. F. Du Bois and M. G. Kivelson, Phys. Rev. 127, 1.182
(1962).

Stewart and March, ' namely, that the angular correla-
tion data appeared to be in disagreement with the
x-ray scattering data, it became important to calculate
the electron wave functions and the positron wave
function in the LiH crystal on the same footing. This
would enable one to calculate in a consistent way the
x-ray structure factors and the angular correlation
function for positron annihilations. Comparison with
experiment should then show whether the two sets of
data are, in fact, intrinsically consistent with one
another, or whether some basic elements are missing
in the theoretical interpretation of either.

In pursuing this program, we consider the unit cell
in the face-centered cubic lattice of the LiH crystal to
be made up of two equal atomic cells centered about
the Li and the H atom. We approximate the atomic
cells by Wigner-Seitz spheres of equal volume and
impose the conditions of continuity on the electron
and positron wave functions across the sphere bounda-
ries. The two E-shell electrons are taken to be part of
the Li core and are represented by screened hydrogenic
wave functions. For the two valence electrons, we con-
struct the potential in each atomic cell in the manner
summarized in Eq. (36). Atomic units are used
throughout.

y y Coulomb' yexchange+ ycorrelation+ yMadelung (36))

with the following definitions:
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16- LiH

TOTAL

8-
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0.4 0.8 1.2 1.6

FrG. 7. Comparison of the theoretical momentum density of
annihilating positron-electron pairs in LiH (solid curve) with the
experimental points of Stewart and March (Ref. 5). The dashed
curves (Li and H) derive from the separate atomic cells, and X
from the cross term.

Tmx, z I. The e6ective charge per atomic cell of Li+~H '
(in units of the electronic charge).

Theoretical
0.35
0.30
0.60

Reference

Ewing and Seitz' (1936)
Lundqvistb (1954)
This paper (1965)

0.25&0.25 Ahmed' (1951)
Experimental 0.46&0.01 Cochrans (1958)

0.52+0.007 Calder, Cochran, GriKths,
and Lowde' (1962)

a Reference 13.
b Reference 14.
e M. S. Ahmed, Phil. Mag. 42, 997 (19S1).
d W. Cochran, Rev. Mod. Phys, 51, 47 (1958).
e Reference 20.

with the values BL; 1.22+0.——10 A' and BH 1.80——
&0.03 A' derived from neutron diffraction data. s' As
I'ig. 6 shows, we Gnd agreement over the entire range
of (sine)/X. The intercept of the even reflection curve
with the ordinate is equal to the total number of
electrons in the unit cell, four in LiH, by the sum rule.

The intercept of the odd reflection curve with the
ordinate is equal to the difference between the electron
charge attributed to the Li atomic cell and that at-
tributed to the H atomic cell. Writing symbolically
Li+ H to emphasize the degree of ionic character in
the unit cell, our self-consistent density distribution
yields a=0.60. Table II summarizes the corresponding
values quoted by other investigators.

We conclude that the burden for the discrepancy
observed by Stewart and March must be placed on the
interpretation of the angular correlation data. In I ig.
'? we indicate the various contributions to the total

i
C (p) i' calculated in the cell approximation, including

enhancement as described in Sec. 3. The momentum
densities of the positron-electron pairs annihilating in
the Li cells and in the H cells decline monotonically
with increasing p. The curve denoted by X accounts
for the redistribution caused by the interference be-
tween the two atoms in the unit cell. This term sharpens
the distribution as compared to what would have been
obtained by merely taking Approximation (IV). The
total distribution is in close agreement, over the entire
range of momenta, with the experimental data prepared
according to Eq. (6).

Without enhancement, we calculate a
i
C (p) i

' which
differs in magnitude but, if normalized to the same
value of the ordinate, lies undiscernibly close to the
solid curve on the scale of Fig. 7. This conirms for
our system the essential point brought out by Eq. (31),
namely, that the enhancement has only a small e8ect
on the p dependence of the angular correlation. But if
integrated in the sense of Eq. (4), the resulting lifetime
is four times as long as that obtained from the iC (p) i'
with enhancement.

As a global check, we integrate over this theoretical
curve and, by Eq. (4), obtain a positron lifetime in
Lil equal to 2.44)(10 ' sec. The measured dominant
lifetime is (2.1+0.3) X 10 "sec."

In summary, the angular correlation data reported
by Stewart and March' are consistent with our con-
clusions about the role played by the phase relations
of the positron-electron wave function within the unit
cell of a diatomic lattice: They sharpen the angular
correlation function of the LiH crystal.
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