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Some previous results of the author in collaboration with H. Brooks are improved and corrected concern-
ing the coefficient of ¢? in the spin-wave dispersion law in an electron gas interacting according to a Yukawa
potential. A variational method of solution for the integral equation occurring in this theory is given which,
besides giving the spin-wave energy correctly, also gives the spin-density-wave instability when extended
suitably. Having uncovered the instability of the paramagnetic state, an alternative derivation of the new
state is given by a Green’s-function method. In an Appendix, a theory of spin-density waves in a Bloch
electron system is outlined. The variational method given here seems to be of quite general use in solving

similar problems in other contexts.

INTRODUCTION

VERHAUSER’S! recent demonstration that a
nonuniform static spin-density-wave state (SDW)
is lower in energy than the uniform states (paramag-
netic, P) in a Coulomb gas within the Hartree-Fock
(HF) approximation has stirred a great deal of discussion
in recent times. In fact, that such an SDW state may
appear was suspected by Herring? when he discovered
in the Coulomb gas a small region of densities (small
within the approximations he was making) over which
the ferromagnetic spin waves showed an instability.
These investigations call for a good understanding of
the nature of solutions to the spin-wave equation. The
present paper is an attempt to make these concepts
uniform through the help of a variational solution to
such equations.

This paper is divided into three parts. We® had
earlier reported a calculation of the HF ground-state
energy and of the spin-wave energy, in the long-wave
limit in the random-phase approximation (RPA), of an
electron gas interacting according to a Yukawa poten-
tial. The spin-wave energy was calculated as a function
of the range of interaction and relative magnetization
at 7=0°K. In the first part we rectify our original solu-
tion to be in conformity with Herring,? by developing
a variational solution to the equations in the long-
wavelength limit. The Yukawa interaction is chosen
because we have proved®®P that in general the exchange
interactions are screened by electron-electron inter-
actions and so a Yukawa potential may well simulate
most of the correlations in an interacting system. To be
more precise, the exchange interactions are screened by
a dynamic dielectric constant, which to the author’s
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knowledge cannot be handled in any clear-cut manner
without involving drastic assumptions, which make the
conclusions rather dubious. The notations employed
here are as in our previous work.?»? It must be re-
marked that recently there have been many attempts to
study spin waves in an interacting electron gas. Almost
all these papers deal with a short-range interaction only
and we refer the reader to Ref. 3b for a discussion of
these. Having noted a possibility of an instability of the
uniform ground state towards the formation of SDW,
in the next part we discuss a similar variational principle
to deal with zero frequency but finite wave vectors for
spin waves. Using the solution of the noninteracting
case as a trial function, we arrive at the condition for
stability of static spin waves of finite wave vector, de-
rived earlier by Iwamoto and Sawada* and Fukuda
et al.® The finite-frequency and finite-vector case is also
indicated. Recently, Fedders® has re-examined the SDW
instability by employing a ‘¢-matrix” method. [ This
i-matrix method, it should be pointed out, is not the
same as the one used usually in the discussion of low-
density problems. It is in fact, a variant of the random-
phase-approximation (RPA) equations.] He has dis-
cussed also a variational method of the type introduced
here, except that his is in terms of {-matrix components.
The present work brings together the formulations of
the long-wavelength spin-wave instability and static
spin-wave instability. See, for a detailed discussion of
these questions, the recent review article by Herring.”
From this review article (Sec. V¢), it is found that there
is a great deal of interest in the calculation of magnetic
properties of a Yukawa gas. In the third part, we re-
derive the new state! by a Green’s-function method.?
The inclusion of this derivation makes this article com-
plete. This alternative derivation has a close resem-
blance to that of the gap equation for superconductors
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by Nambu.® In the last section we summarize the re-
sults. In Appendix A we derive the equations for SDW
states for Bloch electrons in a many-band complex
based on a certain model. In Appendix B we take the
opportunity of giving the complete set of equations
describing the collective excitations in SDW systems.
This serves as an addendum to our previous paper
on the same subject in this journal® which contained
only approximate equations specialized to short-range
interactions.

LONG-WAVELENGTH SPIN WAVES

The correlation function

X —(11) = (1/8)(T(¢+(1)é-(1))), €Y

where 1=(11#1), T is Wick time ordering, and 0. = 0,140y,
are the circular components of spin density, is related
to the transverse spin susceptibility.’? ¢ stands for
o— (o). Taking the space and time Fourier transforms
we get after some manipulations,

dqy
ttae)= = [ ST @

X;-(qw) is the generalized spin susceptibility, de-
pendent on wave vector q and frequency w; N (q:q)
=nr(wr(q1+q))—7r(w (q1)), with #p(x) standing for
Fermi function; and wy are the single-particle energies
of the up- and down-spin states. I'ty(qi; qw) satisfies
a certain integral equation to be quoted presently. The
transverse spin susceptibility of physical interest in-
volves a commutator in (1) instead of time ordering, and
it is related to (2) by

)-("l'-—(q:w): lir(f)l_'_ X+_(q, w-I-ie) . (3)

(e, real)

In RPA including exchange processes, the equation
satisfied by I'yy is (we shall usually drop the subscript
ty from now on):

(w—on (k)T (%; qw)
&%k

" / Ok — k)N (ki) T (s o) (4a)

@’

ar
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The single-particle energies in the up- and down-spin
states are

ak

o ()= | K|2/2m— / Dl ks s ()

and

oty (kg)=wr (k+q)—wi (k). (4c)
Here U(k) is the Fourier transform of the interaction
potential; its form is not specified here to keep the dis-
cussion quite general. For a general derivation of (4)
employing Green’s functions and variational derivative
techniques, see Refs. 3(a) and 3(b). It was shown there
that the bare U is in general screened by a generalized
dynamic dielectric constant and hence in (4) we do not
specify its form. [When U is dynamically screened,
(4b) is an equation to be solved for w, and there is an
additional integration over frequency w; in all the above;
we imply it wherever necessary and do not explicitly
exhibit it. | In what follows now and in most of the next
section, unless mentioned, we treat U as statically
screened; in the beginning of the next section when a
generalized variational principle is developed we deal
with a fully general interaction.

The purpose of the present section is to discuss the
solution of Eq. (4a) by a variational method in the
long-wavelength limit. First we let

V(g—q1) = @re*/ke)V(lg—a1|),
y=k/kr, y1=q/kr, x=q/kr, w=(ks*/2m)v,
a=(4/9m)13=0.521, ar;/mr=me*/kr,

kr=paramagnetic Fermi wave vector, §=(0,¢),

©)

where 7, is the effective electron-radius in the inter-
acting system. Choosing x to be the z axis of a reference
coordinate system so that cosf=(4w/3)12V10(0,0),
where Vi, are the usual spherical harmonics, we write
(4a) in the form:

{y—xzmny(4_3’-’)mym<p>+<-;§> [envtis=simes x)} I(y; o)

—— @m k) (ar /5 / B3V (|y—31))Nrs(ys; )T 3m; 9) . (6)

To derive spin waves we need only consider the homogeneous part of (6), or the poles of (3) in the w plane, and
hence we drop the inhomogeneous term in Eq. (6). Let x=0 in the homogeneous equation; multiplying the resulting
expression by N (y; 0) and integrating over y, we find that a solution exists with

»=0 and TI(y;00)=a constant. O

8 Y. Nambu, Phys. Rev. 117, 648 (1960).
9 A. K. Rajagopal, Phys. Rev. 137, A1429 (1965).
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Multiplying (6) through by N1 (y; ) and integrating over y, we get after some manipulation (we assume V" to be
symmetric here):

47\ 1/2
v=x2+2x<—3—> / d¥y (2m) =2y YV 10(§) N (y; 2)T (y; %) / / ddy 2m) " Nn (y; )T (y; %) (®)

Let us write

Nu(y; 2)=Nu(y; 0+ 2 4 Vi@ NuiD(y), )
i=11=0 9
© +

I(y;)=TO+3 > ¥ 2Vum@Trw ().

J=1 V=0 m'=—1"

Only Yo appears in the expansion of Ny, since the left-hand side is seen to contain only y. Working then to lowest
order in %, we get

4\ 12 ( Sy N1y (y; 0)T10P (y)dy+T© Sy N1y1 D (y)d
V~x2+2x2<—-> { Y w ddntiian-decd (10)
47T O [ 92Ny, (y; 0)dy
Let us choose

TO=(3/4x)%(ar,/x) . (11)

Then (reverting to the original notation),
wsw~ (¢%/2m8) {1+ (x/ar;)S ()}, (12)
SE)= f dy ¥ Nt (y; 0) T (y). (13)

Here { is the relative magnetization of the system. The above derivation shows that the spin-wave frequency in the
long-wavelength limit is proportional to the square of the wave vector. We must point out that the first term in (12)
arises purely from the kinetic motions of the electrons and the second term, which is proportional to (x/ar,),
comes from the readjustment of the system due to the interaction between electrons. Thus we see that in this limit
the only term of interest is .S, which is determined by solving the equation for I';p™, which we proceed to formu-
late now. Quite generally we can write for potentials of the form V(|y—yi]),

2r i
V(ly=yl)=—2 X Quy; ¥V (@Y 1*@1), (14)
yyl =0 m=—1
where
1 +1
—Quy;y)=[ PV (Iy—ml). (13)
¥y ~1
Note that Q;(y; y1) is symmetrical like V(|y—y1]).
[Py(u) is the usual Legendre polynomial of order 7.] 15
Here Y;.’s are such that
/d?? Ylm(g) Yl'm’*(z?) = 5ll’6mm’ (16)
and
-+1 o
/dﬁ=/ d,u/ de.
-1 0
For the Yukawa potential, we find
vty 2+ &2
Q5 y) =0\ ——— ), (17
2y
where we have taken
V(lyD=1/(y[*+&), (18)
£ is a dimensionless screening parameter, and
1+ Py(w)dp
Qu(x)=~ / (19)
2 -1 X—u
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is the Legendre function of the second kind. The equation satisfied by I';,® is then found to be (taking y=v.x?)

4\ 1/2 ars
—2y<?> Ym(?)l“<°)+2(-—> 2 Yo @ Trm P (y) / 1Vt (315 0)Qo(y; ¥1)dy1

Ty Um!
ars
=2<—> 2 Yl'm'@)/ y1Vu (y1; 0)Qr (¥; y1) T @ (y1) . (20)
Ty Um’

Multiplying this by ¥;,*(y) and integrating over y, we get

4\ 112 ars

—ZJ’(‘;) F(0)5l18m0+2<_>[/dylleN(yl;O)QO(y;yl):lrlm(l)(y)
Ty

ars

= 2<—>/dyly1Nf$ (yl, O)Ql(y; yl)rlm(l)(yl) . (20,)
Ty

Note that for I##1, m#0, we get homogeneous equations for T'ty;,, which can therefore be taken to be zero with-
out loss of generality. Also, only I';o(V appears in the expression for »» (or wsw) so that we need to consider only
the equation for it. Using (11) for T'®, which now becomes trivial, we finally obtain

_y2+[/dy1y1Nu(y1;O)Qo(y;y1)]1‘10<1>(y)=/dylleﬂ(yl;O)Ql(y;yl)pma)(yl)_ (1)

From now on we write
¥(9)=T1D(yy) . (21")

Earlier®>? we solved this equation for the case of a Yukawa potential by a series method. We will discuss this
solution in comparison with Herring’s? work and the present variational solution at the end of this section. At
T'=0°K, we must point out that Ny (y; 0) is the difference between two positive unit step functions,

Nu(y; 0)=nr(wr(y))—nr(wi(3)) = n {1+ =)= 1 (1=1)*—y), (22)

where 74 (x) is the positive unit step function. This then gives the limits of integration over y, in all the above ex-
pressions. Equation (21) may be written in a symmetrical form, thus

P O )= [ Kooy, (23)

where

= 1Yo ;1d1,
o(y) /bny(y yody (24)

K(y,y)=y310:1(y; y1) =K (y1,9),

a=1+)" and b=(1-)18. (24

We now solve (23) by constructing a variational method. Consider the functional

since (; is symmetric. Further

JW)=2 / ¥ (y)dy+ f ey (y)dys— / / Yy K (yry2)¥ (y2)dyidys. (25)

The Euler equation corresponding to first-order variations in (y) is (23). Inserting (23) in this functional J, we
arrive at

Joal¥)= / F()dy=5() (26)

from (13). Jexi is the extremum of J for such y. This variational principle therefore gives an extremum on .S and
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hence seems more reliable than our previous series solution. So far we have been discussing in general terms without

specific reference to the form of V.

We now specialize our results to the Yukawa potential (18), in which case we have specifically

£2+(y+3’1)2>
;y)=3In( ———), 27
0i03 ) n(é“’+(y—y1)2 e
2y i+ £ (y4y1)*+ £
Ql(y$y1)=[<y 4 )ln<y d )“1]- (27v)
4yy1 (y—y1)*+-&
e 4o g+ (a+y) +
a’—y a aTy -y
=192 1 — —1 —1 — s 7
60)=] fa+( . Z>n(z2+ — ¢ an ( : )t : ))} (o], @
£+ (y+y1)
K(yy)=| 1oyi+8) In(————— )~y |. 7d
. . (1) [(y +y1+$)ln<£2+ T yyl] (27d)
We try as a trial function,
Y()=4y. (28)

Then,

J(A4)=34(0— B+ A (3@ %) 1£(a—) (a3~ 0%)+ (§/24)(a—)?
— 2502 (a,8)—$E L (0,0)+BL (6,5) — (a*+82) L (a,b) 1~ (8%/96)(L(,0)+ L(b,5)~2L(a))

+38[a(T(a,0)—T(a,0)— T (—a, b)) +*(T'(5,0)— T (a,b) —T(—a, b)) ]},

b 2
L(ab)= 1n<%%%

Hence 4 is determined and thus
wsw~ (g% 2m¢) {1+ (w/ars)3(a*—0%) A} .  (31)

We must remark here that the linear term in (28) is
itself sufficient to bring out all the main features of the
calculation; as found by Herring,? the higher-order
terms in powers of y in (28) do not give any more valua-
ble information than the linear one, and even it gives
a better numerical estimate of A4 only in the ferro-
magnetic (F) state. In the paramagnetic limit, however,
it always gives the same result as that found by a
ground-state condition to be discussed presently, as
indeed it must.

We would like to remark here that Herring? had
earlier developed an expression similar to (13) for the
spin-wave frequency in the long-wavelength limit but
only for the F state, both for the Coulomb gas (¢=0)
and for the Stoner gas (¢ —=), based on a perturba-
tion approach to the HF equations given earlier by
Peng.1® The author recently found, in response to a
query by Herring and Brooks, that Peng’s approach is
equivalent to RPA quite generally!* and so the equiva-
lence of Herring’s expression with (13) here is not sur-
prising even though our methods are quite different.

The functional J(y) introduced here makes S a
minimum for the Yukawa and similar potentials when

10 H. W. Peng, Proc. Roy. Soc. (London) A178, 499 (1941).

1 A, K. Rajagopal, Advanced Research Projects Agency Tech-

nical Report No. 15, Harvard University, Cambridge, Massa-
chusetts, 1965 (unpublished).

(29)

T(a,b)=tan"((6+a)/5). (30)

¥ is taken as a power series in y, and hence we arrive at a
lower bound on wsw (as S turns out to be negative).

We will now discuss this solution in the light of our
previous result®? and Herring’s result.? We follow
Herring’s” discussion of these problems. In the limit
when £ —c, we have the Stoner model and we obtain
from (29,30),

Ag=—(38/40),

swr-ram iG]
wsw(Stoner) = g%/ 2m{ m<a3—b3 ’

where

(32)

In this limit, the equation for the spin waves can be
solved exactly also, and indeed this coincides with
the exact answer.? Also, consideration of the stability
of the HF ground state has shown that there are three
types of states: P, F, and UF, the unsaturated ferro-
magnetic states, (0<{<1). The spin waves are stable,
i.e., wsw>0,7 in the range of K6'/er where the ground
states are stable, and vice versa. This is in complete
conformity with a theorem due to Thouless'? and
Fukuda,! which states: The stability of the HF ground
state against any small deformation preserving the
single-particle nature of the wave function ensures the

K0'/ep=Stoner parameter=4(ar,/rt?) 3P

2. J. Thouless, Nucl. Phys. 21, 225 (1960).
18 N. Fukuda, Nucl. Phys. 44, 553 (1963),
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stability of the collective motions in RPA, and vice
versa. This is not surprising, since Overhauser! had al-
ready shown that there are no SDW instabilities in the
short-range gas. In this limit, many other general
features of the spin waves in an electron gas can be ex-
plicitly computed, such as the existence of a maximum
wave vector beyond which the spin waves are dynami-

cally unstable, and so on; and these are dealt with in
Refs. 3a,b. In the Coulomb limit (¢=0), we have

A= (=9/5)[(a*—b%)/(a*—b°)*],

Or /a5—b%\? (33)
wsw(Coulomb)= (q2/2m§‘)|:1— < ) ] .
2507, \a®—b®

For the F state ({=1),

wsw? (Coulomb)~ (¢2/2m)[1—5.4699/7,1, (34)
and for the P state ({~0),
wswP(Coulomb)~ (¢2/2m¢)[1— (w/ars)].  (35)

The differential stability condition for the Coulomb gas
in HF is®

(ars/m)=%(a+D). (36)

In the limit { — 0, the coefficient of ¢2 for wsw coincides
with the corresponding result in (36). However, it must
be remarked that the UF states are unstable in this
case since they are states of relative maxima.3»> Hence
it was deduced that F states are stable in HF if

7s>5.45 (=0.9/a) (36")
by just comparing the P- and F-state energies.

Previously,?** we had reported a series solution for T,
Using three terms in the series as an approximation,
in the F state, we found,

wsw® (Coulomb)~ (¢%/2m)(1—5.3447/r5), (37a)
whereas Herring? obtained
wswiering(Coulomb) ~ (¢2/2m)(1—5.485/7,).  (38)

This series solution is now improved by taking 4, 5
terms in the series and we obtained, respectively,

wsw®(Coulomb)~ (g2/2m)(1—5.4106/7) ,
wsw®(Coulomb)~ (¢2/2m)(1—5.4416/7,) .

(37b)
(37¢)

If Herring’s calculation is correct, then in view of the
ground-state criterion (36’), the implication is that there
is a small but finite range of densities between r,=5.45
and 5.485, over which a static spin wave of finite ¢ has
a lower HF energy than either of the uniform states.
Using a better solution would only give a value of 7,
larger than 5.485, so that the range of densities de-
pends on the approximation. The range is not very im-
portant but the indication of the instability is quite
significant. Note that none of our solutions correspond-
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ing to series solutions, (37a,b,c), gives this instability
(though they probably would if more terms were taken)
whereas our new variational solution (34) does give it.
In view of Overhauser’s! discovery, the instability of
the spin wave in the long-wavelength limit is not sur-
prising; thus all these results are in concordance with
each other and with the theorem of Thouless!? and
Fukuda®® quoted earlier. Thus when 7,<5.4699 (<7/a)
there is an instability for ¢=0, and by continuity, when
7,<5.4699+7 (1 is a positive number), there is still
an instability for small but finite ¢. These are hints of
the SDW instability, which is not pronounced for
larger ¢. (I am grateful to Professor Paul Martin for
this comment.) Thus Herring’s calculation (38) is cor-
rect. The result (31) is valid for all £ and ¢, and this
was not reported in our earlier communication.??

STATIC SPIN DENSITY WAVES

An alternative proof of Overhauser’s! assertion that
the SDW is more stable than the P state in an un-
screened Coulomb gas in HF was given by Fukuda
el al.’ Amusia'* has very recently proved that such an
instability does not occur if the bare Coulomb inter-
action is screened, using a Landau-theoretic argument
for a SDW. On the formal level, Fano!® has quite re-
cently shown that SDW states are exact in the same
sense as the BCS superconductive states are. De Graaf
and Luzzi'%:1” have very recently proposed a reformula-
tion of SDW states in terms of the Landau theory of
Fermi liquids. Iwamoto and Sawada* discussed only
the instability of the P state towards the F state in a
Yukawa gas. We’aP dealt with this problem in greater
detail than Iwamoto and Sawada! in that we investi-
gated the stability problem for all magnetizations. We
found that there exists a £max below which the system is
either F or P with UF being states of relative maxima
just as in a Coulomb gas, and above £max there are re-
gions of all three magnetizations possible as in a Stoner
gas. Very recently Fedders® has examined this problem
for the existence of SDW states. He found that there
exists a £max below which SDW states are lower in
energy than P states, just as in the Coulomb gas, and
above which there are no SDW states at all; as in a
Stoner gas—quite analogous to our result. For Thomas-
Fermi screening we both found that the system remains
in the P state. Fedders has also examined the case of the
dynamically screened interaction, although not so com-
pletely. He suspects from his rough estimates that SDW
states almost certainly are not present, in quite the same
manner as Amusial4 concluded from his Landau theory.
In view of SDW states, it is natural to ask whether our
variational principle can be generalized so as to indi-

4 M. Ya. Amusia, Phys. Letters 16, 254 (1965).

15 G. Fano, Nuovo Cimento 38, 597 (1965).

16 A. M. De Graaf and R. Luzzi, Nuovo Cimento 38, 285 (1965).
17 A. M. De Graaf and R. Luzzi, Phys. Letters 16, 256 (1965).
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cate this instability. We now construct a variational tional solution for it. Let us note that for all gw in
principle for the spin-wave problem valid for finite g,» general, I' and X, _ are complex. The complex conjugate
and derive therefrom the SDW instability also. I'* satisfies an equation similar to Eq. (4a). We treat

Let us consider Eq. (4a) for I, and construct a varia-  w here as a real parameter. Then consider the functional,

a3k
J(I‘,I‘*):/(w—wn(kq))I‘*(k; qo)T(k; qo) N1y (kq) )3—|-/A7N(kq)

(2
a3k d3k1d3k
)3——//’O(k—kl)NN(qu)F(kl; qo) N (kQ)T*(k; qw)

(39)

X(T'(k; qu)+T*(k; qw))

(2 (2m)
Treating I'* and I" as independent, the Euler equation corresponding to variations of I'* is the equation (4a) for
I'. Similarly we get the corresponding equation for I'* when T is varied. Thus I' and I'* are extremum solutions of
the variational problem with J as the Lagrangian. Substituting these in Eq. (39) we arrive at

Jext(T,1%) = =3[ X4 (g,0) X4 *(qw) ] (40)

The above variational principle will now be applied to the special case where w=0, so that we study the static spin
susceptibility. If X4 _(g, w=0)>0 for some finite ¢, then there appears an SDW instability. In this case, I' and X, _
are real. The above functional is just

10)= [mersea) V)
(2m)?
+2 / N (kq)T (%5 q) o / / V(k—k1) Ny (k1g) Nra (kg) T (k15 ¢)T'(k; q)d%d%l (39"
(2m)? (2m)e
and
Jext(T)=—X;_(g,0). (41)

In Appendix B of Fedders’® thesis a similar variational procedure is given involving his ¢ matrices. Following
Herring” (Sec. 3) we assert that X _(q,0)>0 is necessary for stable spin waves for any ¢ but with zero frequency.
Iwamoto and Sawada* and Fukuda ef al.> have developed a variational estimate of the existence of a SDW by
examining the stability of the P state towards static spin-density fluctuations and do not give a corresponding ex-
pression for the susceptibility. We will derive from the above a similar estimate, valid for all magnetizations and
finite temperatures, unlike the authors quoted here.+5:18:17 De Graaf et al.'” have also calculated the spin sus-
ceptibility using the Landau theory. To this end let us assume A(¢q)I'(%; ¢0) to be a trial function and vary . Then
we find

@’k

(2r)?
(kr?/8mm)[ N (g¢) — (ars/m)(D1(gt)— Da(ge))]

- f Nus(hg)T(k; )
(42)

X+—(q; w= 0) =

where N, Dy, and D; are similar to those derived by Iwamoto ef al.,* except that this expression is valid for a general
potential of interaction V¥ just as in (5), including screening. Thus,

d¥y
N(gt)= / (133 l2= N G522
Y

d3yd3yy

2 ’

(43)

Dilat)= f f V(| y=1]) Vs (35) N () T2y )

dPyd®y,
Dalat) = / ] V(|31 ]) Vet (35) N () Tyt )Ty )
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using the notation defined in (5). The static spin wave
then is unstable if Xy _(¢, w=0)<0, and this happens if

(Ol

For =0 this condition is the same as that derived by
Iwamoto and Sawada,* with T' replaced by the non-
interacting solution, namely [1/(|y+=2| —|x|2)]. The
same procedure could be used here to investigate the
Yukawa case; for the results we refer the reader to
Fedders,® whose work we have described already.

We must point out here that the instability of the
ground state towards the formation of SDW states is
only one part of the problem. Once this instability is
discovered, and all the effort so far has been directed
towards this, we must examine the properties of this
new state. This is done in the next section by a Green’s-
function method.»

(44)

GREEN’S-FUNCTION DESCRIPTION
OF SDW STATES

In this section we follow closely the procedure given
in Ref. 3b. An alternative derivation of Overhauser’s!
equations by a canonical-transformation method has
been recently given by Yan Shi.!® This was employed
by the author? to study the collective properties of SDW
systems. Here we outline another derivation of the
Overhauser equations based on a Green’s-function
technique. In Appendix A we generalize this procedure
to include certain SDW correlations among band elec-
trons. In Appendix B, we describe the collective states
in SDW systems in a more general form than was
given originally.® The derivation given here includes
dynamic screening also. We define a 2)X 2 matrix Green’s
function with components (following Ref. 3b):

Goo (11) = (1/i(TWe(D¥o (1)) (o,0'=1, 1)

in the usual notation.’® From Eq. (2.1.28)% we have the
equation for the inverse G1:

V2

d 1
G-1(11) = {z;jt—zm— V(l)} 5®(1—1')

+i / d#iv(1;11)G@ELY), (45)
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[A positive background is assumed and this cancels the
direct Coulomb term in (45).] V(1—1’) is the bare in-
teraction; I'y is a vertex part corresponding to density
fluctuations and is related to the dielectric constant of
the system. In the % space the last term in (45) takes the
form

d*ky V(k— k1)

/ ————G(k)Ao(k; k—E1),
(2m)* e(k—ky)

where € is a generalized dielectric constant involving
a modified vertex part Ay, whose integral equation may
befound in Refs. 3a and 3b. In RPA, Ay=—1 and eis the
usual RPA dielectric constant, thus exhibiting the usual
dielectric screening of the exchange. From now on we
shall not retain the dielectric constant but shall sub-
sume it in the definition of the interaction potential. The
equation (45) is a 2X2 matrix equation (i.e., G, T,
and Ay are matrices) and we will not make it more
specific unless necessary. (e is a scalar.)

The symmetry-breaking solutions of (45) will now be
shown to lead to Overhauser’s! equations. Overhauser
derived them only for HF states, a case which obtains
in our formulation if we take T'y(12;3)=—0@®(1—2)
Xd®W(1—3). In (45) V(r) is the one-particle periodic
potential, which is not considered here but is taken
into account in Appendix A. Following Overhauser,!
we associate a plane wave of the form exp(sk-r) with
the up-spin electron and exp(i(k+Q) - r) with the down-
spin electron. Here Q is a measure of the breaking of
the translation symmetry. Correspondingly, we define

a3k
Gn(ll')=/ 2y

@k
Gu(lll)zf (2 )Sei(kurQ).(rrr")GH(k/;fl“l‘l'),
™

ek’ (rl—rl')GM (k’, tl_'tl') ,

. 7
d3
GN(ll'):/ 2 )36“""“"<“’+°>~rn'GN(k’;trty),

m

K
<huw=/@>fww“ﬂ“thwrﬁm
v

where Then Eq. (45) with (RPA) screened potential takes the
v(1;31)= / d*30(1—3)To(A1'; 3). (46) form (we use a four-dimensional notation; here we have
’ ’ taken Fourier transforms in time also)
w—e(k) —gn(k)
6=( ), 18)
—gin(k) w—elk)

18 Yan Shi, Dokl. Acad. Nauk SSSR 153, 798 (1963) [English transl.: Soviet Phys.—Doklady 8, 1171 (1964)].
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where

(k)= k2/2m—l—i/°0 (b—F")CGry<(k'w)eio O d3k'dw' / (2)*4,

a(t+0)=|k+Q|2/ 2m—+i / V(h—k)Go <(B'e )6 a3k d' / (2m)*,

(49)
gn(k)= i/’O(k—/a')Gu<(k'w’)ei“"°+d3k'dw'/(27r)4,
gn(k)=i/‘()(k—k’)Gn<(k’w’)e""”°+d3k’dw’/(21r)4.

Thus inverting we arrive at
w—e (kb
Glhw)= (et an® ) , (50)
[o—ei®To—e N k) o—al)
where
wi(k)=3(er (k) + e (k+Q))F[F(er () — & (k+Q))+gru (R)gar () ]2 (51)
Casting the terms in (50) into partial fractions and defining
[w+(k)— € (k+Q)J gr (k) (k)
cos?0,= = ,
wi(k)—w_(k) 4 (0—e(k))+gnk)gn (k) (52)
gru(k)gur (k) g (k)gur (k)

cos26;, sin20;,=

(@B (®)* AL (Cak)—at+0)]/2 +en®gn®)]

(The simplified forms at the end of (52) are obtained after some manipulations); we obtain the Green’s function
describing Overhauser states:

Glha)= ( [cos®0rgy(kew)-+sin0rg_(kw)] cosfy, sindp(grs () /gur (B))/ (g (ko) — g_(kw))> (53)
cosy sindi(git (B)/ grs (k)12 (g4 (kw) — g_(kw)) [sin?6g.4(kw)-+cos?brg_(kw)] )
Here
gi(kw)=1/(w—wy(k)). (54)

These, substituted back in (49), give

a*k’

e (k)=Fk2/2m— / V(k— k) {cos?0pnr(wy(k))+sin0np(w_(k))},

(2m)?
ak

a(k+Q)=k+ Q| 2/Zm——/ = V(k— k') {sin®0,np(wi (k)4 cos?Opnp(w_(k))},

g (k)= /
gu(k)= /

np(x) is the usual Fermi function. If we take grn = g1t =g, and assume that only w, (k) is occupied, and 7=0°K, then
we recover all of Overhauser’s! results. Moreover, this generalizes the original Overhauser results for finite tem-
peratures, nonzero magnetizations (Overhauser had up and down spins equally populated to start with), and a
larger class of interaction potentials. We may point out here that if we put Q=0 in these equations, we recover a
variant of Stoner’s results® as indeed we must. Another point worth mentioning is that if we take the limit of small
g, we arrive at the static spin-wave equation (homogeneous counterpart), as is also to be expected.

55
a3k gu(k/) 1/2 . (55)
e(.)(k"‘k’)( > cosfys sm()kf[np(w_l_(k’))—np(wg(k’))],
(2m)? g (%)

N T NI , ,
(ZT);U(k—k )(gn(k’)> cosbys sinby [ np(wr(F))—ne(w_(%))],
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For the sake of completeness we derive here the expression for the total energy of the system, (H)/Qo, in the

SDW state using the Green’s function (53).

d3 2 + 2 2
(H)/Q= / ——-q—[ (—q—— cos?0,+ |2+ sin204>np(w+(q))+<-q— sin%6,+
2m 2m

(2m)3L \2m

lg+0Q]*

cost s ) |

1 d3qd3’
- / / ! qv<q—q'>{[cosZean<w+<q»+sinzom(m(qm[coszoqlnpwq'»+sin20qlnp<w_<q'>>1

(2m)°

—l—[sinﬁoqnp(w+(q))+coszﬁqnp(w_(q))][Sin?Hq'nF(w+(q’))+Coszoq'w(wﬁ(q’))]-l-Z(

o (Q)gn (q’)>" 2
g (@en(q)

X €0sf, sinf, costy sinﬁq'[np(m(q))—-%F(w—(q))][np(w+(q’))—nF(w-(q’))]} . (56)

Treating 6, in this expression as a variational parameter,
one recovers the condition on tan26, which is equivalent
to (52). We now summarize our results obtained so far.

SUMMARY

The spin-wave frequency in the long-wavelength
limit is here shown to be proportional to the square of
the wave vector for a large class of interaction poten-
tials (not dynamically screened). The long-wavelength
limit of the spin-wave frequency previously reported
by us®P is recalculated by a variational method of
solution of the equation describing the spin waves for
electrons interacting according to a Yukawa potential.
This calculation corrects the previous one and extends
it to include all magnetizations and the dependence on
range of interaction. The present result also gives the
correct limit for the P state. In the Coulomb limit
(¢=0) the results are in concordance with Herring’s?
results for the F state. The long-wavelength spin-wave
instability in the Coulomb gas already shows the
possibility of SDW-type states, as they are static spin-
waves of finite wave vector. A variational method for
the same spin-wave equation for the static case but
with finite wave-vector is developed, quite similar to
the long-wavelength case. As a special case of this we
rederive and extend a result derived earlier for the
P-state instability by Iwamoto and Sawada.*t The
SDW states are then described by means of a 2X2
matrix Green’s function,® thus giving an alternative
derivation of Overhauser’s! equations, which can also
be derived by a canonical-transformation method.!$
The Green’s-function method given here is quite similar
to Nambu’s theory? for superconductivity. The present
derivation is quite general and includes the screened
interactions as well as general interaction potentials.
In Appendix A we derive the corresponding results for
Bloch electrons based on intraband SDW correlations

only. This result has since been extended?® to include all
inter-band correlationsfor a two-band complex. Fedders®
has attempted a similar model but involving very dras-
tic approximations concerning the matrix elements of
the interaction potential, whereas the model® con-
sidered by us is more general. Fedders applies his
model to chromium, unlike Overhauser,! who treats
chromium on an essentially one-band model. In Ap-
pendix B, the general equation in RPA describing the
collective states in SDW systems is written out,®
which is valid for general interaction potentials, whereas
the previous derivation was specifically concerned with
delta-function interactions and involved some approxi-
mations. This forms an addendum to our previous

paper.®
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APPENDIX A

In this Appendix we derive the Overhauser equations
for the case when we have electrons in a periodic po-
tential. All the results given here are formal and it is
hoped that they will be useful in the realistic situations.
As in the text of this paper, we assume that the elec-
trons with spin up and wave vector k in band 7 is
associated only with the one of spin down in the same
band but with wave vector (k+Q). With this pre-

1 A. K. Rajagopal and H. Brooks, Advanced Research Projects
(unpublished).
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scription, the following redefinitions of (47) are made:

ak’

Gr(11)=3 bur (Db *(1)Gr (VR 5 ta—1y),
v Jipz (2w
3L/

Gu(11)=% bo prie(Dbr pri@*(1)Gu (VR s 1—tv)
ll

1BZ 2

) (A1)
Gu(11)=X% by (Dbr wa@* (V)G (VE'; i—t1r)
v J1pz (2m)3
357

Gn(l 1’) = Z by ,k:w(l)bz/kf*(l’)Gn (l'k,; t1— ilr) .
l’

18z (27

Then a calculation similar to the one outlined in text follows and we give here only the final results. In the above,
bi(r) is the Bloch function for electron in band I and with wave vector k. We introduce the notation ¢(k) for the
energy of the electron with wave vector k and in band /. I BZ in the above indicated first Brillouin zone. We also in-
troduce the notation,

Onai 1= [ [ 10201 Db 0~ Db Db ). (a2)
We obtain after some manipulations:
en (k) +en (k4-Q)
o) = (e 00— e e Qg (g (7, (a3)
gr(\ 12
[cos20ug+(Ik; w)-+sin20ug(Tk; )] cosf sin()lk( (lk)) (g1.0k; ) —g_(Tk; w))
Gllk; )= o , (A9
g (Tk)\ /2
coslx sin01k< lk)) (g+(k; w)— g—(Tk; w)) [sin20pg+ (Tk; )+ cos?0ug_(Ik; w) ]
g1
where
£+(k; w)=1/[o—wi*(k)], (AS)
where 0y is defined quite analogously to 6 in (52) of the text.
k' _
€1t (k) = ez(k) -—Z °Ulkzlkrlkl'k'[COS201'kr%p(wzl+(k,))+Sln201rk1np(wlf—(k’))] )
v J1pz (2m)?
ar’

ar(k+Q)=ea(k+Q)—> Vit o+ K+ sin?gy i np(wrt (k') +cos?ywnr(wr=(k)) ],

v J1pz (2m)3

(A6)
ak’ en (VKON ? .
k)= Vi ”‘"k’+°( ) o8Oy sinbpe [np(wpt (k")) —np(wr—(K))],
v Jipz Q2m 3 gH(l,k,)
a3 gt (VRN Y? .
g () =% Onirsa @ (2 cos sinto Lnnort ) —nsCor=(#)].
v Jigz (2m)? g (T'K')
The equation for gn, g1+ may be written more explicitly thus:
a*k’ en(VK) {np(wrt (k) —np(wr—(k")}
an(k)=3" Vigtoui EE+Q - y (A7)
v Jrsz (2m)3 Lot (k) —wr= (k)]

and a similar equation for gi+. We shall not write down the expression for total energy corresponding to (56), be-
cause it is too complicated.
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APPENDIX B

Recently we derived the collective excitations in SDW systems by a canonical transformation method® for the
case when we have delta-function interactions in the random-phase approximation. We also decoupled the equa-
tions so that the transverse and longitudinal oscillations are not coupled. Here we give the complete set of equa-
tions in RPA. The notations are the same as in our previous paper.?

The complete equations of motion for

Sit(Q)=Awra'Br, Sk (9)=Br+o'dr, pr'=Ario’dr, pi®(Q)=DBui+o'Bs, (B1)
in the random-phase approximation are

Sit(q)= A+ (kg)2 1 {[—V(g)S1(k9)S1(q19)+0V(k— q1)C2(kgq1) Cs(kq1) 1S o (q)
+[0(9)S1(kq)C1(g19)—V(k— q1)Ca(kqq1)Ss(kgr) Joa*(9)
+[0(9)S1(kg)C1(g19) —V(k— g1)S2(kqq1)C3(kq1) Jo 4% (g)
+[0(9)S1(%q)S1(q19) +V(k— 1) S2(kqq1)Ss(kq1) 1Se (@)} . (B2a)

Si (@) =A4 (k)2 o,{[—0(g)S1(kq)S1(g19)+V(k— q1)Ca(kgq:)Cs(kg1) 1S 4 (q)
+[—=0(g)S1(kg)C1(g19)+V(k—q1)S2(kqq:)Cs(kq1) Joo A (q)
+[—=0(9)S1(kg)C1(q19)+V(k— 1) Ca(kgq1)Ss(kg1) oo, 5 (q)

+[0(9)S1(kg)S1(q19)+0(k— 1) Sa(kgq1)Ss(kq1) 1S4t (q)} .  (B2b)

P ()= A+ + (k)2 o, {[—V(g)C1(kq)C1(q19) +V(k— q1) Ca(kgq1)Cs(kg1) Joo* ()
+[=0(9)Ci(kg)C1(q19) — Ok — q1)S2(kgq1)Sa(kg1) oo, ® (@)
+[0(q)C1(~9)S1(g19)+0V(k— 1) Ca(kqq1)Ss(kg1) 1S 0, (9)

+[=0(9)C1(kq)S1(q19) —V(k— q1)S2(kgq1)Cs(kg1) 1S ()} . (B2c)

piB(g)=A__(kg)2_ o,{[—0(9)C1(kq)C1(g19)+V(k— q1)C2(kqq1)Cs(kg1) Jpo,®(9)
+[=0(9)C1(kq)C1(g19) —V(k— g1)S2(kqq1)Cs(kq1) Jpa(q)
+[0(@)C1(kg)S1(g:19)+V (e~ 1) S2(kgq1)Cs(kq1) 1S o, (9)
+[—0(9)C1(k9)S1(q19) —V(k—q1)Ce(kgq1)S3(kq1) 1S~ ()} .  (B2d)

Here
np(we(k))—np(wes (k+q))
Ao (kg)=[ :'(0, o'=) (B3)
w—wq(k)+w (k+q)
and
08(0x+q—0x)=Ci(kg), Sin(Ot.q— 0x) = S1(kq)
COS(0k+q— 0q+q1) = Cz(qul) y Sin(Oryg—0g1q)= 52(qul) ’ (B4)
c08(0g,—0i) = Cs(kqy) sin(0q,— 6x) = S3(kqy) .

w4 (k) has the same meaning as in (51) of the text. The approximations made in the paper? consist of dropping
V(k—q1) term (exchange) entirely, as well as dropping the p4-® terms in the S* equations and the S* termsin the
p4+B equations. For =0, g=0, we recover from the above equations the RPA equations discussed earlier for the
uniform states.®® From these equations it is easy to verify that there exist solutions with »(® =const, with
04(0)=p5(0)=0 and w® =0, and with S (0)>£0. The next approximation is quite cumbersome, but the indica-
tions are that there are oscillations with w~const (as in plasma modes) and w~¢ (as in antiferromagnetic spin
waves), for Coulomb interactions analogous to those obtained earlier by us®—when U(q) is of short range, and
under quite drastic further restrictions. Dr. Yan Shi informs me that he arrived at results similar to those given
in this Appendix in a paper he has published in the Proc. Armenian Acad. Sci. (USSR) 39, 73 (1964).



