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A theoretical treatment of the hfs anomaly between Li6 and Li7 is given, and the result compared with
that reported in the preceding paper. The distribution of nuclear charge and magnetism, the polarization of
the electron wave function by the nuclear electric-quadrupole moment, and the specific mass correction are
treated. Agreement with experiment is obtained with a value for the p-nucleon radial parameter not in-
consistent with that obtained from electron-scattering experiments.

I. INTRODUCTION

'HE hyperfine structure (hfs) anomaly between
two isotopes is known to be a consequence of the

details of their nuclear structure, thanks to the work of
Bohr and Weisskopf'; and though it has been studied
intensively in the isotopes of hydrogen, it has not come
into the same widespread use in nuclear physics as have
the nuclear moments, even though its study yields
valuable information about the outermost shell of
nucleons. This is in part because of the complexity of
hfs anomaly calculations. Much basic work has been
done' which makes possible the interpretation of hfs
anomaly measurements for many isotopes; but these
treatments cannot be used for the lithium isotopes, and
so an interpretation of the measurements reported in
the preceding paper' is given here.

A number of eGects are present in the lithium case:
(a,) The electron radial wave function is modified inside
the nucleus by the distribution of nuclear charge, i.e.,
the Breit-Rosenthal (BR) effect4; (b) the electron
distribution interacts with the nuclear magnetism over
a finite volume, i.e., the Bohr-Weisskopf (BW) effect',
(c) the nuclear motion polarizes the electron distribu-
tion in its vicinity, i.e., the Bohr (B) effect; (d) the
center of mass of the atom is not at the same place as
the center of mass of the nucleus, i.e., the specific mass
correction.

Effects arising from nondiagonal matrix elements of
the magnetic-dipole and electric-quadrupole operators
are neglected. Furthermore, the treatment is non-
relativistic. We obtain an expression for the hfs anomaly

56&, which contains a number of nuclear parameters, by
employing as a nuclear model a spherical n-particle core
surrounded by nucleons in p orbital. The radial func-

tions for both the core orbitals and the p orbitals are
taken as harmonic-oscillator functions, but with diGer-

ent radii, E.q and EJ, respectively.

The nuclear parameters are then evaluated with an
I=5 coupled model of the nuclei, a not unreasonable
approximation in the light of the calculations done by
Kurath. ' Evaluation of these parameters in inter-
mediate coupling will be the subject of a later article.

G. HAMILTONIAN

The Hamiltonian employed can be split up as follows:

3Civ+3CE+ Ue+Uhfs y

1 Z
V,= —n'P Xr (zz)+n'P —,

en fen e fe

where o. is the fine-structure constant, r, is the distance
between the eth electron and the nuclear center of
mass, r, „

is the distance between the eth electron and
the mth nucleon, and X~ is a proton-projection operator,

Xz (I)—= -', —T,(zz),

Xv(rz) = ', +T, (rz), —-

where T, is the z-component of the isospin operator.
'U, can be expanded:

'0, = -n'P g u sc&'& (e)
en lt'

where XN is the nuclear Hamiltonian, K~ is the electron
Hamiltonian including an interaction with a nuclear
point charge but exclusive of other electric or magnetic
e8ects, 'U, is the correction to the Coulomb potential
arising from the finite nuclear size, and 'Uhf, is the
hyperfine-structure operator.

The Hamiltonian X~ is not determined; harmonic-
oscillator radial functions are employed instead.

Throughout, distances are measured in units of
ao ——fz'/me' and energies in units of mc'. Thus

C'" (rz)Xz(rz)+n'2 (~/» ) (&)

where

~e / fn & ~e+~n
s/r i+1

e D. Kurath, Phys. Rev. 101, 216 (1956).
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z A. Bohr and V. F. Weisskopf, Phys. Rev. 77, 94 (1950).
s H. H. Stroke, R. J. Blin-Stoyle, and V. Jaccarino, Phys. Rev.

123, 1326 (1961);A. S. Reiner, Nucl. Phys. 5, 544 (1958).
~Richard Schlecht and Douglas McColm, preceding paper,

Phys. Rev. 142, 11 (1966).
e J. E. Rosenthal and G. Breit, Phys. Rev. 41, 459 (1932).

ohr, Phys. Rev. 81, 134 and 331 (1951).
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Here C("& is a spherical harmonic normalized to
47r/ (2k+1).'

In Eq. (4) the term in the first sum with k =0, r,)r„
is the usual Coulomb potential, and is cancelled by the
second sum. Of the remaining terms in the erst sum, the
one with k=0, r,&r„produces the BR eGect, and those
with k/0 produce the B effect. The wave function
associated with this total potential '0, can then be used
to evaluate the hfs.

Note that the survival of a nuclear matrix element of
C(s) (st) for k~ 1 leaves in the potential 'U, terms con-
taining C(s) (e), which act to destroy J as a good quan-
tum number by admixing states of other electronic
angular momenta into the wave function. Thus this
eGect can be interpreted as a polarization of the elec-
tronic state by the nuclear motions. The presence of the
radial function mj, assures that this polarization will be
large only near the nucleus.

Because of singularities in the nonrelativistic hfs
operator, it is convenient for us to calculate relativis-
tically and then perform a nonrelativistic reduction.
Therefore, take

where the Us (K& are given by

U (K) —{C(s—1) (rt) S(rt) }(x)

(K) —{C(s—1) (te)L(rt) }(K)

(K) —C(K) (rt)

U (K) —{C(&+1)(tt)S(N)} (K&

U (K&={C('+')(tt)L(rt)}(K&
and

fsx1 l„(in'/stt )4—I,xg s(st)w~(e rt)]/r
=0

Q,Ks ——L2(in'/r)t„)(—1) +'b&, z, xgz, '(n)ws(e, n)]/

(2k+1)r„,
( in')

csKgz, (rt)
kr&t„i

ws(e, rt) c&

r„ Br„

operator form as follows (see Appendix III):

Uhf —Q @Ks (e,rt)Uq ( & (I) .{C(s)(e)S(e)}(K&, (7)

(5)
QSK 4

'uht, =ng n(e) A(tt), = Din'/rm„)bsKgs'(rt)ws(e, rt)]/r„, r,(r
psKs ——L2(in'/r&t„)bsKgz, '(rt)ws(e, rt)]/(2k+1)r .

Here

where n(e) (the Dirac n matrix) equals 2t&tS(e), with

and A(n) is the vector potential arising from the pres-
ence of the mth nucleon,

S s(~) jz(~)
A(N) =v(e) &&

ren

with

bss (—1)'+——'Lk (2k+3)]'t' k ~0

bs s+r= (—1)"+ [(0+2)(2k+1)] t k~ 0

bj,~=0 otherwise;

c, + = —L(k+1)/(2k+1)]'t',
cs, s t ——+l k/(2k+1)]'t',

cI,~=0 otherwise. (10)

and

I(s(rt) = (n'/2r&t„)gs'(tt) S(rt),

jz, (rt) = (n'/r&t„)gz, '(N)P(rt),

gs'(I) = gx&N (~)+g~&~(~),

gz'(st) = (1—t&t /M)Xz (I).

This is consistent with the usual result, ' provided the
identity {C"&L}('&=L/(10)'t'is employed.

The one-electron Dirac wave function used is

Here m„is the mass of the eth nucleon measured in
units of the electron mass, p8 is the spin magnetic-
moment operator, g~ and g~ are the neutron and proton

g factors, respectively, S and L are the total spin and
orbital angular-momentum operators, and (1—m„/M)
is the reduced-mass correction to the nuclear orbital g
factor. ' Other speci6c mass corrections are discussed in
Appendix II. Now 'Uhg, can be re-expressed in tensor-

~ The phase of C& ) is the same as that used by london and
$hortley, Theory of Atomic SPectra (Cambridge University Press,
Nevr York, 1935). See for example, A. R. Edmonds, Angular
Momeetstm il Qttawtttm 3Eechalics (Princeton University Press,
Princeton 1957), p. 21.

e M. Phillips, Phys. Rev. 76, 1803 (1949).

where the radial dependence is made explicit by

l tzSj r&t; )=g;(r) l
l'z Sj rrt;),

l ~s&j r&t )=if (&) l ls&j r.&t ') . (12)

Now /I„ the orbital quantum number for the large
component, must be j&-', for which la= jW-', .

The total wave function is then

j,MI, M~
q (IM jr&tszI ~M&r)

I
IM'z)

Ij r&ts') (13)

Here (IMzjrrt; lFMz) is a vector-coupling coeKcient,
and q; is an expansion coeS.cient to include states of
different j (arising from the Bohr effect), and qtts=1.
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I j, P—( 1)&+jo+EP
jp I E
I jp Ii

+2EV z V;;,x, (14)

where jp=-,'and where

l' 'x= 2 (fill/. &x'lll)(~ '«~-)

The single-electron case, calculated first, is based on the
assumption that the total hfs arises from the outermost
2s electron; and so J is set equal to j.This assumption
is known to be false, and so a complete treatment is
done also (Appendix I).

In the single-electron case, the first-order perturba-
tion theory yields

III. ONE-ELECTRON ELECTRONIC WAUE
FUNCTION; 8 AND BR EFFECTS

We 6rst treat the case in which the hfs is presumed
to arise from a single electron in an s orbital, the object
being to compute a wave function containing the terms
that contribute to the hfs anomaly. In this calculation
Uh f is omitted, and the perturbations treated arise
from '0,.

Ordinary perturbation theory cannot be used because
the corrections of interest are appreciable only in the
vicinity of the nucleus, and a very large number of
excited atomic states would be needed to approximate
the correction to the wave function.

What is done is to develop a diQ'erential equation in
the radial coordinates, which can be easily solved
because distances of the order of the nuclear dimension
are very small compared to unity in atomic units. To
remove all angular dependences from the wave equa-
tion, write the nonrelativistic radial function explicitly:

k,n, n

Ijme) =g~(r) lime) (19)
Here (M;; xq ) is the average over nuclear radial coordi-
nates of the function

3f,;.z& ——
&t I,x (ee)l »(jj'kE)+e2(jj'kE)$, (16)

where

sy(jj'kE) = (—1)' "(lzSjll(C&"& (e)S(e)) II4'S'j')
t,'s'i'll(C&»(e)~(e) & «~lit, s

22(jj'kE) = (—1)' "(lesj I (C "'&(e)S(e)}&x&llll,'S'j')
—(lz,'S'j'II(C'"'(e)S(e)) 'II4Sj). (17)

In the nonrelativistic limit

2b~(jj'kE) —»(jj'kE)3

l9

X re QIexn $gj (re)gj'(re))&re
Cpf g

+2 I »(j j'kE)+»(j j'kE)3 r'Ax-

8 8
X a(r.) g'(') —

g (r.) g(") «.

+&~'»(jj'kE) ~e2(jj'kE)j—

i.e., I jm;) contains radial dependence,
I jm;) does not.

Then introduce an analog of (13)

Ili~Ã)= 2 (IJ&rlrimelI"~r)Ilier&lime) (2o)

which depends on the nuclear radial coordinates but not
on the electron radial coordinates. Thus (jm;IRAQI jm;)
is a radial operator that is called K; and operates on

g (r).
X;=——2'n2I A~(r)+U~+'Us@], (21)

where A~(r) = (8'/Br')+ (2/r) (8/Br) t&l(l+1)/r g a—nd
where l is the orbital quantum number associated with

j, 'U& ——Z/r, and'Uzz is the electron-electron interaction
potential, which can be neglected in the region close to
the nucleus. We then evaluate

(I,I'm,
I
xg+ac~+z, a

I
zu, ) 0— —

and obtain,

re(&~—@s)ae(r)
I jp P

+(—1)""'Z . 'UJeo~CA(r) =o (22)j I
where

U,»= —~'Z(jllC&"'(e) IIjo)

x(III~,C&»(N)x~(e)III), k/0

and the presence of the first term ensures the survival
of surface terms for values of E greater than 1, all of
which correspond to delta-function singularities in a
strictly nonrelativistic treatment. The quantity ~ equals—j+2 for /I, =j 2and equals —j+22for lz, =j +2

the 1/r, arising from the subtraction of the point-
nucleus Coulomb potential. Terms involving matrix
elements not connecting the ground state have been
omitted in (22). Since the product of &t; and E; appears,
one of these can be chosen at our convenience. Since
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q&12
——1, let

1 I+1 ——1

(lllc"'lli)
2

Berne the BR correction GER by

gl/s= (1+eBR)go) (24)

which has a negligible effect on the result, we obtain
inally

&o&an+ (2/Rp) Vp(xp)+ (4/Ra) VB (xa) =0, Li' and Li'

os ——0, Li' (26)

/4os+L2(5)'/'/Rp)Q&Vs(xp) =0, Li'

where xp=r, /Rp, xs r,/RB, and Qy
——is the nuclear-

electric-quadrupole moment divided by RI'.

Vp(x) = —(1/x)+C s(x) —-',C o(x),

V.(*)=-(1/.)+C.(*),
Vs(x) =C o(x) —-'sC»(x),

where
C»(x) = (2/x'/s) exp( —x')

C, (x)= (1/*) C»(t)dh,
e 0

C, (x)= (1/*') (C,—C,) .

Equations (27) have the exact solution

&BR 2Rpg(xp/2) sxp C'2(xp)
—(5/12)C's(») —sC»(x p) 3

+4RBI -', xa ——,'xs%s(xa) —4C s(xs) —sC» (xs)$ (28)

eg —0, Li'

eB= (5 /3)Q7Rp[@'2(xp) sC'3(xp)]y

IV. CONCLVSION

The result of the one-electron problem done above is

Do2 I (Cal12Cao —2) (0.778+0.0940K)

+ (0 0177)( si+2cao —12)Qv —(0 198)csoQ7

+ (0.055)croQ7jRp, (29)
where

1'=2r~(res+2) (r' —2) —3r~o(r+1) —3r'(r —rJ) (30)

where go is the eigenfunction of X~~~, and de6ne the B
correction eg by

g~
= ~sgo. (25)

The energy shift (isotope shift) associated with the
perturbation is not important in this problem, since it
does not contribute to the hfs. So set bz equal to the
eigenvalue of 3'.~~2. Neglecting second-order terms
6+6gR and omitting the term

(~ l(~ l
I
—

go II
—I,

Ea. & (a. ) '

for r =Rs/Rp, and r =RBRp/(Rao+R ps)'/o. The
quantities C are parameters of the Li~ nucleus:

cso= (Illgs'SllI)/(Illga'S+gi. 'LIII),
Cm= I'"(Illgs'{&"'S)"'III)/(Illga'S+g~'LIII)

c„=
I 6/5(7 /')g(Illg, '{«'»)&»III)/

X (Illgs'S+ gr, '&llI),
(31)

c. =L6/5(7 /) j(Illg.'{~' L) ' llI)/
X (Illgs'S+gl. 'LIII) .

The C parameters were evaluated by means of an 1.-5
coupled model of the Li~ nucleus having T=-', and
symmetrized with respect to all nucleons, L=1, 5= —,', ,
I= ', with th—e result Cai= —(8/3)Q~CBo, Cso=1.14
Qicso, Cro=0, and Cso=0 907

If we employ the values of Rz and R& obtained by
Burleson and Hofstadtero on the basis of their electron-
scattering experiments, Ra= 0.50/ 10~,RJ =0.20&(10
(in units of ao): i.e., Rp(RB, so that the p nucleons
move inside the O,-particle core. Their data yield r = 2.48,
1'=64.6. The term Q7, calculated for the I- Scoupled-
model, is Q~= —L3/5 (5)'/'j =—0.268, so that
=+0.5X10 4, i.e., about one-half the experimental
result. However, the uncertainty is very large, because
if r is raised from 2.48 to 3, while at the same time
maintaining a constant average nucleon radius (cor-
responding to a change in RI from 0.20X10 ' to
0.17X10 4), agreement with experiment is obtained.
This occurs because I' is very sensitive to R&, and so
current measurements of RI are insufhcient for one to
compute h6y accurately. In fact, if intermediate coupling
values of the C parameters were employed, the experi-
mental value for 267 could be used to determine a good
value for R~.

However, if we use the value of Q7 given above to-
gether with the value of RI from Burleson and Hof-
stader to calculate the nuclear electric quadrupole
moment, we obtain a value an order of magnitude
smaller than that obtained by applying the result of the
Nesbet and Kahalas" calculation to the data of Whar-
ton et a/." If we use a value of RI consistent with this
quadrupole moment, however, 66& changes sign. Cne
effect which might resolve this diQiculty has been
neglected, that is, the polarization of the n-particle
nuclear core by the nucleon p orbitals.

Inclusion of the 1s electrons in the hfs problem does
not alter the result, as is shown in Appendix I; and so
the electron part of the problem can be regarded as
properly solved, exclusive of relativistic corrections.
The specific mass effect produces a change in the mag-
netic moment p, only, as is shown in Appendix II, and
so does not inQuence the above.

~ George R. Burleson and R. Hofstadter, Phys. Rev. 112, j.282
(1958).' S. L. Kahalas and R. K. Nesbet, Phys. Rev. Letters 6, 549
(1961);I. Chem. Phys. 39, 529 (1963).

L. Wharton, L. P. Gold, and W. Klamperer, J. Chem. Phys.
37, 2149 (1962); Phys. Rev. 133, 8270 (1964).
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In conclusion, it is possible to say that the major
effects in the Li'-Li~ hfs anomaly are accounted for, and
agreement with experiment is obtained with a value of
Rp not inconsistent with that given by Burleson and
Hofstadter.
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APPENDIX I' EFFECT OF THE 1s ORBITALS

The total wave function is again

lFM, )=gq; lIIFM, ),

l
IIFM', =P (IMrIM,

l
FM,)

MIMI, M8

X(LM,SMslIM, ) lIM, )lLM,SMs). (I.8)

Now the projection functions needed to produce a
differential equation in the radial coordinates are
(k,SoMsl and (L'MrSoMsl. Define

(1,S~s I =~~s(3)—a~s(2);
(2 SpMsl =&pre(1)—&3fs(3)

(3,S'oMs
l =~~s(2)—~or, (1).

We show here that the inclusion of the 1s orbitals
does not affect the hfs anomaly result, a fact one would
anticipate since the anomaly does not depend on the
details of the unperturbed electron radial function.

Call the three electron radial functions Ri+(e),
Ri (e), and Rp+(e) (assuming M= ,'). Form-

(L'MISoMsl =det{1,aors(j), c~z@'(k)}.

Then the equation

(KB+K~—h+'U. ) l
FMp) =0, (I 9)

&-(i')=.~~r&p( )R, (i)+Re(i)R.( )3,
where uPy are a permutation of 1+, 1—,2+. Let

R(k) =R2+(k)&2+(p j), pW jWk

The I=-,' function lOOSoM) is then

1 ~pI(1) R(1)
lOOSoM)=E '~' 1 o~(2) R(2),

1 ~of(3) R(3)

or in compressed notation,

l
AM)=S '" det{1,pw(j), R(k)}.

Here E is a normalizing factor, and o i~o(k) is defined by

v (k)=6 '"I:2P(k) (~) (j)— (k)P(p) (j)—(k).(')~(j)j, (I4)

where n(e) is a spin function with M=+-,'; P is a spin
function with M= ——,'; and 0 i~o(e) is obtained by
interchanging u and P.

For the perturbations produced by the Bohr effect,
introduce the combination

R.'(k) = —',{Ro+'(k)cprz&'& (k)xo+(p j)
+-',V2R2+(k) l Ri~'(~) CMz"' (p)Ri (j)
+R '()c," (j)R
+-',vzR~(k)l R,+(')R, '(j)c~,&»(j)

+Ri+(j)Ri-'(') C~z"'(~)]},

which has the symmetry needed in order to express the
perturbed part of the wave function by

when operated on from the left by

(IM rSpM g l
FM i ) (IMr l (k,SpMz

l )
MIMg

becomes the first part of Eq. (26) provided we define

R.(k) = L1+eBB,(k)jR p(k). (I.10)

Here R p(k) is the eigenfunction of Xs(k) and psw does
not depend on o. , i.e., it is the same function of r~ for all
the orbitals present.

Similarly if we operate on (I.9) with

(IM,&Ms
I
FMs) (L'Mi SoMs

I
IMz)

MIML, M8

X(IM,
l
(L'M,s~, l,

we obtain the second part of Eq. (26), provided
R (k) pB(k)Rao(E) Again pB(k) does not depend onn.

Since the hfs operator is a one-particle operator, the
contribution to the total Li' hfs from each electron will
contain a factor 1+Ao7, and so the result will be the
same as that obtained above for a single electron.

APPENDIX II. THE SPECIFIC
MASS CORRECTION

The specific mass correction is calculated nonrela-
tivistically. The vector potential arising from the eth
nucleon at electron e is given by

A (e,ip) = (u'/m ){L-,'gs'V(e) XS(n)l/R. „

+LX (~)P(~)l/R-}, (II 1)

and the interaction Hamiltonian K' is then
l
L'MzSpMs)= (E 'i')det{1,o'ors(j), R'(k)}, (I.6) &'=n'Q {P(e) A(e, e)+ipg, S(e) V(e) XA(e, ip)}, (IL2)

where L'=2, So= &. en
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and that
V(e) =V'(e)+ (1/M) V (11.3)

( m„)
P(n) =

I
1— ly(n) —P p(n')

M) ~' M~

where the coordinates R„R„aretaken in an arbitrary
inertial framework; ge' is defined in Eq. (6) and. g, is the
electron-spin g value; all masses are measured in units
of the electron mass.

Introducing a coordinate system centered at the
center of mass (c.m. ) of the nucleus (not the atom),
which is taken to be at the position R; and labeling the
coordinates in this c.m. frame by r, and r„;we find that
Re+= rem) that

the third has vanishing diagonal elements for electrons
having definite l. The second term has vanishing dia-
gonal elements for e&e', but for e= e' a term propor-
tional to (1/M)p'/r survives. This term gives no hfs
energy shift directly, because both hfs levels will be
shifted the same way, but it will affect the wave func-
tion, producing a correction similar to the reduced mass
correction times (1/r). But the reduced mass correction
to the hfs anomaly, (ma/rn7)', is about 1—(3X10 '), so
that corrections of the form (1/M)p'/r would be
negligible. This argument is used also to justify the
neglect of nondiagonal elements of K2'.

Finally, we must consider the Hughes-Eckhart
correction. " The kinetic-energy operator in the c.m.
system, V'z, is

mn mn
p(e)+ P, n'Wn or no. (II.4) . . /

e ~~
Here V'(e), p(e), and y(n) refer to the center-of-mass
frame, whereas V and P refer to the c.m. motion in the
inertial frame. The mass of the nucleus is M~, and the
total mass of the atom is 3f; mo is the nucleon whose
coordinates were eliminated by the introduction of R.

Substitution of E(e) and P(n) into K' gives

3."=SCi'+K2'+Xa',
where

(
2g.x~(n)l 1— IS(e) &(n) /"'- k~„)

+Cog-&(e) S(n).j/r, '

+I-:g g-S() v'()x(v'()XS( ))j/.-, (».6)

~2'= Z I I

—kg.x~(n)

mn
xp ".„Xp( ) s(.) /. .„

n& ~~
(rn~ )

x&(n)Z I ly(e) y(") /r.
N

+ Q V,' V,', eW f (II.8)
M~ ~f

and the V,' Vf' term, although its energy shift would
not affect the hfs, would alter the wave function. But
again, diagonal terms vanish and nondiagonal ones
would be negligible.

APPENDIX III. DERIVATION OF EQ. (7)

Since 0.(e)=2piS(e), Eq. (5) shows we must evaluate
S(e) A(n), where A(n) is obtained from Eq. (6):

S(e) A(n)= —LS(e) r,„xye(n)g/r,„'
+I S(e) jz, (n)3/r, '. (III.1)

Then we employ the relations

—S(e) r, xti(n)=Lr, xS(e)$
.P(n)+S(e) Lr-XP(n) j, (III 2)

P(n)= (62/r„)(Co'(n)L(n))& & —iC~'&(n)8/Br„, (III.3)

1 1 A:

P (2k+1) C&"&(e) C&'~(n),
~en3 re2 —r e2 r %+1

for r,)r„(III.4)
$m„)+ —,'g.xs (n)Q I lr, xp(e') S(e) 3~en

and

Q (2k+1) C&"&(e) C&'&(n),
n'Wn or no (II.7) z r+~

for r, &r„.(III.S)
and K8' consists of terms containing R or V or P, and
terms such as p(e) p(n) whose diagonal terms vanish
for wave functions having a definite parity for both the
electronic and nuclear parts separately.

Here X,q' is the expected Hamiltonian, arid 3'.2' is the
mass correction. The first term of K2' has vanishing
diagonal elements for nucleons having a definite l, and

These latter three relations are taken from Judd. "We
then perform a standard recoupling to obtain Eq. (7).
"D. S. Hughes and C. Eckhart, Phys. Rev. 36, 694 (1930)."B. R. Judd, Operator Techniques in Atomic Spectroscopy

(McGraw-Hill Book Company, New York, 1963), pp. 88, 92.
Note that the relation (III-3) appears in a paper by F. R. Innes
and C. W. UBord, Phys. Rev. 111, 194 (1958).


