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~(q)=T E R4)/L1 —u(l»l' —I»l')R(q)j, (A7)

where

nonmagnetic impurities this integral equation is given may be solved trivially; substituting into Eq. (A3)
by 12:(A7), while for impurities with spin which ex- leads to
change-scatter, Abrikosov and Gor'kov have shown
that the integral equation becomes Ref. 23 Eq. (19)
Lto be denoted 23:(19)j
Q-(p, q —p) =(:-(u)g--(q—u) 1+u(2~) '

R(q)—= (2~) ' d'pg-(p)g--(» —p)
(A8)

The impurity concentration is e, while u1 and u2 are
the spin-independent and spin-Rip scattering ampli-
tudes, respectively. The one-electron propagator is

I 23:(«)3

g„(p)= (ico (P—'/2rw)+tt+i sgnM /2r), (AS)

and we introduce the scattering times

1/2r=—«&(0) (Iu I'+ lu I'), (A6)

1/2r, =enÃ—(0) I
us I'«1/2r.

Since ur and us are assumed to be constants, Eq. (A4)

Substituting expression (AS) into (AS), the evaluation
of R(q) can be carried out, yielding L12:(A11)$

R(q)= (2srX(0)/v V) tan '(v t/L2lcol+(1/r)&) (A9)

For dirty materials where ql«1, we may expand R(q);
substituting into Eq. (A7) leads to

1.140'
Q(q) =cV(0) ln

Comparing Eq. (A10) with the previous analysis of
Werthamer'~ in the nonmagnetic case completes the
derivation of Eq. (7) in the text.
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This paper reports analytical and experimental results on optical second-harmonic generation in the focus
of the lowest order transverse mode of a cw gas laser beam. The results of the calculation are explained in
physical terms and are con6rmed by experiments carried out in crystals of ammonium dihydrogen phosphate
(ADP). The dependence of the second-harmonic power generated in a negatively birefringent crystal upon
the crystal double-refraction angle and the divergence, or diffraction, of the focused beam is obtained.
There are found to be four distinct asymptotic regions, determined by the ratios of the characteristic lengths
s~ and l to the crystal length /, where the Rayleigh range of the focused beam sz characterizes the focus, and

is characteristic of the crystal double-refraction angle e and the laser beam focal spot size m0. Proceeding
from weak focusing to strong focusing (or in the direction of decreasing we), the second-harmonic power in
the four regions varies as ts/wos, l/n wweo/o. , and we', respectively. There is an optimum degree of focusing,
determined only by the crystal length, for which a maximum amount of second-harmonic power is generated.
This degree of focusing corresponds to sn=t/n, and the corresponding power which is generated depends
upon both l and a. Optimum focusing in a crystal of ADP 1 cm long yields about 400 times more second-
harmonic power than the collimated laser beam. The excellent agreement between analysis and experiment
allows the accurate measurement of optical nonlinearities using focused beams. The results for the general
case of a crystal anywhere along the focused beam are also presented. Interpretation of them shows that the
limiting of second-harmonic generation by double refraction is determined by beam divergence, not beam
radius.

I. INTRODUCTION

'ONLINEAR optical effects are most readily de-
tected when brought about by a beam of high-

intensity light. For this reason, high-power Q-switched

~ This work was supported by the Air Force Ofhce of Scientiic
Research, United States Air Force, under Contract AF 49(638)-
1525. The author is grateful to the Ground Systems Group of
Hughes Aircraft Company for support furnished by a Hughes
Doctoral Fellowship.

ruby lasers and focused laser beams are often used in the
study of such effects. In many cases, however, it is
desirable to observe the nonlinear eGects on a continu-
ous basis. This necessitates the use of cw lasers, which
are characterized by low power and hence low efficiency
in inducing the desired nonlinear e8ects. For the case of
optical second-harmonic generation (SHG), the tech-

nique of index matching must be employed in order to
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continuously generate measureable amounts of second-
harmonic power. Focusing of the cw laser beam can be
used to further enhance the conversion efficiencies and
to allow measurement of smaller nonlinearities than
otherwise would be possible on a cw basis.

This paper reports analysis and experiments on the
generation of optical second harmonics in the focus of
the C"aussian lowest order transverse mode of a continu-
ous gas laser in negatively birefringent crystals. In
particular, the aims of this paper are to obtain a precise
expression for the amount of SHG obtained in the focus
and to explain the results in physical terms; experi-
mental results verify the analysis. An optimum degree
of focusing is determined which can be employed to
greatly enhance the conversion efficiencies obtainable
from a given crystal. It is anticipated that similar
calculations can be applied in a fairly direct fashion to
consideration of other nonlinear processes which can be
enhanced through the use of focusing.

The theory of the generation of optical second har-
monics for idealized plane wave laser beams has been
worked out in detail by Kleinman, ' by Boyd, Ashkin,
Dziedzic, and Kleinman (BADK),' and by Armstrong,
Bloembergen, Ducuing, and Pershan (ABDP).' ABDP
consider the problem from the viewpoint of parametric
interactions. This approach is particularly useful for the
case of SHG by high-power pulsed ruby lasers since it
adequately describes the case for which a significant
portion of the fundamental beam is converted into the
second harmonic. The theory as developed by Kleinman
and BADK applies to the case of negligible conversion,
so that the nonlinear polarization at twice the funda-
mental frequency, which is induced by the laser beam,
may be viewed as a prescribed source giving rise to the
second-harmonic wave. It is this viewpoint which will be
applied in this paper.

In order to understand SHG in a focus, it is necessary
to consider both the detailed shape of the laser beam and
the birefringent properties of the crystal in which the
second harmonics are being generated. Because the
laser beam is finite in extent, it may be represented as a
sum of many plane waves, or Fourier components, and
because it is focused, the beam intensity is not uniform
throughout the crystal. This latter fact means that the
nonlinear polarization will be significant only within a
limited region near the focus. For strongly focused
beams this region will be much shorter than the crystal
length; in such a case, only a portion of the crystal is
effective in generating second-harmonic power. This
limitation on SHG depends only upon the laser-beam
geometry and is independent of the properties of the
crystal medium.

Crystal birefringence also becomes important when

the index-matching technique is employed. Inasmuch as
a real laser beam may be viewed as a sum of plane waves
having a distribution of propagation directions, the
effect of crystal birefringence makes it impossible for all
plane wave components to be perfectly matched for
optimum interaction. This leads to limiting of SHG by
crystal double refraction and beam divergence. ' An
alternative way of looking at this phenomenon is to
realize that interaction between the fundamental and
second-harmonic waves takes place along the direction
of energy propagation for the second harmonic. How-
ever, because this wave is extraordinary, the direction
of its Poynting's vector is different from that of the
fundamental, and double refraction limits the distance
over which the two beams can overlap. This was origi-
nally called the finite aperture effect by Kleinman, ' but
was more appropriately renamed the effect of double
refraction in experimental and theoretical work by
BADK.' In Sec. IV it is shown that these two points of
view are equivalent only for columnar laser beams,
those having a constant radius and planar phase fronts.
For the general case in which the crystal is not re-
stricted to the near field of the laser beam, it is shown
that the effect of beam divergence upon index matching
is the more fundamental point of view.

II. ANALYSIS

A. Calculation of Nonlinear Polarization

Consider the lowest order transverse mode of a gas
laser to be focused in the center of a crystal capable of
generating second harmonics, as shown schematically in
Fig. 1. In order to preserve simplicity in the calcula-
tions, assume that the crystal is negatively birefringent
(es)e,); then the fundamental beam is introduced as
an ordinary ray to index match to the extraordinary
second-harmonic wave. This is the case encountered
with crystals of ammonium dihydrogen phosphate
(ADP), potassium dihydrogen phosphate (KDP), and
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~ D. A. Kleinman, Phys. Rev. 128, 1'161 (1962).
2 G. D. Boyd, A. Ashkin, J. M. Dziedzic, and D. A. K.leinman,

Phys. Rev. 137, A1305 (1965).' J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S.
Pershan, Phys. Rev. 127, 1918 (1962).

FIG. 1.Schematic diagram of the Gaussian laser beam focused in
the center of the crystal. The cylindrical approximation for the
focused beam is shown by the dashed figure.

4 G. E. I rancois and A. E. Siegman. Phys. Rev. 139.A4 t'1965).
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calcite; ADP crystals were used in the experiments to be
reported here. The laser beam is propagating along the z

axis and is focused at the center of a crystal having
length l. The incident and exit faces of the crystal are
parallel and are cut so that at normal incidence the laser
beam passes through the crystal in the index-matching
direction, at an angle 0 to the optic axis.

Description of the laser beam focused inside the
crystal is a straightforward problem since the beam is an
ordinary wave and the crystal appears as an isotropic
medium to it. In the focal plane, at z=0, the optical
electric Geld is polarized along the y axis and is given by

E(x, y, s=0) =gE„expL—(x'+y')/wo'g. (1)

The time dependence e '"' has been suppressed in this
equation. The beam focal spot size is m p, it is defined as
that radius at which the beam intensity falls to e—' of its
value on axis.

The optical electric Geld at other points inside the
crystal is determined using Fourier analysis. That is, the
focused beam is viewed as a sum of many plane waves,
each propagating as expLi(k r—cot)j in a distribution of
directions around the z axis. Since each plane wave is an
ordinary wave, the magnitude of the propagation vector
k is independent of direction:

k'= ((co/c)rtto)'=—kts, (2)

where e&' is the index of refraction for the ordinary ray
at the fundamental frequency co, and c is the speed of
light in vacuum. Fourier analysis of the focal plane
distribution yields
8(k.,k„,k,)

=gE (-'too')e "e"r"'5(k —kt(1 —kr'/ky')'"j (3)

where kr' —=k,'+k „'and 8 (x) is the Dirac delta function.
The introduction of the delta function, which relates k,
to kz and k~, is an approximation inasmuch as there are
values of kr) kt. This contradicts Eq. (2) and it means
that the focal plane distribution Eq. (1) cannot be
represented by strictly monochromatic plane waves.
However, as long as the Fourier components associated
with kz &k& are very small, the Fourier inversion will be
an extremely good approximation to the actual Geld.
This requires

~kgop5) 1 .
The aperture of the beam must be much greater than
the wavelength of the light. The departure from strict
monochromacy and the restriction on mp would also be
required if Kirchoff's diffraction theory were applied. '
The restriction k&mo/2))1 is equivalent to k&/k&«1.
This relation will be used again in carrying out other
steps of the analysis and is valid for cases of experimental
interest. In particular, for SHG in ADP by light having
a wavelength of 6328 A, kt = 1.51&(10scm ' and Eq. (4)
is satisGed for mp&10 4 cm. Further analysis will show

e M. Born and E. Wolf, Principies of Optics (Pergamon Press,
Ltd. , London, 1964), Sec. 8.3.2.

that this range for m p over which the analysis is valid,
is also the range of experimental interest.

Inversion of Eq. (3) using approximations dependent
upon the relation kr/kt«1 yields

E(g,y, s) =gE„e's'*

-p{—U*'+y')/ "(1+v)j(1-'~))
X , (5)

where $=2s/ktwos—=z/stt. This is the exPression for the
electric field of the focused laser beam throughout the
crystal. All details of the beam shape are specified by zap.

The electric field given by Eq. (5) is of the same
general form as that which has been obtained using
confocal resonator theory. "The spot size of the beam is

~(s) =~o(1+8)'" (6a)

and the radius of curvature of the surfaces of equal
phase is

~()= (1+8)/e. (6b)

The length parameter zg —=—,'kgvp' can be called the

Raleigh rarlge of the focused beam, in analogy with
antenna theory'; it is that value of z for which the
power density on axis falls to —,

' of its value at the focal
plane, or at which w(s) =v2wo.

The dimensionless parameter $ characterizes the vari-
ous regions of the focused beam. The region for which

~ $ ~
&&1 is called the near geld of the focus. In this region

the radius of the beam is essentially constant and the
wave fronts of equal phase are nearly planar; the beam
may be treated as columnar. The far geld of the beam is
that region for which

~
$~))1. In this region the beam

appears to be emanating from a point source on the axis
at z=0. The half angular divergence of the beam is

&=2/kt~o,

Hence, Eq. (4) is equivalent to b«1. From physical
reasoning it can be asserted that kr/kt &8. It is useful to
mention a qualitative device which will help to under-
stand the effects of beam shape upon SHG. Since the
induced nonlinear polarization is proportional to the
intensity of the laser beam, the most significant portion
of the second-harmonic polarization will exist within zg
of the focal plane. As a result, a good qualitative feeling
for the eBects involved can be obtained by considering
the focused beam to be a cylindrical beam of radius wp

and length 2z&. Such an approximation is shown by the
dashed figure in Fig. 1. In cases for which z~ is much
less than the crystal length, this approximate picture
predicts that only a small part of the crystal is effectively
radiating second harmonics.

6 G. D. Boyd and J. P. Gordon, Bell System Tech. J, 40, 489
(1962).

~ G. D. Boyd and H. Kogelnik, Bell System Tech. J. 41, 1347
(1962).

e J. F. Ramsay, Space/Aeronautics R &' D Handbook IWO —1961
(Conover —Mast Publications, Inc., New York, 1961).
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The second-harmonic polarization induced in the
crystal by the laser beam is related to the optical
electric fields by'

p'"=X "2E Es
p, 2(y (r)— P; (K)e'*'d'K

The following transform pair is used:

(13a)

X2+y2
P,I2"=XE„2e2'2"(1+if) 2 exp —2

2op2 (1+i&)
(12)

when the Einstein summation convention is used. The
i, j, k refer to the crystallographic axes and X;;& is the
second-order nonlinear electric-susceptibility tensor ele-
ment which gives rise to the second-harmonic polariza-
tion. In Eq. (8), p,2" and E; are the space-dependent
amplitudes of the polarization and optical electric fields
having a time dependence of e ""' and e

—'"', respec-
tively. When the technique of index matching is em-

ployed in negatively birefringent crystals, only the
second-harmonic polarization having a component along
the extraordinary-ray electric field will produce SHC».

In ADP and KBP the component of interest is

p ' 2d36Es'E2I d36EsP I

where s' is the optic axis of the crystal and E„ is the
wave amplitude for the total ordinary laser beam
(E;=E„.=E„/V2 for maximum efficiency). Second
harmonics can also be generated in crystals of calcite if
appropriate biasing dc electric fields are applied to
destroy the center-of-symmetry of the crystal. This
effect is called electric-field-induced SHG (ESHG).' For
calcite, one of the polarization components effective in
SHG is given as

P, '"= X, „„.„E„—'E„.E„= XE„'E„', —(10)

where E„' is the biasing field.
In carrying out the analysis, the general form

p, 2GI —XE 2

is used in order to apply the end result to different
crystals in a straightforward manner. Thus, the com-
ponent of polarization effective in generating second
harmonics in a focused beam is

P;(K)= p, "2(r)e-' x'd rs

(22r)3
(13b)

where U= U(s) is a unit vector specifying the polariza-
tion of the free extraordinary wave, s is the unit vector
in the direction of phase propagation, and 232=232(3') is
the index of refraction for the extraordinary wave of
frequency 2' propagating in direction s. Defining

The Fourier transform of Eq. (12) is

P; (K)= (XE„'/167r)kiwp'e —~'"'—x*'""""
for (2k —K.)&1+

=0 otherwise,

where Krs =K,'+—K„'.
The theory of second-harmonic generation by plane

waves can now be applied. Inasmuch as this theory is
rather involved, only those features of immediate use in
the calculations will be discussed. The reader is referred
to Ref. 2 for a concise summary of the theory and to
Ref. 1 for the original work.

Each polarization plane wave gives rise to a growing
second-harmonic wave. Each of these waves consists of a
forced electric field plane wave, driven by the polariza-
tion and propagating as e'"', and a free plane wave,
chosen in order to satisfy the boundary conditions at the
entrance face of the crystal and propagating with a
phase velocity appropriate to light at 2~. The second-
harmonic wave grow's with distance because of con-
structive interference between these two plane waves;
the interference remains constructive over a long dis-

tance when the forced and free waves have nearly the
same phase velocity. This, of course, is why the tech-
nique of index-matching is used. The free plane waves
are of the form

EiU exp(i2pi232s r/c),

B. Calculation of the Second Harmonics Generated K= (2( /c)e'o, (16)

To calculate the second-harmonic field which is
generated, the second-harmonic polarization given in
Eq. (12) will be decomposed into a sum of polarization
plane waves via Fourier analysis. Making use of the
results obtained by Kleinman' and BADE,' a growing
second-harmonic wave can be associated with each
polarization plane wave. The total second-harmonic
field generated by the focused laser beam is obtained by
summing these second-harmonic waves using Fourier
inversion. Although this approach may appear involved,
it is quite straightforward and it does make use of the
well investigated theory of SHG by plane waves.

' P. A. Franken and J.F. Ward, Rev. Mod. Phys. 35, 23 (1963).

p (r) —P (K)e (K 'r 2 O

produces a growing second-harmonic wave given by

EK(r) = z'g(2@ Khx. P(K)e'i '-'-' (19)

where d=K/~K~ and 23' is an effective index of refrac-
tion for the forced wave, the boundary conditions at the
entrance face of the crystal are satisfied if

e'a.—e2s= q KN, (17)

where N is the direction unit vector normal to the
crystal face and pK is called the mismatch function. The
result of these considerations is that each polarization
plane wave
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FIG. 2. The relation-
ships between the vari-
ous directions in a
negatively birefringent
crystal.

forward. From Eq. (17) one obtains

q xz'= yxP r= (22'o, —222s,)s' (22)

The variation of s2 with s is accounted for using the fact
that the focused beam is passing through the crystal in
the index-matching direction:

BS2 S~
222(S) =22P-

Bg |I S,
n, p,

=N, z
A
0

= 22/ (1+nE,/E) .

Use has been made of the relation'

(23)

where s'= s+ 2 3 and is the distance from the incident face
of the crystal,

g(x) = (1—e-*)/x = e" dp,

CO

24'x=2 pxz )
c

Vx ——42ri [P o.—(0 U) (o" U)] 'UU. —

SgC

The integral representation for g(x) is particularly
useful for the calculations being carried out.

The relationships given here are exact, and judicious
approximations are required to apply them to the
problem at hand. In particular, both y~ and yK are
complicated functions of tT, however, their dependence
on propagation direction is greatly simplified by using
E2/E, &K&1. The manner in which yx P(K) varies
with o- is demonstrated in Fig. 2. The angle Q.K is called
the angle of double refraction and is the angle between
the directions of phase and energy propagation for an
extraordinary ray. Clearly, the relationship is

BSq
0.= tan@ =———

'Sy 80 g g

For negatively birefringent crystals, 0,)0. In the same
Vein, the apprOXimatiOn S&'= 222' o&' /222(S) =o.&' yieldS

s,=1 Er2/Sk P—.
Substituting the approximate relations of Eqs. (23) and
(25) into Eq. (22) results in an evaluation of the
mismatch function

2/x= (Eg—2k&—nE )s'+ (Er2/4k')s'. (26)

The same result is obtained by BADE' in a more
rigorous fashion.

The total second-harmonic electric field is calculated
using Fourier inversion

Kx(r)d'E,

and Eqs. (14), (19), (21), and (26). The result is con-
veniently expressed as

yx P(K) =42r2 UE, (K)
S2C

sin (8m+nx+ 68)

cos'O, K coslN —-,'sin20. K single
(20)

R2+(r) Uo+2+e2i iaz

Zg+2S

eXp( —L»/(S~+2Z)) 9'+ (*+ns'P)'3)
X , (27)

Sg ZS Z

The variation with 68 is small for small changes of 60
around zero. Inparticular, estimate 68&E2/E, &2/k&2oo
in agreement with the far-field divergence of the focused
laser beam. For m p& 6)& 10 4 cm, 60 will be on the order
of one degree at most, and the variation of yx P (K) over
such a small range can be neglected. Thus, Eq. (20) is
approximated by

co sin(8re+n) „
yx P(K) =42r2 P(K) U,

Sy C cosign
(21)

where e is the angle of double refraction for an extraordi-
nary ray passing through the crystal in the index-
matching direction.

The approximation used to simplify qx is straight-

where

co sin(8i22+n)
E2~=71Zk] ZVp XE~

Sy C COS A

This equation, expressed in somewhat different form,
was previously derived by McMahon and Franklin"
using a different approach. Their calculations were
carried out by summing the radiation from the phased
distribution of dipoles which the nonlinear polarization
represents.

The exponential factor in the integrand of Eq. (27)
explicitly demonstrates that the cumulative interaction

"D. H. McMahon and A. R. Franklin, Appl. Phys. Letters 6, 14
(1965).
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I'iG. 3. The inter-
action path for a co-
lumnar laser beam
and the second-har-
monic beam which
it generates as de-
termined by crys-
tal double refraction.
The length l is the
distance of overlap
between the laser
beam and the inter-
action path.

X

Jj

PATH

I

X)Z

COLUMNAR LASER BEAM

1 J' lr~' &/ 1/ ' ~re'r rrr

r rr r r'r'rrrrrrrr r'r '~r r'r'r r '~'r «rr'rrrrrrr r i rr i i.

resulting in

S.s= (NPc/8)r) IZxl' cos'n. (30)

This equation is a valid approximation for plane-wave
propagation in a direction near the s axis. Estimate also
shows this to be a good point-by-point expression for the
second-harmonic beam when 2/k)wp((1. Substitution of
Eq. (27) into Eq. (30) and integration of the resulting
expression over the x-y plane at the exit face of the
crystal yields the total second-harmonic power

12g)r)~) sin (0)))+a) P
I' 2 f(wp, t,n), (31)

cos2n o
where

between the nonlinear polarization and the second-
harmonic beam takes place along the direction of energy
Sow for the extraordinary second harmonic wave. It is
apparent that the electric field at the point x, y, s' is
determined by the polarization at the points x", y", 2'"

given by

1

f(wo, l,n) = dp dp'
p p

«pl —(&'i'/~o') (p —p')'1

L1—i(~/s ) (p——:)jL1+i(i/s ) (p' —l))
y =y)
s"=s'(1—p), 0(p(1,
x"=@+nsp.

(2g)

Use has been made of the fact that

16 I'„

Sy C VVp

(33)

This path of interaction is shown in Fig. 3. Using the
cylindrical approximation for a focused beam, it is clear
that double refraction determines a maximum possible
distance for coherent interaction (overlap) between the
two beams. This distance is denoted by / and is pro-
portional to wo/n. For crystal lengths longer than /,
SHG is limited by crystal double refraction. This
analysis is not to be considered as general. In Sec. IV it
will be shown that the reasoning applied here yields
correct results only when calculating the maximum
interaction length for columnar beams. The presence of
double refraction has been verified in experiments by
SADE.' Their measurements show that the transverse
position of the peak of the generated second-harmonic
beam does not coincide with that of the peak of the
fundamental beam and that in lossless media it is
displaced by an amount ~n/. McMahon and Franklin"
have demonstrated experimentally the effects of double
refraction on the power generated by columnar beams.

The experimental work reported here is concerned
with the dependence of the second-harmonic power
generated, or the conversion eKciency, as a function of
focal spot size, mp. Thus, it is desired to calculate the
power transmitted by the second-harmonic beam across
the x-y plane. In an anisotropic medium the a com-
ponent of the Poynting vector S for a plane wave
UEx exp(i2com) (s)s r/c) can be written as'

S s= (c/8)r) I
Ex

I
')))(s) I

s s—(s U) (s U)j . (29)

A similar expression was discussed previously when
considering the dyadic px in Eq. (19). The same ap-
proximations used for yx can be applied to Eq. (29),

and I'„ is the laser power. This basic result has also been
obtained by McMahon and Franklin. "They use a much
different approach to the problem and analyze the
result only for the case l((wo/n&(sz. For purposes of
numerical calculation and for easier interpretation, it is
convenient to express f(w O, l,n) in terms of real
quantities .'

1 1

f(wp, t,n) = dp dp'

1+I —
I (p—))(p' —)) «p

(a~i

n'l'

, (p p')'—
'Np

/~i'. . .1+I —
I (p —l)' 1+I —

I
(p' —l)'

(34)

C. Asymptotic Solutions: Physical Signi6cance

The dependence of the generated second-harmonic
power upon the focal spot size m p, for fixed laser beam
power, is displayed by

g(ss, l, t )= (P/wo)) f(wo, l,n), (35)

where l —=wo/cl is the maximum distance for cumulative
interaction between the fundamental and second-har-

Equations (31), (32), and (34) are the desired expres-
sions which describe the generation of optical second
harmonics by a focused laser beam.
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monic beams as determined by crystal double refraction.
Note that f(ws, l,n) depends only on the ratios 1/zrr and
1/1; in particular, the function displays four distinct
types of asymptotic behavior.

In order to better understand the results which Eq.
(35) will yield, the following qualitative argument is
presented: The power generated in the second harmonic
is proportional to the square of the nonlinear polariza-
tion, g'(P„'/ws'), times the approximate volume
throughout which signihcant nonlinear polarization ex-
ists, xp'/„ times an "effective interaction length" /, over
which the cumulative interaction between the funda-
mental and second-harmonic beams occurs. Thus, for
Axed P„,

is reached at which the beam diverges appreciably inside
the crystal. It is noted that

(42)zs/1 =-,'nkrwp,

so that proceeding in the direction of decreasing mp, the
case / (&sg occurs before the case sg((/ for nonzero
values of e. Only a small part of the crystal is effectively
radiating second harmonics. The qualitative prediction
1s

2sg/ '
(43)g(zs, /, 1 ) ~ =~rr(krwp/cr).

ZVp

An exact solution for this asymptotic region has not
been obtained from Eq. (34), but later can be found by
analogy with the solutions for the other three asymp-
totic regions.

(iv). zs«1, zs«1: The beam is now focused so
sharply that crystal double refraction can be ignored.
This case is the same as that of a sharply focused beam
in an isotropic medium. Equation (36) predicts

P s~g(zg, l,l ) ~ (1„1,/wp'). (36)

Depending on the relative sizes of wo and /, /, will be
either the crystal length / or twice the Rayleigh range of
the focused laser beam, 2s~, /, will be either /, or the
maximum interaction length / . Bearing this qualitative
reasoning in mind, the four asymptotic regions are
easily explained.

g(zs, 1,1 ) er (4z~'/wss) =krsws'.

In this asymptotic region, solution of Eq. (34) gives
(i). 1(&zz, 1«1: In this region the beam can be

treated as columnar because /((s~, and the effects of
crystal birefringence can be neglected since /((/ . Equa-
tion (36) indicates that g(zs, 1,1 ) ~ 1s/wss. An exact ex-
pression for the limiting case /(&sg can be found for
Eq. (35):

sg((/
g(zg, 1,1 ) =-', rrskrswp' (45)

s~((/.

(46)1„1„=2zlr' 2(-',~zg) =~——zIr.

//. / /. 2 Equation (45) implies that the correct choice for 1„and
g(zs11 )=err erf (I e—&'&4') 1(&zz (37) 1, in this limit is

ZOp /0 ZOp

The additional limit 1((1 applied to Eq. (37) yields

/' /«s
g(zs, /, 1.)=

mp' /&(/
(38)

In this limit, Eq. (31) becomes the well-known formula
for second-harmonic generation by a plane wave in an
"almost isotropic" medium. ' "

(ii) 1 (&1(&z~ In this regio.n, the laser beam remains
plane wave in character, but crystal double refraction
can no longer be neglected. The "effective interaction
length" 1, is limited to 1„.Qualitatively, we expect

This result allows a correct evaluation of the asymptotic
solution for region (iii); namely

g(zs, 1,1.)=2''1 '/wp' ———',m'ls(krwp/n).

1 (&zs«1.

The curves for the asymptotic solutions of g(zs, 1,1„)
as a function of no take a particularly simple form on a
log-log plot, as shown in Fig. 4. There are two different
types of behavior, depending on the crystal length /. If

1,=1.'= Qrr(w p/n) . (4l)

(iii). 1 ((zs((1: As the laser beam is focused more
sharply, the beam spot size gets smaller and the point

"A. Ashkin, G. D. Boyd, and J. M. Dziedzic, Phys. Rev.
Letters ll, 14 (1963).

g(zrr, 1,1 ) ~ (11 /wp')=1/wsn

Applying the limit 1 «1 to Eq. (37), one obtains

g(z„1,1.)=g~(1/w, ~) 1.&&1&&z,. (40)

Thus, the exact analysis implies that for the case of
double refraction-limited SHG, the correct choice for /,
1s

Cl

~t

N

Ql

C30

/

7

WOR WOR'

~WO

——Rg2

g2

gR/R

RW LOG WO
OR

Fro. 4. The asymp-
totic solutions of
g(ss, l,l~) for two crys-
tal lengths. The val-
ues of the parameters
which specify the
curves are given in
Eqs. (49) and (50).
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IOl is small enough, regions (ii) and (iii) disappear. The

requirement that the effects of double refraction vanish
is l(l~, where

(48)l g
= 2/k tn'.

This critical length 1& is 0.016 cm for crystals of ADP
and 0.001 cm for calcite when using light at 6328 A.
Only for very short crystals of these materials will the
effects of beam divergence or diffraction swamp out the
effects of double refraction. It should be pointed out,
however, that this is not meant to be a generalization
and exceptions do exist. For instance, SHG can be
brought about in long crystals of LiNb03 without any
double-refraction effects."This is because index match-
ing for laser-beam propagation perpendicular to the
optic axis can be accomplished in this crystal by
adjusting the crystal temperature. For directions normal
to the optic axis, n=0 and l~ is infinite.

Depending on the relative size of l to l~, the asymp-
totic curves in Fig. 4 are symmetric around either + 0~ or
+02'. The values of the important parameters for the
two cases are given by

10

QP

!L
N

gJI

C4

IO'

IO
IO IOIO IO

w (cm)

pro. 5. Computed and asymptotic curves of g (ss, f,l ) for four
crystal lengths of ADP, n =0.029 rad.

energy concentration alone determines the optimum

degree of focusing.
mes

——(2lt/s kt)'&'

as= (~/n) (sktlt)'",

E= n (-,'ktlt)'~',

t»t, :
(49)

D. Exact Solution

mes' = (2l,/s-k, )'~s,
I

g2 ——,~kgl2.

l, &l, : Although the asymptotic solutions of g(s~, l,l ) are
simple and instructive, exact solutions can also be ob-

tained with the aid of an electronic computer. The heavy
curves in Fig. 5 show computed solutions of g (sg, l, l ) for
crystals of ADP, n=0.029 rad, superimposed on the
corresponding asymptotic curves.

(50)

Although these values are for the asymptotic curves, it
is a reasonable assumption that the general over-all
behavior of SHG in a focus can be gleaned from them.
Thus, analysis shows that there is a maximum amount
of second-harmonic power which can be generated in a
given crystal of length /, for Axed laser power I'„; it is
found that

III. EXPERIMENTAL MEASUREMENTS

The experimental setup shown schematically in Fig. 6
was used to verify the predictions of the analysis. The
laser is a Spectra-Physics model 112 rf-excited helium-

neon laser, operated at 6328 A. The optical resonator
was hemispherical, approximately 120 cm long, and was

adjusted for oscillation only in the lowest order trans-
verse mode. The operation was not single mode, how-

LPs„j, ~ l for l(ls
~ P" for /& l~. (51)

Figure 4 shows that a crystal in which there is no double
refraction generates R(n) times as much second-har-
monic power as a crystal of the same length having a
double-refraction angle o.. The analysis also indicates
the optimum degree of focusing to be used. In particular,
maximum second-harmonic power is obtained when

CRYSTAL

S FILTERS

CHOPPING WH

COL LIMATING
MIRROR

HEMISP HERICA
CAVITY LASER

SN ——l/s or zg' ,'l———(52) RCA 6903
LEN

Notice that optimum focusing is determined solely by
the crystal length. Double refraction is not important in
determining the value of +02, but it does limit the maxi-
mum amount of power obtainable. This conclusion
contradicts the statement given elsewhere" that the
e6ects of coherence predominate over those of energy
concentration. Indeed, the analysis here shows that
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~ R. C. Miller, G. D. Boyd, and A. Savage, Appl. Phys. Letters
6, 77 (1965). FIG. 6. Schematic diagram of the experimental setup.
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ever, inasmuch as many longitudinal modes were
present. Measurements carried out on this laser by
Francois" indicate that there is no self-locking" of these
modes. Thus it was assumed that the longitudinal modes
were oscillating independently of one another. A so-
called collimating mirror was used as the curved reRec-
tor. Due to the curvature of the back surface of this
mirror, the beam transmitted by it has essentially plane
phase fronts upon emerging. A typical beam radius for
the output of the laser is 0.185 cm, meaning that the
Rayleigh range of the colliminated beam is very long,
about 17 m. All experiments were conducted within 3 m
of the laser.

A lens of focal length f was used to focus the laser
beam at the center of an ADP crystal which was
oriented in the index-matching direction. The crystals
were cut so that the beam was within a few degrees of
being normal to the entrance and exit faces at phase
matching. After emerging from the crystal, the funda-
mental beam was strongly absorbed by four Corning
CS7-54 glass filters. The second-harmonic beam passed
through with slight loss to impinge on the photocathode
of an RCA-6903 photomultiplier. This particular tube
was chosen because its envelope is end-on to the light
and its photocathode is large. The signal was detected
by a Princeton Applied Research Corp. JB-5 lock-in
amplifier, the laser beam being modulated at about
500 cycles/sec by a chopping wheel driven by a syn-
chronous motor. The crystal holder was mounted on a
rotatable disk and the angular orientation of the crystal
accurately adjusted for maximum output, i.e., for
proper index matching. The lenses were war surplus
simple and achromatic compound coated lenses and
ranged in focal length from 35 to 1016 mm. For longer
focal lengths, a negative lens and a slightly stronger
positive lens were used as a telephoto combination.
Measurements made using such a combination lacked
the accuracy obtained using a single lens because of
mechanical jitter and errors in measuring the effective
focal length. Accuracy problems were also encountered
with short-focal-length lenses. The main difficulties were
small lens aperture and the large divergence of the
focused beams.

The experimental procedure required obtaining the
correct axial and angular positioning of the crystal with
respect to the focus of the laser beam. The correct loca-
tion for the focus was obtained by sliding the lens along
the optical bench until a maximum second-harmonic
power output was recorded. This occurred when the
focal spot coincided with the center of the crystal. When
near-optimum focusing was used, the second-harmonic
power fell off rapidly as the focal spot moved from the
crystal center. For cases of much stronger or much
weaker focusing, the changes were small. This behavior

"G. E. I'rancois (private communication).
~4 M. H. Crowell, IEEE J. Quantum Electron. , QE-1, 12

(&965).

is explained in terms of the size of the Rayleigh range of
the focused beam relative to the crystal length. For
weak focusing the laser beam is essentially a parallel or
columnar beam, and the output is independent of where
the crystal is located along the beam. For strong focusing
most of the SHG occurs in the small focal region. The
output is then essentially constant as long as the focus
is inside the crystal, and negligible otherwise. With
near-optimum focusing, strong SHG occurs in a focal
region about as long as the crystal itself, so that the
output drops if this region begins to move out of the
crystal in either direction.

Using the techniques outlined here, the dependence of
the second-harmonic power upon lens focal length and
upon the radius of the collimated laser beam was ob-
tained. The connection of these experimental results to
the calculated results is established by calculating the
focal spot size mo' of a laser beam of radius W focused
in air by a lens of focal length f. The result is

W 2f koW'
wo' —— =, (( —, (53)

(1+(k02W'/4f') )'" koW

where ko is the propagation constant for light in air.
Equation (53) is a valid approximation for the experi-
ments reported here. It can readily be shown that x 0' is
still the spot size of the beam even when focused inside
the crystal. Introduction of the crystal shifts the loca-
tion of the focal spot in agreement with geometrical
optics, but the spot size remains unchanged, F0=@0'.

In the calculation of SHG in a focus, frequent use was
made of the relation 2/kqwo((1. The values of wo used
in the experiments, as calculated from Eq. (53), were
such that wo& 1.8X 10 ' cm and k~wo/2) 13.5. Thus all
experimental measurements should be adequately de-
scribed by the calculations carried out in this paper.

The radius of the collimated laser beam W was
measured using a silicon solar cell mounted on a
micrornanipulator behind a 0.001-in.-diam. hole in an
opaque screen. Initial measurements of W led to experi-
mental curves which had the correct shape but which
were displaced along the mo axis from the theoretical
curves. It was later discovered that this discrepancy was
due to the presence of laser oscillation at 6401 A, as well
as at 6328 A, leading to false measurements of W. By
isolating the 6328 4 line, the expected results were
obtained.

Comparison of the experimental data with the calcu-
lated curves is shown in Figs. 7 and 8. Figure 7 shows the
results for three different crystal lengths and approxi-
mately the same value of W. In Fig. 8 the results are
shown for one crystal length and three different values
of W obtained by expanding or contracting the laser
beam diameter with the aid of normal or inverted
telescopes. This technique introduced a good deal of
mechanical jitter into the experiment and accounted for
a loss of accuracy. The agreement between experimental
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crystal for all L. Even though the phase fronts of the
beam are in general not planar, analogy tempts one to
consider the maximum interaction length as w/a for this
case too. However, in Eq. (58) it is clear that the
appropriate interaction length is given by wo/n, where

mo is the beam radius at the focus, not at the crystal.
The radius at the crystal is wp(1+L'/sg')'~'. Previous
experiments which have demonstrated the eBects of
double refraction' were carried out with the crystal
located in the focal region (L«s~) of a beam for which

sg&)/. Hence the distinction between m and m 0 was not
significant. Thus the simple double-refraction point of
view gives the correct maximum interaction length only
for columnar beams, I((zg. Extension of this viewpoint
to beams having curved phase fronts is invalid.

It is better to regard the maximum interaction length
as being determined by crystal double refraction and
beam divergence instead of by double refraction and the
beam radius at the crystal. A physical understanding
can also be obtained for this point of view. The maxi-
mum interaction length /

' for an extraordinary second-
harmonic plane wave traveling at an angle b, the beam
divergence angle, to the optic axis can be defined as that
value of s' for which the mismatch function, Eq. (26),
iso rad:

Thus limiting of SHG occurs because the presence of
crystal double refraction means that it is impossible for
all plane-w'ave components of the laser beam to be
perfectly index-matched for optimum interaction. It is
suggested that the length l =no/a is most accurately
referred to as the maximum interaction length as de-
termined by crystal double refraction and beam
divergence.

V. CONCLUSION

This paper has reported the analysis of optical SHG
in the focus of a Gaussian laser beam and its sub-
stantiation by experiments carried out in crystals of
ADP. The effects of crystal double refraction and beam
divergence, or diffraction, were demonstrated by calcu-
lation and experiment. It is shown that these e6ects can
be understood and expressed in terms of the ratios of the
characteristic lengths z~ and / to the crystal length /.

Diffraction eGects are characterized by zg and the e8ects
of double refraction and beam divergence by / . An
optimum degree of focusing exists and corresponds to

the case sz= 1/~. It is determined by the crystal length
alone.

The use of focused beams can greatly enhance the
generated second-harmonic power. For the experiments
reported here optimum focusing in a crystal of ADP 1
cm long gives 400 times more power than the collimated
laser beam. Enhancement is even greater for shorter
crystals. However, it is to be stressed that the results
reported here apply only to the case of negligible
conversion of the fundamental into second harmonic, as
is the case for cw laser beams. Focused beams can be
used to measure smaller nonlinearities than otherwise
could be possible on a cw basis.

The results for SHG anywhere along a focused beam
were also presented. Discussion of these results led to a
physical understanding of / in terms of the effects of
double refraction upon the beam divergence, instead of
upon the beam radius at the crystal. This was shown to
be the more general point of view.

It is anticipated that the calculations and ideas
presented can be extended to apply to other nonlinear
processes which are normally measured using focused
beams.

Note added iN proof. Recent work of D. A. Kleinman,
A. Ashkin, and G. D. Boyd (to be published) shows
that, for zg((/, maximum second-harmonic power is
rot always obtained in the index-matching direction.
Although not at all apparent, this fact is contained in
Eq. (54). The distinction between maximum power and
the power obtained along 8 is negligible for zg&-', / .
For s~&&l, s~&&l, it is found that (P2 ) ~=m'kPwo',
which is a factor of 4 larger than Eq. (45); the differ-
ence occurs because in this asymptotic region there is a
discontinuity in Eq. (54) at P= 0. The main purpose of
this paper is to describe optimum focusing; the equa-
tions derived here are valid in crystals having /&/b
for wo)wo2/E. This includes the region of optimum
focusing. Modi6cations are required to apply the ideas
presented here to crystals for which /&/b. The experi-
ments were characterized by z&&0.4/, and hence the
calculated curves were valid.
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