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Statement of Approximate Locality

(3) The factorization of the probability for two
separate events Eq. (1)

Pga—a,fs) —— P(b—a)P(g—f).

This was strengthened in Eq. (10) by replacing the
state f, by (fo+ f'») and g by (g=+¢’+), and requiring
that the corresponding limit hold as |«| and |«'| —
[uniformly with respect to (x—x") of course].

(4) The analogous factorization for three separate
experiments as in Eq. (13).

Superselection Rules

(5) Superselection rules defined by discrete additive
quantum numbers; namely, charge, baryon, and lepton
numbers.?

2 In fact the method of Sec. IV can accommodate any number
of quantum numbers of this kind, including those with infinitely
many eigenvalues, such as charge, and those with a finite number
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These assumptions led first to factorization of S-
matrix elements and thence, using the argument of
Wichmann and Crichton, to the momentum-space
equations, whose final form is shown in Fig. 3 and Eq.
(20). While this form may differ from the usual one
shown in Fig. 1—a difference which would show up in
interference experiments between states of different
particle type—nonetheless the unitarity equations for
the connected parts take precisely the usual form as-
sumed in analytic S-matrix theory.
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Application of the Padé Approximant to Scattering Theoryt
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The Padé approximant is shown to yield exactly unitary S matrices in scattering theory. The method is
used to construct a unitary .S matrix for #-d scattering above the threshold for inelastic scattering. Thus the
effect of inelastic scattering on elastic-scattering total cross sections and angular distributions is calculated.

No cusps are found at the threshold.

I. INTRODUCTION

HE Padé approximant! has been applied to
summing series which occur in calculations based
on the Ising and Heisenberg models of various types of
critical phenomena.? The Padé approximant may also
be applied to the Born series which occur in scattering
theory; recently Tani® has made a study of this
application.
In this paper we show that the Padé approximant
method may be used to construct exactly unitary S
matrices. In problems in which states with more than

1 Supported by the U. S. Air Force Office of Scientific Research.

* Summer. Employee at Lawrence Radiation Laboratory,
Livermore, California.

1 For a review, see G. A. Baker, Jr., in Advances in Theoretical
Physics, edited by K. A. Brueckner (Academic Press Inc., New
York, 1965), Vol. 1.

2 See the surveys of M. Fisher and C. Domb in the Proceedings
of the Conference on Phenomena in the Neighborhood of Critical
Points, Washington, D. C., 1965 (unpublished).

3S. Tani, Phys. Rev. 139, B1011 (1965).

two free particles are energetically possible (the example
we are concerned with is #-d scattering above the thresh-
old for inelastic scattering; however, there are many
others of great interest, for example, nucleon-nucleon
or pion-nucleon scattering above the threshold for pion
production) the problem of constructing unitary S
matrices has not been satisfactorily solved previously.

In calculations of #-d elastic scattering based on the
no-distortion approximation,* inelastic scattering is
ignored even above the threshold for inelastic scat-
tering. Because of this neglect of inelastic scattering,
the matrix elements for transitions between states in
which three particles are free are not required because
in the no-distortion approximation three-body states
are precisely what are left out. Our work represents an
attempt to go beyond the no-distortion approximation.
In calculations of #-d inelastic cross sections based on

4 See, for example, R. S. Christian and J. L.
Rev. 91, 100 (1953). and J. L. Gammel, Phys.
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the Born approximation or some modification of it,®
the S matrix (which must describe elastic and inelastic
processes simultaneously and also transitions between
states in which three particles are free) calculated is not
unitary. The consequences of this fact have never been
assessed.

In using the Padé approximant to construct an
exactly unitary .S matrix, we so arrange our work that
in the limit of vanishing inelastic scattering our result
for the elastic scattering agrees with Christian and
Gammel’s result; in particular, below threshold for
inelastic scattering we obtain Christian and Gammel’s
result. Thus we are able to estimate the effect of possible
inelastic scattering on the elastic scattering differential
cross sections. We do not find cusps at the threshold
for inelastic scattering in the #-d total cross section or
in the differential cross section at a fixed angle as a
function of the center-of-mass energy. We obtain a new
result for the inelastic cross section (which includes the
effects of unitarity) which we may compare with the
results of Ref. 5. Our results are much lower than those
reported in Ref. 5, but this comparison may not be
significant because we have neglected inelastic scat-
tering for states in which the angular momentum /> 1.

Questions of convergence are located in an Appendix
which includes an example of the rate of the convergence
of the Padé approximants for potential scattering which
is useful in a study of Tani’s work.

Faddeev” and Lovelace® have pointed out that the
kernel in the n-d integral equations is singular so that
the Fredholm method cannot be applied. This singu-
larity occurs in these matrix elements: two of the three
particles scatter; the momentum of the third relative
to their center of mass does not change. The matrix
element contains a delta function expressing this fact.
Our form for the matrix element contains such a delta
function. The Padé method is applicable to integral
equations with singular kernels. Consider the following

integral equation:
f@=har [ a5 1.

The solution,

f@)=h(x)/[1—Ng(x2) ]

cannot be obtained from the Fredholm method; how-
ever, the Padé approximants to the series obtained by
iterating the integral equation are the solution.

5 R. M. Frank and J. L. Gammel, Phys. Rev. 93, 643 (1954).

¢ For experimental data, see D. E. Groce and R. E. Shamu, in
Proceedings of the International Conference on Nuclear Physics,
Paris, 1964 (Editions du Centre National de la Recherche
Scientifique, Paris, 1965), p. 167. . L

7 For an account of Faddeev’s work, see J. Gillespie, in Final
State Interactions, (Holden-Day, Inc., San Francisco, California,
1964). For Amado’s work see R. Aaron, R. D. Amado, and Y. Y.
Yam, Phys. Rev. 136, B650 (1964) and Phys. Rev. Letters 13, 574,
701 (1964). . . .

8 C. Lovelace, in Strong Interactions and High Energy Physics,
edited by R. G. Moorehouse (Plenum Press, Inc., New York 1963).
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II. CONNECTION OF THE PADE APPROXI-
MANT METHOD WITH UNITARITY
OF THE S MATRIX

Let the power-series expansion of the S matrix be
S=1+S V4S5 V24 - -, ¢))

where the expansion parameter V is the strength of the
interaction. The complex conjugate of S transposed is

St= 1+S{’V+SJV2+' .- 2
Unitarity requires that

S-St=1+(S1+SNV
+ (S-S + 515D V- =1, (3)

from which it follows that
SI+SIT= 0 )

Sz+52T+51'51T=0, )
etc.

In these equations, the center dot does not stand for
multiplication in the usual sense. The .S matrix for
potential scattering is a function of two vectors k; and
ki, the final and initial momenta, respectively, in a
scattering process. In general, unitarity requires that

2. (‘ZISIG)(C'Sle)zaab, ()

where ¢ is summed over all states that lie on the energy
shell. Tt follows that in the case of potential scattering,
the sum over ¢ is related to an integration over the
angles of an intermediate momentum k, since the
magnitude of k is determined by the energy shell con-
dition k/P=Fk2="Fk%. If we imagine that all states are
normalized in a large box of volume @, it is easily seen
that Eq. (5) is

(2m)
Q

3(k;—ky), (6)

1 .
- / dh (s S ) (k] S k) =g =

or that the operation represented by the center dot is

-Ei /dfa. )

The caret notation refers to the angles of the vector k
(i.e., S'dk= S dQ). In the case of n-d scattering above
the threshold for inelastic scattering, the sum over ¢
includes an integration over the continuum states of
the deuteron.

The diagonal Padé approximants are now defined in
the same way they are defined in Baker’s review.! For
example, the [1,17] approximant to .S is the ratio of two
first-order polynomials in V':

S=(4o+4.V)- .
14+B,V

[Bo may be chosen to be 1, as indicated, because both
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numerator and denominator may be divided by a
constant.] The constants 4o, 43, By are defined by
requiring that

Uorhd V) eSS (®)
1+B,V
to order V%; thus
Ao=1,
A1=Bl+51, (9)
0=S1'Bl+Sz.

The order of multiplication is important because the
multiplication defined by Eq. (7) is not commutative.
We have, however, the following theorem:

Theorem: The approximant defined by requiring that

(A +AL V) =14+S1V+SaV 2+ - -

14+B,/V

be satisfied to order V? is the same as the approximant
defined by Eq. (8).
Proof : In order to prove that

» (10)

c(Ad+ALV)= (Ao+41V)-
1+B/V 1+B.V

multiply from the left by 14-B,'V and from the right
by 14 B,V. The result,

(14+4,V)- 1+B,V)= (14+B,V)- (1+4.V), (11)

when multiplied out, contains no term of order greater
than V2. But the two approximants are equal to order
V2. Therefore, they are exactly equal.

This proof extends to diagonal [NV, | Padé approxi-
mants. It is a consequence of the contraction of powers
in numerator and denominator to half the largest power
retained in the .S matrix. The proof holds only for
diagonal Padé approximants.

As a further consequence of this contraction of
powers, we have the following theorem:

Theorem: The [N,N] Padé approximants are exactly
unitary.

Proof : The [1,17] approximant is

1
1,1]=(1+4,7)- , (12
(L4 4By )
which has a complex conjugate transposed
11]f= -(14A4,7). (13
[L,1] BT 1 )

If the [1,1] approximant is unitary, it is necessary that
[1:1]'[1’1]T
= (1 +A 1V) .

C(14ATV)=1. (14)

1+B,V 14+B,'V

Lemma: A necessary and sufficient condition that
AB=11is that BA=1. From Eq. (14) it follows that it
is necessary and sufficient that

1 1
(1+ALT) QALY ) =1,
14+B,V 1+B,'V

Multiplying from the right first by 14 B,V and then
by 14 BV it follows that it is necessary and sufficient
that

(14+4,V)- (14+4,V)= (14-B,'V)- (1+B,V). (16)

Again, Eq. (16) can be multiplied out and no terms of
order greater than V?* appear. But the approximant
agrees with the S matrix which is unitary through
order V2, so that the approximant is exactly unitary.
The argument extends to the [N,V ] approximant.

The argument, while correct, may at first sight seem
unbelievable. An alternative proof, at least for the
[1,1] approximant, may be based on the solutions of
Eqgs. (9)

1
By=——:58,,
1
17
. (17)
A1=S1—"""S2,
1
from which it follows that
1
B1 = "'Szf“— )
Syt
(18)

1
A11=S1T—S2T'—“‘ .
S,
Equations (17) and (18) may be substituted into Eq.
(16), and the correctness of the result verified using

Egs. (4).

In proving these general theorems, it is correct to
manipulate with the multiplication sign as we have
done; however, Egs. (9) are actually integral equations

(ks A1 k)= (k7| By ko) + (/| Sy k),

1 i 19
0=?f /dk(k,lSllk)(k]Bllki)+(kf|S2lki), )

so that Eqgs. (18) represent solutions of these integral
equations.

Even the calculation of the Padé approximant Eq.
(8) requires the solution of an integral equation. It is
more convenient to work with the scattering amplitude
M rather than S in order to eliminate delta functions,
Let

S=1+2ikM, (20)
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so that Eq. (12) becomes

1
=—(41—B)V- 21
2ik( 1—By) 1)

1+B,V

Multiplying from the right by 14 B,V, and using the
first of Egs. (9) to eliminate 4;— By, application of
Eq. (7) gives an integral equation for M :

1
(ks | M | k) =—(ks| S1| k) V
2ik

V/dl%kMkkBk 2
- (ks| M| k) (k| B:|ks).  (22)

In general, this method always results in systems of
integral equations which must be solved. The integrals
have finite ranges (27 in azimuth, 7 in polar angle).
There are no singularities in the integral equations. In
the case of #-d scattering which we treat in Sec. IV,
integrals over an energy region of allowed inelastic
events will occur.

III. PARTIAL-WAVE EXPANSION OF THE
SCATTERING AMPLITUDE

A partial-wave expansion of the second of Egs. (19)
gives
0=SuBu+Sau. (23)

From the first of Eqs. (4) it follows that Sy; is purely
imaginary, and the imaginary part of Eq. (23) gives

0=ImSy; ReBy+ImSy;. (24)
The real part of Eq. (23) gives
=—ImSy; ImBy+ReSy. (25)
A partial-wave expansion of the second of Egs. (4) gives
SartSe*+SuSu*=0, (26)
or, since Sy; is purely imaginary,
2 ReSg=— (ImSyy)?, @27
and this result substituted into Eq. (25) gives
ImBy;=—% ImSy;. (28)
A partial-wave expansion of Eq. (22) gives
M= (1/2ik)SuV—M BuV. (29)

Constructing the real and imaginary parts of By; from
Eqgs. (24) and (28), and putting Sy =17 ImSy; gives
Mz= (1/2k) ImSuV-I-Mz((ImSzz/IHISu)

+3i ImSu)V,  (30)

which can be solved for M;. The tangent of the /th
phase shift is given by

xz:kMz/(l—l-’Lle) . (31)
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Substituting the result for M; obtained from Eq. (30)
into Eq. (31) gives
ImSy,V/2

X1= .
C 1=V (ImSy/ImSy)

(32)

The point of this argument is that Eq. (32) is exactly
what would have been found by forming a Padé
approximant to the power series of a; directly. We
show this fact as follows. Equation (31) expanded gives

wr=kM —R*M 24 - . (33)
Equation (20) then gives
k(Si—1) (Si—1y
YT T e
so that Eq. (1) gives
= (1/24) (SuV+SauV?)+1iS12V*+---, (35)
or finally, using Eq. (27) for ReSy;
2= 3 ImSy V41 ImSy Vet - - . (36)

Equation (32) is obviously the ordinary [1,1] approxi-
mant to this series.

Thus we have established the following theorem:

Theorem: The solution of Eqs. (19) and (22) for M
has a partial-wave expansion. The tangents of the phase
shifts which appear in this partial-wave expansion are
the [1,1] Padé approximants to the Born series for the
tangents of the phase shifts which appear in the partial-
wave expansion of the exact M.

To complete the argument, we need a proof of this
theorem which holds for all [N,N| Padé approximants,
not just the [1,1] approximant. Again, it is the con-
traction of powers characteristic of the diagonal Padé
approximants which assures the truth of the theorem
for all V. If, in Eq. (31),

1 AV A
T14BV By

@37

then
EAVA+ -+ ANVY)

T B+ + By Vb (A V4 -+ ANV
(38)

which is of the form of an [NV,N] approximant to «.
That it must be the usual Padé approximant follows
from the fact that M, as given by Eq. (37) is correct
to order V2V, and therefore x; as given by Eq. (38) is
also correct to order V2¥, and from the fact that the
Padé approximant is unique. Unitarity guarantees that
#,1s real and that all of the coefficients of various powers
of V in numerator and denominator of Eq. (38) are
real, but it is not necessary to trace this fact in detail
as we have done for the [1,17] approximant.

For a proof of the convergence of the Padé method
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and examples of its rate of convergence see the
Appendix.

IV. n-d SCATTERING

Itisnot obvious that an expansion such as that shown
in Eq. (3) exists for #-d scattering. A first Born approxi-
mation exists and is given by Goldberger and Watson.?
In the following we do not need an explicit definition
of the second Born approximation; it is calculated
assuming

(a) that an expansion such as that shown in Eq. (3)
exists and that the first term is the first Born approxi-
mation,

(b) that this expansion has the properties shown in
Eq. (4),

(c) that in the limit in which inelastic scattering is
ignored, the results of Christian and Gammel* are
obtained from the [1,17] Padé approximant, and

(d) that any parts of Ss not required by assumptions
(b) and (c) are zero.

V need not be the strength of any potential. It need
not be defined at all for our purposes. We assume
(a)-(d) and proceed as follows:

Let the continuum states of the deuteron be labeled
by the Greek letter kappa, where

@=ME/2, (39)

M=mass of nucleon, E=excitation energy of the
deuteron. Let k2=8M Eyas/9%* be the square of the
center-of-mass wave number of the incident neutron
whose energy is Eras in the laboratory. Let

at=ME,/#, (40)

where Ej is the binding energy of the deuteron. Then
the sum over ¢ in Eq. (5) is such that corresponding to

Eq. (7)
dk / dx,

where in the second integral the magnitude of k satisfies
the energy-shell condition

— 42— $a?HRE=F2. 42)

The first integral allows for a transition to an inter-
mediate state in which the deuteron is bound. The
second integral allows for transitions to energetically
possible intermediate states in which three particles
are free. The integration over « is over all vectors whose
length is less than $4°—a?. Below threshold, $k2— a2 <0,
no transitions to states with three particles free are
energetically possible, the second integral drops out,
and the definition of multiplication reduces to that
shown in Eq. (7).

a

1 1 Q
o= | dht——

4r 47 (27) *1)

® M. L. Goldberger and K. M. Watson, Collision Theory (John
Wiley & Sons, Inc., New York, 1964), p. 156, Eq. (178), the first
terms.

We introduce the following notation:
Let
(K'a| M | ke) 43)

denote matrix elements of M between states in which
the deuteron is bound. Let
k'« | M |ka) and (ke|M |k'«’) (44)

denote matrix elements of M between a state in which
the deuteron is bound and a state in which three
particles are free. Let

(k' | M | kx) (45)

denote matrix elements of M between states in which
three particles are free. At all times the %&’s and «’s
satisfy Eq. (42).

The analogs of Egs. (19) and (22) are

1o,
= f b (x| S| Ka) (k| By | kx)
T

1 Q ol
+—— / dv’
dr 273 J o

X/d]%"(k'x’lSllk"K")
X (K" | B[ k) + (k' [ Sal k), (46)

1
k'« | M | k) =—(k'«'| S1| k)
2ik

V.
—_ / b (kx| M | K"a) (K"e| By | kxc)
4
Vo Q
_ / i
47 (2w)?
X\/d}%”(k'x’!Mlk"K”)
X (k"«'"| By | kx).

(47)

In these equations, ¥’ may be a and x may be a also.
Equations (46) and (47) express the fact that unitarity
is bound to connect the processes [nucleon+ground
state of deuteron — nucleon+ground state of deu-
teron ], [nucleon-+ground state of deuteron — nucleon
4 continuum state of deuteron], and [nucleon—-con-
tinuum state of deuteron — nucleon-continuum state
of deuteron]. It would be nice if it were possible to
avoid the third possibility, and so eliminate all matrix
elements such as (k’'x’| M |kx) where neither ¥’ nor x
is e, but it is not possible.

The solution of Egs. (46) and (47) is not difficult if
the dependence of all matrix elements on the angles of
the ¥’s can be eliminated. In general this dependence
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cannot be eliminated, but in the present work our
approximations used in calculating S; and S, achieve
this for matrix elements not of the form (k'x’|S|kx)
where neither &’ nor x is . However, we need this form
of the matrix element for .5;. We will write down a
reasonable-looking form which is independent of the
direction of «’ and %"

When the angles of the %’s do not appear, a partial-
wave expansion of Eqgs. (46) and (47) is easily carried
out precisely as a partial-wave expansion was carried
out in Sec. III. Equations (46) and (47) become one-
dimensional integral equations which we have solved
only for the orbital angular momentum /=0. For I>1,
we have used the phase shifts of Christian and Gammel.*
It would be easy to include other /’s, and this may be
necessary to explain the low inelastic cross sections we
calculate,

V. FURTHER DETAILS OF THE CALCULATION

The spin complicates the problem somewhat. But
for central forces the total spin is a good quantum
number, so that the doublet and quartet states may be
dealt with separately. For the doublet state, both

g Ol6—T—T T T T T 7T
= ek 23:0.8F PADE-
= P =9.937F
Soo08- 2p =0 -
£
o° 004 7] FiG. 1. Energy de-
= pendence of doublet
0

phase shifts. C. G.
stands for Christian

= "2or 7 and Gammel (Ref.
2 4). For the “no sin-
u -40/ C.G. - » t
@ glet” curve the sin-
b 1 glet continuum
S -eor - states of the deu-
T _gol PAPE NO SINGLET teron were neglected.
3
N
o -100|
o
| | 1 | [
20— 7§ 5 10
E LAB (MEV)
£0.060 —————————————
4g=6.2F MODIFIED
g 4p=1.00F
Soosol F PADE- .
oo 4px4.02
<
Z %
F16. 2. Energy de-
pendence of quartet
=30~ - phase shifts. “Modi-
fied” means that all
@ parts of Sz were com-
w ~6o - puted using Eg.
& (54).
w
e
o 90
<
& - L MODIFIED
- 1
120L—1

5 6 7 8 9 10
ELaB (MEV)
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deuteron singlet and triplet states are accessible, so
that larger matrices occur: In a schematic way we have
the following form for any S=% matrix:

ground  triplet singlet
state  continuum continuum
o K K
a [ (D 3 )
K “) 6)
K (6)

(

In (1) are the matrix elements between states in which
the deuteron is bound. (2) contains matrix elements

3:0 6 T T T L P s Sen
[N 7
< al . 180°-{
'_0-4 PADE-/ S Fic. 3. Doublet con-
802 g0e 120° = tribution to k% for sev-
S, L——¢e eral angles.
a 2 3 4 5 6 7 8 9 10
ELAB (MEV)
=4
(\-Ib 3
= F16. 4. Quartet contri-
=2 bution to %% for several
= angles.
<t
30

5
_4
=
Nb3 3 .
- b Fi16. 5. Angular distri-
2 bution at Epap=5
| MeV.
0
0 30 60 90 120 150 180
Be.m
9 T T T T T
_4 _ /A
= PADE—
oI Fi6. 6. Angular distri
< | F16. 6. Angular distri-
2—\ / / bution at Epas=10
I \ ‘\/’ ‘c.e. | MeV.

Fi16. 7. Angular distri-
bution at Epas=14
MeV.
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between a state in which the deuteron is bound and a
state in which all particles are free, two being in a
singlet continuum state of the deuteron.

The spin factors in front of matrix elements have
been worked out in Refs. 4 and 5. The calculation of
the matrix elements in zero range approximation is also
explained in Refs. 4 and 5. We find, for /=0,

8a 9/4)k2 42
(ka|S1|ka)=—18— ln(———) , (48)
3k 12+

1—cos280(x’) { 160/7 <a>1/2

20 3 \2

Re(k'c'| S1| ka)=p ;

(k4R yo?
)
(k—F) a2

=—Re(ka|S1|¥x), (49)

sin280(x")
Im(k’K,lS1lka)=ﬂ——7—{ }

K

=TIm (kx| S1|k'x’), (50)

where £ is the spin factor (8=-1 for quartet states,
—3% for doublet states except for transitions to states

TasLE I. Inelastic cross section oin= (r/k?)[1—exp(—4 Imd)].

Eras (MeV) toin (F2) 20in (F?) oin (mb)
4 0.514 6.411 21
6 1.333 0.828 11
8 1.879 4.782 28
10 2.308 6.554 38
14 2.800 6.900 41

in which the deuteron is in a singlet continuum state,
in which case 8= (/%)X 0.69, when 0.69 is the ratio of
the strengths of the singlet and triplet #-p potentials),
and where 8o(x’) is a triplet or singlet #-p phase shift
depending on whether the matrix element goes in (3)
or (2) in the schematic drawing for S=1; for S=%, the
singlet continuum states do not occur.

In practice, the integral in Eq. (41) which remains
after partial-wave expansion is approximated by a
finite sum. After partial-wave expansion, Eq. (41)
becomes

1
P =1t ——Xdr
(2m)?

K2k ,

(1)

(the Q is absorbed in the matrix elements above). The
factors F (k)= (1/2m®)k*Ax are also absorbed in the

TasBLE II. Effect of variation of parameters on fit to inelastic e-d cross section: Erap=35.5 MeV.

k2o () and o3y

Red (deg) Imé (rad) 6=0° 30° 60° 90° 120° 150° 180° gin (mb)
Quartet contribution
Result of varying the part of S given by Eq. (55)
S2 [Eq. (55)]
—1.01 —65 0.036 1.59 1.36 0.82 0.41 0.55 2.22 3.89 36
—2.02 —76 0.011 1.98 1.71 1.09 0.55 0.53 1.98 3.53 12
—3.03 —88 0.000 2.30 2.01 1.31 0.65 0.45 1.63 3.02 0
Result of varying the *P phase shift
4P phase shift
0.37 1.43 1.27 0.89 0.55 0.55 1.77 3.12 12
0.47 1.98 1.71 1.09 0.55 0.53 1.98 3.53 12
0.56 2.66 2.27 1.33 0.55 0.50 2.18 3.90 12
Result of varying a factor inserted on the right-hand side of Eq. (52)
Factor
5 —80 0.000 2.12 1.85 1.19 0.60 0.51 1.87 3.36 6
1 —76 0.011 1.98 1.71 1.09 0.55 0.53 1.98 3.53 12
1 —70 0.036 1.76 1.52 0.94 0.46 0.53 2.11 371 36
Doublet contribution
Result of varying the part of S given by Eq. (55)
Sz [Eq. (55)]
1.3 63 0.054 0.26 0.24 0.22 0.21 0.24 0.45 0.66 52
2.6 88 0.000 0.37 0.36 0.35 0.33 0.32 0.43 0.57 0
3.9 —76 0.015 0.36 0.36 0.35 0.33 0.28 0.31 0.40 16
F Result of varying a factor inserted on the right-hand side of Eq. (52)
actor
5 —48 0.29 0.22 0.33 0.24 0.22 0.15 0.09 0.13 29
1 88 0 0.37 0.36 0.35 0.33 0.32 0.43 0.57 0
1 68 0.46 0.28 0.27 0.25 0.23 0.27 0.46 0.65 45
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TasLE IT1. Effect of variation of parameters on fit to inelastic e-d cross sections: Erap=14 MeV.
ko () and oin
Red (deg)  Ims (rad) 6=0° 30° 60° 90° 120° 150° 180° ain (mb)
Quartet contribution
S Result of varying the part of Ss given by Egq. (55)
2
—1.59 —69 0.15 1.98 1.45 0.84 0.37 0.38 2.07 3.96 48
—3.18 —175 0.076 2.21 1.65 1.00 0.48 0.43 2.04 3.90 28
—4.79 —79 0.038 2.40 1.81 1.11 0.55 0.44 1.97 3.78 15
F Result of varying a factor inserted on he right-hand side of Eq. (52)
actor
4 —81 0.015 2.49 1.89 1.17 0.58 0.45 1.95 3.74 6
1 -75 0.076 2.21 1.65 1.00 0.48 0.43 2.04 3.90 28
1 —81 0.16 2.16 1.47 0.73 0.42 1.16 1.92 3.75 54
Result of varying the *P phase shift
4P phase shift ¢ ? /
0.38 1.59 1.20 0.80 0.48 0.45 1.80 3.43 28
0.48 2.21 1.65 1.00 0.48 0.43 2.04 3.90 28
0.57 297 2.21 1.24 0.48 0.40 2.26 4.32 28
Doublet contribution
s Result of varying the part of S given by Eq. (55)
2
0 42 0.42 0.23 0.17 0.08 0.07 0.08 0.20 0.36 85
0.77 53 0.27 0.27 0.23 0.12 0.10 0.11 0.26 0.44 69
1.53 61 0.17 0.35 0.29 0.17 0.15 0.16 0.32 0.50 52
Result of varying a factor inserted on the right-hand side of Eq. (52)
Factor
5 54 0.108 0.36 0.30 0.16 0.13 0.15 0.33 0.52 37
1 53 0.27 0.27 0.23 0.12 0.10 0.11 0.26 0.44 69
3 51 0.35 0.27 0.21 0.11 0.09 0.10 0.24 0.40 79
Result of varying the *P phase shift
2P phase shift
—0.5 rad 0.68 0.57 0.33 0.10 0.22 1.00 1.62 69
0 0.27 0.23 0.12 0.10 0.11 0.26 0.44 69
0.5rad 1.88 1.42 0.53 0.10 0.09 0.07 0.036 69

matrix elements [every term in (2) and (3) in the
schematic drawing for S=% would get a factor /F (k) ],
and multiplication is now ordinary matrix multipli-
cation. At the end points, an additional factor 1/V2 is
absorbed in the matrix elements.

In (4), (5), and (6) of the schematic drawing, we put
zeros everywhere except on the diagonal (thus (5) has
all zeros) ; on the diagonal we put

(kK I S1| kK) = —i%/eo(sin%o (K)/K) 5 (52)

which includes the factor F(k). These elements of .S
are proportional to a delta function §(x—«’), which is
replaced by 1/Ax on the diagonal in a finite mesh, which
is canceled by the Ak in F (k).

The second Born approximation was calculated from
unitarity. We assumed, in accord with assumption (d),
that except for one element of Sy,

Sa—Sat=0, (53)
so that
S2=%Sl‘S1. (54)

For the part of Sy in (1) we did not put the imaginary

part of S; equal to zero but put in a number such that
if inelastic scattering is neglected altogether the Padé
approximant we form gives the scattering matrix of
Christian and Gammel [this is assumption (c)]. We
took, therefore,

Im (ka|Ss| ka) =Im(ka|S:| ka)
XI:I—Z tando(n—d) :I  55)

where 8o(n-d) are the doublet or quartet .S #-d phase
shifts of Ref. 4. We have from Eq. (32), in the limit in
which inelastic scattering is ignored,

xo=ImS1/2[1— (1—ImS;/2 tand,) |= tandy
as it should, thus verifying the form of Eq. (55).

VI. RESULTS

1. The Energy Dependence of the Phase Shifts

Above threshold, the phase shifts become complex.
In Figs. 1 and 2 the energy dependence of the phase
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shifts is exhibited. Christian and Gammel’s phase shifts,
which must be used in Eq. (55), were calculated from
fits to their effective-range plots. Effective-range
parameters which fit their plots are given on Figs. 1
and 2. In the doublet case, the curve marked ‘“no
singlet” was calculated omitting the deuteron singlet
continuum states. In the quartet case, the curves
marked “modified” were calculated using Eq. (54) for
all parts of S, [thus omitting the part given by Eq.
(85)1.

The doublet and quartet contributions to k% (g) (in-
cluding statistical weight factors) are shown in Figs. 3
and 4 for several angles as a function of Eypss.

Several angular distributions for elastic #-d scattering
are shown in Figs. 5, 6, and 7. In a qualitative way, the
results of Christian and Gammel are not violently
affected.

The total inelastic cross section is given in Table I
as a function of energy. Christian and Gammel adjusted
their S phase shifts to fit the data, and also their 4P
phase shift. We also have varied certain parameters
to see what effect this has on the fits to the data. The
results are tabulated in Tables IT and ITI. The parame-
ters varied were the 4P phase shift, the part of S, given
by Eq. (55), and the diagonal part of S; given by Eq.
(52). While we have not given an adequate derivation
of Eq. (52), wide variations in a numerical factor
inserted on the right-hand side do not affect the elastic
angular distributions, as the tables show.

VII. CONCLUSIONS

We have mainly demonstrated the feasibility of these
calculations. Much more care should be put into the
next stage of work. The zero-range approximation is
not at all essential. As a matter of principle, we need to
know how to compute Eq. (52) correctly. We should
not use Eq. (54), and should compute the second Born
approximation Sy—Ss' for all parts of the S matrix,
not just the part given by Eq. (55). We should compute
the part of S; given by Eq. (55) from first principles to
justify Eq. (55). Like Lovelace [see p. 472, line 31,
sentence beginning with ‘““Thirdly,” of Ref. 87, we are
somewhat uncertain that our S matrix is related to
what experimentalists measure. These improvements
are feasible.

Inclusion of tensor and spin-orbit terms in the two-
nucleon interaction is a question of extremely tedious
detail. Hard cores can be handled in the Padé scheme
but the [1,1] approximant may not be sufficient to
include them accurately. To compute the [2,27] approxi-
mant seems impossible at present. These improvements
may not be feasible.

Our results for the real and imaginary parts of the
phase shifts above threshold for inelastic scattering
will be useful for comparing with similar results ob-
tained from the new attack on this problem initiated
by Amado, Faddeev, and Lovelace.”-
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APPENDIX

It is known that the sequence of Padé approximants
to the Born series for tangents of phase shifts converges
for Yukawa potentials (see Refs. 1 and 3) because these
series are series of Stieltjes. The sequence of Padé
approximants which we have defined do not depend on
a partial-wave expansion, and their convergence
depends on the uniformity (with respect to ) of con-
vergence of the series for the tangents of the phase
shifts, because infinitely many /’s are involved. The
validity of the first Born approximation increases in
such a way that, given e, there exists L such that

| > (SiPri—SiBornPy) | <e€/2.

=L

(A1)

Then given e and this L there exists an order of Padé
approximation NV, such that for all I<L

|SiP—[N,NJiPi| <e/2L.

Assuming that the [N,N7]; approach S; in such a way
that [V,N7]; is closer to .S; than S; gorm (Which follows
from the fact that the Padé approximants to series of
Stieltjes converge from one side), Eq. (A1) gives

|2 SiP—[N,N]Pi| <e/2, (A2)
L
which combined with Eq. (40) gives
IS 8P~ [N, NP1 <e. (A3)

Thus for potential scattering the use of unitarity
and solution of the resulting integral equations such
as Egs. (19) and (22) is not different from forming
Padé approximants to the Born series for the tangents
of the phase shifts. In more complicated cases, such as
n-d scattering, with inelastic scattering present, when
the phase-shift method is not available, it offers some-
thing new.

Of course the rate of convergence is of importance.
This rate is easily established for simple examples, for
example the scattering length of a square-well
potential.l® The Schrédinger equation for this example

is
— (#2/2M) (d%/dx®)+V (2 =0,

where V (x)=+7V for x<c¢ and V (x)=0 for x>c.
For x<0
y=sinh[ QM V/#*)'%x],
and for x>0
y=x+ta.

Joining these two solutions at x=c¢ gives

a . Ltanh[(ZM V/#)2c]

¢ L MV /i)

0G. A. Baker and J. L. Gammel, J. Math. Anal. Appl. 2,
21, 405 (1961).
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Letting w=2MV¢*/ 12, the Born series for a/c is

a 1 2
=g b
c 3 15

The [1,17] approximant to this is

a 3w?

¢ ()

For w?— co; that is, for V— o, a¢/c— —5/6 as
compared with the exact answer ¢/c=—1. The [2,2]
approximant gives a@/c=—14/15, the [3,3]
a/c=—24/25. The spectacular rate of convergence
of the method is known in several problems.!

The pole in the denominator for a/c is in the correct
place: The [1,17] approximant begins to fail if the po-
tential is attractive and strong enough to bind two
states: In that case the [2,2] approximant is necessary.
However, for n-d scattering, the triton has only one
bound state, and the [1,1] approximant should be
adequate. For pion-nucleon scattering, there are no
bound states.

For energies E>0, by matching boundary conditions
as in the example for E=0,

tané 3 QCMV/#2k3)B(k)

E 1—QMV/RR)D®E)’
B(k)=1(ka—sinka coska),

(A4)

D(k)= [ka sin?ka+% sinka coska—3%ka

4B(k
®) —ka costka+sinka cos’ka].
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TasrE V. Phase shifts for infinite repulsive potential given by
the exact expression and the [1,17] approximant.

ka [1,1] —[1,1]/ka
0 —0.00 0.833
0.5 —0.41 0.828
1.0 —0.82 0.820
13 —1.21 0.806
2.0 —1.56 0.780
3.1416 —2.05 0.670

This result obviously approaches the Born approxi-
mation (which appears in the numerator) as the energy
(k2=2ME/#?) approaches infinity. The [1,17] approxi-
mant is valid at all energies as long as there is no more
than one bound state. It begins to break down as the
potential becomes strong enough to give one bound
state and a resonance, or two bound states. In those
problems in which several bound states occur, say
N>1 so that the phase shift is N at zero energy, the
[1,1] approximation becomes valid only at very high
energies. One might suppose that it becomes valid as
soon as the phase shift decreases to m, but such is not
the case. In Fig. 8, we compare the phase shifts com-
puted from the exact formula

k coska—k cotka sinka

tand= —,
k cotka coska-k sinka

2MV 12
SCRO8
H2

where

and the [1,1] approximant Eq. (A4) for several po-
tentials of different strengths.

For repulsive potentials, the [1,17] approximant will
not give a phase shift which passes through (—m). It
will give a phase shift which passes through (—/2),
and this case is relevant to quartet #-d scattering,
especially Eq. (55).

For an infinitely repulsive potential, the exact
expression 6=—ka and the [1,1] approximant are
compared in Table V.



