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Statement of Apyroximate Locality

(3) The factorization of the probability for two
separate events Eq. (1)

This was strengthened in Eq. (10) by replacing the
state f, by (f,+f' ) and g, by (g,+g', ), and requiring
that the corresponding limit hold as

(
x

~

and
~

x'
~

-+ ~
)uniformly with respect to (x—x') of course).

(4) The analogous factorization for three separate
experiments as in Eq. (13).

Suyerselection Rules

(5) Superselection rules dered by discrete additive
quantum numbers; namely, charge, baryon, and lepton
numbers. "

"In fact the method of Sec. IV can accommodate any number
of quantum numbers of this kind, including those with infinitely
many eigenvalues, such as charge, and those with a 6nite number

These assumptions led 6rst to factorization of S-
matrix elements and thence, using the argument of
Wichmann and Crichton, to the momentum-space
equations, whose 6nal form is shown in Fig. 3 and Eq.
(20). While this form may differ from the usual one
shown in Fig. 1—a difference which would show up in
interference experiments between states of di6erent
particle typ" nonetheless the unitarity equations for
the connected parts take precisely the usual form as-
sumed in analytic S-matrix theory.
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of eigenvalues, such as the separation of integral and half-odd-
integral angular momenta.
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Application of the Pade Approximant to Scattering Theoryt
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The pad& approximant is shown to yield exactly unitary S matrices in scattering theory. The method is
used to construct a unitary S matrix for n-d scattering above the threshold for inelastic scattering. Thus the
effect of inelastic scattering on elastic-scattering total cross sections and angular distributions is calculated.
No cusps are found at the threshold.

I. INTRODUCTION

'HE Pade approximant' has been applied to
summing series which occur in calculations based.

on the Ising and Heisenberg models of various types of
critical phenomena. ' The Pade approximant may also
be applied to the Born series which occur in scattering
theory; recently Tani' has made a study of this
application.

In this paper we show that the Pade approximant
method may be used to construct exactly unitary S
matrices. In problems in which states with more than

t' Supported by the U. S. Air Force Ofhce of Scienti6c Research.
+ Summer Employee at Lawrence Radiation Laboratory,

Livermore, California.' For a review, see G. A. Baker, Jr., in Advancesin Theoretical
Physics, edited by K. A. Brueckner (Academic Press Inc. , New
York, 1965), Vol. 1.' See the surveys of M. Fisher and C, Domb in the Proceedings
of the Conference on Phenomena in the Neighborhood of Critical
Points, Washington, D. C., 1965 (unpublished).' S. Tani, Phys. Rev. 139, 31011 (1965).

two free particles are energetically possible (the exs,mple
we are concerned with is e-d scattering above the thresh-
old for inelastic scattering; however, there are many
others of great interest, for example, nucleon-nucleon
or pion-nucleon scattering above the threshold for pion
production) the problem of constructing unitary 5
matrices has not been satisfactorily solved previously.

In calculations of e-d elastic scattering based on the
no-distortion approximation, ' inelastic scattering is
ignored even above the threshold for inelastic scat-
tering. Because of this neglect of inelastic scattering,
the matrix elements for transitions between states in
which three particles are free are not required because
in the no-distortion approximation three-body states
are precisely what are left out. Our work represents an
attempt to go beyond the no-distortion approximation.
In calculations of n-d inelastic cross sections based on

4See, for example, R. S. Christian and J. L. Gammel, Phys.Rev. 91, 100 (1953).



J. GAMMEL AND F. McDONALD

the Born approximation or some modi6cation of it, 5

the 5 matrix (which must describe elastic and inelastic
processes simultaneously and also transitions between
stR'tcs 111wl11cll till cc pRl"tlclcs al'e f1cc) calculated ls 110't

unitary. The consequences of this fact have never been
Rsscssed.

IQ using thc Padc appI'oxlmant to coDstluct RD

exactly unitary 5 matrix, we so arrange our work that
iD the limit of VRDlshlQg lnelRstlc scattcI'lllg ouI' rcsu].t
for thc clastic scattering agrees with Christian and
Gammel's result; in particular, below threshoM for
inelastic scattering we obtain Christian and Gammel's
result. Thus we are able to estimate the c6ect of possible
inelastic scattering on the elastic scattering di6crential
CI'oss sections. %c do Qot find cusps Rt thc threshold
for inelastic scattering in the e-d total cross section or
in the diRerential cross section at a fixed angle as a
function of the center-of-mass energy. Ke obtain a new

result for the inelastic cross section (which includes the
effects of unitarity) which we may compare with the
results of Ref. S. Our results are much lower than those
reported in Ref. 5, but this comparison may not be
slgnl6cant bccausc wc hRvc ncglcctcd 1DclRstlc scRt-

tcling foI' stRtcs ln which thc angular momentum 1%1,
Questions of convergence are located in an Appendix

which includes RQ cxamplc of thc I'Rtc of thc convergence
of the Pade approximants for potential scattering which

is usdu1 in a study of Tani's work.
Faddccv~ and Lovelace' have pointed out that thc

kernel in the e-d integra1 equations is singular so that
the Fredholm method cannot be applied. This singu-

larity occurs in these matrix elements: two of the three

particles scatter; the momentum of the third relative

to their center of mass does not change. The matrix
clcITlcnt coDtalns R delta function cxpresslng this fact.
Our form for the matrix element contains such a delta

function. The Pade method is applicable to integral

equations with singular kernels. Consider the following

integral equation:

I ct the power-series expansion of the 5 matrix be

5= 1+51V+52V'+ (1)
whcI"c thc cxpRnslon pRIRmetcr V ls thc s'trcngth of thc
interaction. The complex conjugate of 5 transposed is

St=1+SltV+5 tV'+. (2)

Unltarlty requires that

S.St = 1+(Sl+Slt) V

+ (52+Sa'+51 Sl') V'+ =1 (3)

from which it follows that

etc.
In these equations, the center dot does Dot stand for

multiplication in the usual sense. The 5 matrix for
potential scattering is a function of two vectors kf and
ks) thc final and lnltlRl momcnta) respectively~ ln R
scattering process. In general, unitarity requires that

p. (a[5[c)(c[5'[b)=B.l„
where t," is summed over all states that lie on the energy
shell. It follows that in the case of potential scattering,
thc sum over c is related to an integration over the
angles of an intermediate momentum k, since the
magnitude of k is determined by the energy shell con-
dition kf'=k, '=O'. If we imagine that all states are
normalized in a large box of volume 0, it is easily seen
that Kq. (5) is

(a~)'
dk(1, [5[1)(1[St[1,) =S„,, = S(1,—1,), (6)

4~ 0

or that the operation represented by the center dot is

Thc solutlonq

f(x)=h(x)/Ll —),g(a,x)1

cannot be obtained from the I'"rcdholm method; how-

ever, the Padc approximants to the series obtained by
iterating the integral equation are the solution.

~ R. M. Frank and J. L. Gammel, Phys. Rev. 93, 648 (1954),
~ For experimental data, see D. E. Groce and R. E. 3hamu, in

Proceed&igs Of fh8 IN$8rNStiofkd CORf8f88C8 0Ã ESC18ar Physics,
Paris, 1M@ (Editions du Centre . National de la Recherche
Scienti6que, Paris, 1965), p, 167.

' For an account of Faddeev's work, see J. Gillespie, in Fingl
54tg IwkrucfiorIs, (Holden-oay, Inc. , San Francisco, California,
1964).For Amado's work see R. Aaron, R. D. Amado, and Y. &.
Yam, Phys. Rev. 136, 8650 (1964) and Phys. Rev. Letters Is, 574,
/01 (1964).

8 C. Lovelace, in Strung Inteacriorrs and High ErIergy Physics,
edited by R. G. Moorehouse (Plenum Press, Inc., New York 1963).

The caret notation refers to the angles of the vector 1,
(1 e'& Jd~=Jdflk) ~ Jn 'tllc CRse of rl-d scsttering above
thc threshoM for inelastic scattering, the sum over c
includes an integration over the continuum states of
thc dcutcl ol1.

The dlagoDal PB,dc approximants are now defined in
thc same w'Ry they arc dcQncd ln Baker s review. For
example, the L1,1j approximant to 5 is the ratio of two
erst-order polynomials in P:

5= (He+A, V).
1+&1V

p4 may be chosen to be 1, s,s indicated because both
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numerator and denominator may be divided by a Jensnsu: A necessary and sufhcient condition tha. t
constant. ] The constants Ao, Ar, Bq are defined by AB=1 is that BA=1. From Eq. (14) it follows that it
requiring that is necessary and sufhcient that

(Ao+A gV) ~ =1+S)V+S2V'+ ~ ~

1+BgV
to order V'; thus

AD=i,
~x= A+Si,

O=Sg By+So.

(8)
(1+2gt V) ~ (1+2gV) ~ ~ =1. (15)

1+BgV 1+By~V

Multiplying from the right first by I+Bq~V and then
by 1+BV it follows that it is necessary and sufficient
that

The order of multiplication is important because the
multiplication defined by Eq. (7) is not commutative.
We have, however, the following theorem:

Theorem: The approximant de6ned by requiring that

~ (A 0'+A g' V) = I+SrV+Su V'+
1+By'V

be satis6ed to order V' is the same as the approximant
defined by Eq. (8).

Proof: In order to prove that

(1+AgtV) ~ (1+AgV) = (1+BgiV) ~ (I+BgV). (16)

Again, Eq. (16) can be multiplied out and no terms of
order greater than V' appear. But the approximant
agrees with the 5 matrix which is unitary through
order V ~ so that the approxlmant ls exactly unitary.
The argument extends to the PX,Ãj approximant.

The argument, while correct, may at irst sight seem
unbelievable. An alternative proof, at least for the
(1,1] approximant, may be based on the solutions of
Eqs. (9)

~ (Ao'+A('V) = (Ao+AgV)~, (10)
1+By'V I+BgV

multiply from the left by I+By'V and from the right
by 1+B&V.The result,

(1+2 V)'(1+B V)= (1+B V)'(I+A V), (11)

when multiplied out, contains no term of order greater
than V'. But the two approximants are equal to order
V'. Therefore, they are exactly equal.

This proof extends to dhagonal &E,Nj Pade approxi-
mants. It is a consequence of the contraction of powers
in numerator and denominator to half the largest power
retained in the 5 matrix. The proof holds only for
diagonal Pade approximants.

As a, further consequence of this contra, ction of
powers, we have the following theorem:

Theorem': The LX,Ãj Pade approximants are exactly
unitary.

Proof: The t I,l] approximant is

Ag~=Sg~ —S2~ ~

Equations (17) and (18) may be substituted into Fq.
(16), and the correctness of the result verified using
Eqs. (4).

In proving these general theorems, it is correct to
manipulate with the multiplication sign as we have
done; however, Eqs. (9) are actually integral equations

(I,Ij= (I+A gV) ~

1+BgV

which has a complex conjugate transposed

(12)
(kridg)k~)= (kriB, ik;)+(kriS, [k~),

(19)0=— dk(k, [S,[k)( ~B,~k,)+(k,~s, ~k,),

L1,17= .(I+~, V).
1+By~V

If the Ll, Ij approximant is unitary, it is necessary that

D,G.CI,I]'
= (1+AgV) ~ ~ ~ (I+A gt V) =1. (14)

1+BgV 1+By~V.

so that Eqs. (18) represent solutions of these integral
equa tlons.

Even the calculation of the Pade approximant Eq.
(8) requires the solution of an integral equation. It is
more convenient to work with the scattering amplitude
3f rather than 8 in order to eliminate delta functions,
I,et

S=1+2ikM,
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so that Eq. (12) becomes

M= (Ai —Bg)V
2ik 1+BiV

(21)

Substituting the result for Mg obtained from Eq. (30)
iilto Eq. (31) gives

ImSggV/2

1—V(imS2g/ImSgg)

Multiplying from the right by 1+BiV, and using the
first of Eqs. (9) to eliminate Ai —Bg, application of
Eq. P) gives an integral equation for M:

(kriM[k;)= (kriSgik;)V
2ik

dk(kg i M [ k) (ki Bi[k;). (22)
4n.

In general, this method always results in systems of
integral equations which Il1ust be solved. The integrals
have 6nite ranges (2gr in azimuth, gr in polar angle).
There are no singularities in the integral equations. In
the case of n-d scattering which we treat in Sec. IV,
integrals over an energy region of allowed inelastic
events will occur.

III. PARTIAL-WAVE EXPANSION OF THE
SCATTERING AMPLITUDE

A partial-wave expansion of the second of Eqs. (19)
gives

o=SggBgg+S2g

From the f'grat of Eqs. (4) it follows that S,g is purely
imaginary, and the imaginary part of Eq. (23) gives

0=ImSgg ReBig+ImSgg. (24)

The real part of Eq. (23) gives

0= —ImSig ImBig+ReSg g. (25)

A partial-wave expansion of the second of Eqs. (4) gives

Sgg+S2g*+SggSgg =0, (26)

or, since Sjg is purely imaginary,

2 ReSgg ———(ImSgg)',

The point of this argument is that Eq. (32) is exactly
what would have been found by forming a Pade
approximant to the power series of x~ directly. We
show this fact as follows. Equation (31) expanded gives

xg kM g
——iO'M—gg+

k (Sg—1) (Sg—1)'
ik'— +

2N 2ik
(34)

so that Eq. (1) gives

xg ——(1/2i) (SggV+Sgg V')+4giSggg Vg+ (3&)

or 6nally, using Eq. (27) for ReSgg

xg ———', ImSii V+-', ImSg g V'+ (36)

t en

AiV+ ~ ~ +A~V~
(37)

Equation (32) is obviously the ordinary [1,1j approxi-
mant to this series.

Thus we have established the following theorem:
Theorem: The solution of Eqs. (19) and (22) for M

has a partial-wave expansion. The tangents of the phase
shifts which appear in this partial-wave expansion are
the [1,1]Pads approximants to the Born series for the
tangents of the phase shifts which appear in the partial-
wave expansion of the exact 3f.

To complete the argument, we need a proof of this
theorem which holds for all $E,N] Pade approximants,
not just the [1,1j approximant. Again, it is the con-
traction of powers characteristic of the diagonal Fade
approximants which assures the truth of the theorem
for all N. If, in Eq. (31),

and this result substituted into Eq. (25) gives

ImBy~= —
~ ImSy~.

k(AiV+ +AgrV")
$$

(28) 1+BiV+ +BNV~+ik(A iV+. ~ +AN V~)

A partial-wave expansion of Eq. (22) gives

Mg= (1/2ik)Sig V—MgBgg V. (29)

Constructing the real and imaginary parts of B~~ from
Eqs. (24) and (28), and putting Sig=i ImSgg gives

M, = (1/2k) ImSggV+Mg((imSgg/ImSig)

+-g, i ImSgg) V, (30)

which can be solved for M). The tangent of the tth
phase shift is given by

xg ——kMg/(1+ikMg) . (31)

which is of the form of an [E,X] approximant to x.
That it must be the usual Pade approximant follows

from the fact that M g as given by Eq. (37) is correct
to order V'~, and therefore xg as given by Eq. (38) is

also correct to order V'~, and from the fact that the
Pade approximant is unique. Unitarity guarantees that
x~ is real and that all of the coeKcients of various powers

of V in numerator and denominator of Eq. (38) are
real, but it is not necessary to trace this fact in detail
as we have done for the [1,1$ approximant.

For a proof of the convergence of the Pade method
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cannot be e1iminated, but in the present work our
approximations used in calculating 5~ and 52 achieve
this for matrix elements not of the form (k'x'~SI1rx)
where neither x' nor x is n. However, we need this form
of the matrix element for 5&. We will write down a
reasonable-looking form which is independent of the
direction of x' and x".

When the angles of the x's do not appear) a partial-
wave expansion of Eqs. (46) and (47) is easily carried
out precisely as a partial-wave expansion was carried
out in Sec. III. Equations (46) and (47) become one-
dimensional integral equations which we have solved
only for the orbital angular momentum l=o. For l& I,
we have used the phase shifts of Christian and Gammel. '
It w'ould be easy to include other It s and this may be
necessary to explain the low inelastic cross sections we
calculate,

deuteron sing1et and triplet states are accessible, so
that larger matrices occur: In a schematic way we have
the following form for any 5= ~ matrix:

ground triplet singlet
state continuum continuum

(&) (3) (2)

(4)

(6)

In (1) are the matrix elements between states in which
the deuteron is bound. (2) contains matrix elements

V. FURTHER DETAILS OF THE CALCULATION

The spin complicates the problem somewhat, But
for central forces the total spin is a good quantum
number, so that the doublet and quartet states may be
dealt with separately. For the doublet state, both

0.6—

120'

0 I I I

5 6 7 8 9 10
E I AB (MEV)

I I I ~ I

I80'-I~PAGE

Fxe. 3. Doublet con-
tribution to k'0 for sev-
eral angles.
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40

Ok

y -I00

Fzo. 1. Energy de-
pendence of doublet
phase shifts. C. G.
stands for Christian
and Gammel (Ref.
4). For the "no sin-
glet" curve the sin-
glet continuum
states of the deu-
teron were neglected.

I
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gz; I
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puted using Eq.
(54).
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Sn ((9/4)k'+n')
!(knl Srl kn) = —sp—»I—

3k ( 4k'+n' )
1—cos28s(s') 16+s n) '"

«(k'. 'IS, lkn) =p
3k' 2)2K

) (-', k+k')s+n'~
&&in!

E (sk —k')s+ns j

(48)

sin25s (a')
Im(k'. 'I Sr I kn) =p

2K

= —«(knl S,
I kY), (49)

=Im(k~!S, !kV), (50)

between a state in which the deuteron is bound and a
state in which all particles are free, two being in a
singlet continuum state of the deuteron.

The spin factors in front of matrix elements have
been worked out in Refs. 4 and 5. The calculation of
the matrix elements in zero range approximation is also
explained in Refs. 4 and 5. We find, for l=0,

TABLE I. Inelastic cross section a;,= (s/k')Ll —exp( —4 Imb)].

ELAB (MeV)

6
8

10
14

40" (F2)

0.514
1.333
1.879
2.308
2.800

(F')

6.411
0.828
4.782
6.554
6.900

;. (mb}

21
11
28
38
41

~ = 1+ )&47r lrsdlr,
(2s )'

in which the deuteron is in a singlet continuum state,
in which case P= (ass) &(0.69, when 0.69 is the ratio of
the strengths of the singlet and triplet n ppote-ntials),
and where 5e(lr') is a triplet or singlet e-p phase shift
depending on whether the matrix element goes in (3)
or (2) in the schematic drawing for S=-', ; for S= ss, the
singlet continuum states do not occur.

In practice, the integral in Eq. (41) which remains
after partial-wave expansion is approximated by a
Gnite sum. After partial-wave expansion, Eq. (41)
becomes

where p is the spin factor (p=+1 for quartet states, (the II is absorbed in the matrix elements above). The
——', for doublet states except for transitions to states factors Ii(lr)= (1/2s')lr'Alr are also absorbed in the

TABLE II. Effect of variation of parameters on Gt to inelastic e-d cross section: EL~~=5.5 MeV.

Reb (deg) Imb (rad) 8=0'
e (e) and
30' 60' 90' 120' 150' 180' ~;. (mb)

Ss LEq. (55)]—1.01—2.02—3.03

4P phase shift
0.37
0.47
0.56

—65—76—88

0.036
0.011
0.000

1.59
1.98
2.30

1.36
1.71
2.01

0.82
1.09
1.31

0.41
0.55
0.65

Result of varying the 4P phase shift

1.43
1.98
2.66

1.27
1.71
2.27

0.89 0.55
1.09 0.55
1.33 0.55

Quartet contribution

Result of varying the part of S2 given by Eq. (55)

0.55
0.53
0.45

0.55
0.53
0.50

2.22
1.98
1.63

1.77
1.98
2.18

3.89
3.53
3.02

3.12
3.53
3.90

36
12
0

12
12
12

Result of varyi'ng a factor inserted on the right-hand side of Eq. (5Z)
Factor

5
1

—80—76—70

0.000
0.011
0.036

2.12
1.98
1.76

1.85
1.71
1.52

1.19
1.09
0.94

0.60
0.55
0.46

0.51
0.53
0.53

1.87
1.98
2.11

3.36
3.53
3.71

6
12
36

S& PEq. (55)j
1.3
2.6
3.9

63
88—76

0.054
0.000
0.015

0.26 0.24 0.21
0.37 0.36 0.33
0.36 0.36 0.33

0.22
0.35
0.35

Doublet contribution

Result of varying the part of S2 given by Eq. (55)

0.24
0.32
0.28

0.45
0.43
0.31

0.66
0.57
0.40

52
0

16

Factor
5
1

0.29
0
0.46

0.22
0.37
0.28

0.33
0.36
0.27

0.24
0.35
0.25

0.22
0.33
0.23

0.15
0.32
0,27

Result of varying a factor inserted on the right-hand side of Eq. (5Z)

0.09
0.43
0.46

0.13
0.57
0.65

29
0

45
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TABLE III. KGect of variation of parameters on Gt to inelastic e-d cross sections: EL&&= 14 MeV.

Res (deg) Img (rad) e=0'
k& (e) and~
30' 60' 90' 120' 150' 180' 0; (mb)

S2—1.59—3.18—4.79

—69—75—79

0.15
0.076
0.03g

1.98
2.21
2.40

1.45 0.84 0.37
1.65 1.00 0.48
1.81 1.11 0.55

Quartet contribution

Result of varying the Part of Ss given by Eq ($5).

0.38
0.43
0.44

2.07
2.04
1.97

3.96
3.90
3.78

4g
28
15

Factor

1
—81

75—81

0.015
0.076
0.16

2.49
2.21
2.16

1.89
1.65
1.47

1.17
1.00
0.73

0.58
0.48
0.42

0.45
0.43
1.16

Result of ear~ng the 4P phase shift

Result of varysng a factor inserted on he right hand side-of Eq. (5Z)

1.95
2.04
1.92

3.74
3.90
3.75

6
28
54

'P phase shift
0.38
0.48
0.57

1.59
2.21
2.97

1.20 0.80 0.48
1.65 1.00 0.48
2.21 1.24 0.48

0.45
0.43
0.40

1.80
2.04
2.26

3.43
3.90
4.32

28
28
28

S2
0
0.77
1.53

Factor
5
1

42
53
61

54
53
51

Doublet contribution

Result of varying the part of S2 given by Eg. (55)

0.23 0.17 0.08 0.07
0.27 0.23 0.12 0.10
0.35 0.29 0.17 0.15

0.42
0.27
0.17

0.108
0.27
0.35

0.36 0.30 0.16
0.27 0.23 0.12
0.27 0.21 0.11

0.13
0.10
0.09

0.15
0.11
0.10

Result of varying the ~P phase shift

0.08
0.11
0.16

Result of varying a factor inserted on the right hand sid-e of Eq. (SZ)

0.20
0.26
0.32

0.33
0.26
0.24

0.36
0.44
0.50

0.52
0.44
0.40

85
69
52

37
69
79

'P phase shift—0.5 rad
0
0.5 rad

0.68
0.27
1.88

0.57
0.23
1.42

0.33 0.10
0.12 0.10
0.53 0.10

0.22
0.11
0.09

1.00
0.26
0.07

1.62
0.44
0.036

69
69
69

matrix elements
I every term in (2) and (3) in the

schematic drawing for S=—,
' would get a factor gF (tc)],

and multiplication is now ordinary matrix multipli-
cation. At the end points, an additional factor 1/v2 is
absorbed in the matrix elements.

In (4), (5), and (6) of the schematic drawing, we put
zeros everywhere except on the diagonal (thus (5) has
all zeros); on the diagonal we put

(kttIStI kit) = —i-', ko(sin2&o(tt)/tr), (52)

which includes the factor F(tr). These elements of S,
are proportional to a delta function b(» —tt'), which is
replaced by 1/An on the diagonal in a finite mesh, which
is canceled by the Atr in F (tt).

The second Born approximation was calculated from
unitarity. We assumed, in accord with assumption (d),
that except for one element of S2,

part of 52 equal to zero but put in a number such that
if inelastic scattering is neglected altogether the Pade
approximant we form gives the scattering matrix of
Christian and Gammel'

I
this is assumption (c)]. We

took, therefore,

Im(k~
I Ss I k~) =1m(k~

I Sil ko)

Im(ku
I SiI kct)

X 1—,(55)
2 tanho(rt —d)

where bo(tt-d) are the doublet or quartet S n-d phase
shifts of Ref. 4. We have from Eq. (32), in the limit in
which inelastic scattering is ignored,

xo = ImSr/2[1 —(1—ImSi/2 tanbo) ]= tanbo

as it should, thus verifying the form of Eq. (55).

S2—52~=0, (53) VI. RESULTS
so that 1. The Energy Dependence of the Phase Shifts

S2——,Sg Sg. (54)
Above threshold, the phase shifts become complex.

For the part of Ss in (1) we did not put the imaginary In Figs. 1 and 2 the energy dependence of the phase
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shifts is exhibited. Christian and Gammel s phase shifts,
which must be used in Eq. (55), were calculated from
fits to their effective-range plots. Effectiv-range
parameters which fit their plots are given on Figs. 1
and 2. In the doublet case, the curve marked "no
singlet" was calculated omitting the deuteron singlet
continuum states. In the quartet case, the curves
marked "modified" were calculated using Eq. (54) for
all parts of S2 [thus omitting the part given by Eq.
(55)]

The doublet and quartet contributions to k'0. (q) (in-
cluding statistical weight factors) are shown in Figs. 3
and 4 for several angles as a function of EL~g.

Several angular distributions for elastic e-d scattering
are shown in Figs. 5, 6, and 7. In a qualitative way, the
results of Christian and Gammel are not violently
affected.

The total inelastic cross section is given in Table I
as a function of energy. Christian and Gammel adjusted
their S phase shifts to fit the data, and also their 4P

phase shift. We also have varied certain parameters
to see what effect this has on the fits to the data. The
results are tabulated in Tables II and III.The parame-
ters varied were the 4P phase shift, the part of S2 given
by Eq. (55), and the diagonal part of Si given by Eq.
(52). While we have not given an adequate derivation
of Eq. (52), wide variations in a numerical factor
inserted on the right-hand side do not affect the elastic
angular distributions, as the tables show.

I 2 (Si~i Si a—--~i) I «/2
l L

(A1)

Then given & and this L there exists an order of Pade
approximation E, such that for all l(L

i
SiI'i [E,N]i—I'i t (c/2L.

Assuming that the [E,S]i approach Si in such a way
that [S,N]i is closer to Si than Si a» (which follows
from the fact that the Pade approximants to series of
Stieltjes converge from one side), Eq. (A1) gives

i g Siri —[cV,X]irii (e/2,
L

which combined with Eq. (40) gives

(A2)

APPENDIX

It is known that the sequence of Pade approximants
to the Born series for tangents of phase shifts converges
for Yukawa potentials (see Refs. 1 and 3) because these
series are series of Stieltjes. The sequence of Pade
approximants which we have defined do not depend on
a partial-wave expansion, and their convergence
depends on the uniformity (with respect to l) of con-
vergence of the series for the tangents of the phase
shifts, because infinitely many /'s are involved. The
validity of the erst Born approximation increases in
such a way that, given e, there exists L such that

VII. CONCLUSIONS

We have mainly demonstrated the feasibility of these
calculations. Much more care should be put into the
next stage of work. . The zero-range approximation is
not at all essential. As a matter of principle, we need to
know how to compute Eq. (52) correctly. We should
not use Eq. (54), and should compute the second Born
approximation S2—S~t for all parts of the S matrix,
not just the part given by Eq. (55).We should compute
the part of Sz given by Eq. (55) from 6rst principles to
justify Eq. (55). Like Lovelace [see p. 472, line 31,
sentence beginning with "Thirdly, " of Ref. 8], we are
somewhat uncertain that our S matrix is related to
what experimentalists measure. These improvements
are feasible.

Inclusion of tensor and spin-orbit terms in the two-
nucleon interaction is a question of extremely tedious
detail. Hard cores can be handled in the Pade scheme
but the [1,1] approximant may not be sufficient to
include them accurately. To compute the [2,2] approxi-
mant seems impossible at present. These improvements
may not be feasible.

Our results for the real and imaginary parts of the
phase shifts above threshold for inelastic scattering
will be useful for comparing with similar results ob-
tained from the new attack on this problem initiated
by Amado, Faddeev, and Lovelace. ~ 8

Thus for potential scattering the use of unitarity
and solution of the resulting integral equations such
as Eqs. (19) and (22) is not different from forming
Pade approximants to the Born series for the tangents
of the phase shifts. In more complicated cases, such as
e-d scattering, with inelastic scattering present, when
the phase-shift method is not available, it offers some-
thing new.

Of course the rute of convergence is of importance.
This rate is easily established for simple examples, for
example the scattering length of a square-well
potential. "The Schrodinger equation for this example
1s

—(fi'/2M) (dQ/dx')+ V (x)P=0,

where V(x)=+V for x(c and V(x)=0 for x)c.
For x&0

P= sinh[(2M V/l'i')"'x],
and for x)0

Joining these two solutions at x= c gives

tanh[(2M V/h')' "c]
(2M V/i'i')'I'c

' G. A. Baker and J. L. Gammel, J. Math. Anal. Appl. 2,
21, 405 (1961).
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Thax.E V. Phase shifts for in6nite repulsive potential given by
the exact expression and the L1,1$ approximant.

CO

A In. 8. S phase
shift as a function of
If@ for several poten-
tial strengths.

0
0.5
1.0
1.5
2,0
3.j,416

—0.00—0.41—0.82—1.21—1.56—2.05

-Ll, ig/ka

0.833
0.828
0.820
0.806
0.780
0.670

lo.o .'

Letting tn= 2iVVc'/ks, the Born series for u/c is

The L1,1j approximant to this is

tan5 (2%V/k'k')B(k)

k 1—(2M V/A'k')D(k)

B(k)= st(ku —sinks coska),

j.
D(k) = Lko»n ka+s»nk«oaks —',ko

48(k) —ku cos'ka+sinka cos'ku$

(A4)

c (1+-;w')

For w'-+ oo; that is, for V-+ ~, u/c-+ —5/6 as
compared with the exact answer a/c= —1. The L2,2j
approximant gives u/c= —14/15, the P,3j
u/c= —24/25. The spectacular rate of convergence
of the method is known in several problems. '

The pole in the denominator for u/c is in the correct
place: The L1,1j approximant begins to fail if the po-
tential is attractive and strong enough to bind two
states: In that case the $2,2) approximant is necessary.
HowcvcI', fol Ã-d scattcl'lng, thc triton has only onc
bound state, and the Ll, lj approximant should be
adequate. For pion-nucleon scat terlDg, thcrc arc no
bound s~ates.

For energies E&0, by matching boundary conditions
as in the example for E=0,

This result obviously appmaches the Born appmxi-
matton (wlllcll appeal's 111 't11c numerator) as tllc etlel gy
(k'=2ME/k') approaches infinity. The t 1,1] approxi-
mant is valid at all energies as long as there is no more
than one bound state. It begins to break down as the
potential becomes strong enough to give one bound
state QN4 a I'csonaDcc, oI' two bouDd states. In those
pmblems in which several bound. states occur, say
E&1 so that the phase shift is Em at zero energy, the
L1,11 approximation becomes valid only at very high
cDcI'glcs, ODc might suppose that it bccomcs valid as
soon as the phase shift decreases to x, but such is not
the case. In Fig. 8, we compare the phase shifts com-
puted from the exact formula

tanb=
a cotxa cosku+k sinks

(2MV
x=/ +k'

ftks )

and. the L1,1) approximant Eq. (A4) for several po-
tentials of different strengths.

For repulsive potentials, the L1,1) approximant will
not give a phase shift which passes through (—s). It
will give a phase shift which passes through (—'rr/2),
and this case is relevant to quartet e-d scattering,
especially Eq. (55).

I"or an infinitely repulsive potential, the exact
expression 8=—ka and the L1,11 approximant are
compared in Table V.


