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This paper discusses the physical basis for the cluster-decomposition properties of momentum-space
S-matrix elements. The starting point is the proposition that in the limit of wide separation the probability
for two separate processes should factor as the product of the individual probabilities. It is shown that
factorization of the probabilities implies factorization of the corresponding S-matrix elements; i.e., any phase
factors which might appear are at most constants which can be adjusted to unity. This provides the basis
for the proof given recently by Wichmann and Crichton of the momentum-space cluster properties. It is
shown that the resulting decomposition equations may contain unwanted factors which depend on the
phase of the one-particle S-matrix elements. In order to minimize the eftect of these factors the decomposi-
tion equations can be rewritten so that the unitarity equations for the "connected parts" (which are supposed
to be the basis of a dynamical S-matrix theory) take their usual form without spurious phase factors.

I. INTRODUCTION

'HE cluster decomposition properties of mo-
mentum-space S-matrix elements seem to be

characteristic of almost all scattering theories. They
appear in potential and field theories, and in both
cases have been proved in particular instances. ' In
S-matrix theory they are considered essential and are
introduced as postulates. ' However, it is certainly not
the case that the momentum-space decomposition
properties are directly related to experimental fact.
(No properties of momentum eigenstates are. ) Thus,
in order to understand their physical origin, it seems
desirable to Qnd some proposition which is itself a
statement of physical experience and from which the
decomposition properties can be derived, without
reference to any particular theory. The establishment
of such a physical basis for the decomposition equations
would be of interest in any scattering theory, but would
be especially valuable to S-matrix theory where it is
hoped to use only physically verifiable postulates and
where the decomposition properties play such a basic
role.

It has always been felt that the S-matrix decom-
position properties should be a consequence of the ap-
proximate locality, or short range, of particle inter-
actions. In 1963 Wichmann and Crichton' proposed
that a suitable expression of this approximate locality

*Work supported in part by the National Science Foundation
and in part by the University of Wisconsin Research Committee
with funds granted by the Wisconsin Alumni Research Foun-
dation.

'Any of the proofs of the Mandelstam representation in
potential theory provide a proof of the cluster properties (and
much more) of the S-matrix element for the process (2 particles e-
2 particles). In Feynman perturbation theory the properties are
almost obvious, but a careful discussion has been given by
Crichton, D. H. Crichton, University of California, thesis,
University of California Radiation Laboratory UCRL-11961.
(unpublished). In the L.S.Z. framework they were proved by W.
Zimmermann, Nuovo Cimento 13, 503 (1959).' See H. P. Stapp, Institute of Mathematical Sciences, Madras,
Report 26 (unpublished); D. I. Olive, Phys. Rev. DS, 8745
(1964); or J. R. Taylor, J. Math. Phys. 7, 181 (1966).

3 E. EI. Wichmann and J. H. Crichton, Phys. Rev. 132, 2788
(196').

could be made by stating the observed fact that
experiments suKciently separated in space or time are
mutually independent; which implies that the proba-
bility of observing two well separated events will be
the product of their separate probabilities. From this
proposition it should be possible to derive the mo-
mentum-space decomposition equations. But the deri-
vation given by Kichmann and Crichton is incomplete;
in particular, they assume without proof that factori-
zation of probabilities implies factorization —without
any phase factors —of the corresponding S-matrix
elements. In this paper I sha11 complete the derivation.

In Sec. II, I present a mathematical statement of the
momentum-space decomposition equations (which are
to be derived) and of the independence of well-separated
experiments (which is the starting point of the deri-
vation). The section concludes with an outline of the
derivation, whose details are given in Secs. III—V. For
convenience Sec. VI contains a brief summary of the
assumptions used and conclusions reached.

II. BASIC FORMULATION

The momentum-space decomposition equations,
which it is my aim to derive, are rather cumbersome
when written in complete generality. Fortunately, it
will su%ce for the present to give two simple examples,
which can be conveniently written in diagrammatic
form. Accordingly the decompositions of two simple
S-matrix elements connecting states of distinct particles
are illustrated in Fig. 1, in the form usually assumed for

+ Q~T) P
2

+ Z ~r~+ Z ~T

+ Z P~ + +T~
FIG. 1. The decomposition into their connected parts of the

momentum-space S-matrix elements for the processes (2 par-
ticles+ —2 particles) and (4 ~ 4).
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analytic S-matrix theory. In these diagrams a bubble
labeled S between sets of lines Q and P denotes the
momentum-space matrix element (Q I

S
I P), where

P= (pt, ,p„) labels the initial ts-particle momentum
eigenstate' and Q the corresponding final state. A
straight line with ends q and p denotes a factor'
te„8s(q—p) Lwhere ce„=+(ps+ms)'"j, and a bubble
labeled T denotes the "connected part" (Q I

T
I
P). Thus

the first equation in Fig. 1 represents the familiar de-
composition of the (2 &—2) S-matrix element,

(gl gs I
S

I Pl ps) &1~3('ll Pl)tests(th Ps)

+(~t,vs I
2'I Pi,Ps).

In fact, as will be seen clearly in Sec. V, equations of
the form shown in Fig. 1 can always be written down
and used to dsPtte the functions (Q I

T
I
P). The physical

content of the decomposition properties, therefore, lies
not in the form of the equations but in the statement
that, when defined in this way, the connected part
(QI TIP) has a factor 84(gg;—Pp;) corresponding to
conservation of over-all energy momentum but contains
No other 8 functions of this type (which would represent
conservation of energy momentum for some subset of
the particles involved).

The physical interpretation of these decomposition
properties is very simple. The first example represents
the two possibilities for elastic scattering: the incident
particles may miss one another entirely and proceed
undetected or they may interact. In the second example
the S-matrix element for the process (4 particles ~ 4
particles) has five possibilities: all four particles may
go through undeflected; any two may go through while
two interact; any one may go through while three
interact; the four particles may interact in two pairs;
or all four may interact together. These possibilities
obviously arise from the fact that interactions are more
or less local and hence that two particles can pass one
another at a distance without interacting.

While this interpretation seems entirely plausible
it is certainly not a matter of experimental experience;
no experiments are ever dori with pure momentum
eigenstates, and even if they were, it is hard to imagine
how one could make precise the notion of two plane
waves missing one another. It is for this reason that one
would like an alternative more physical proposition
from which to derive these momentum-space equations. '

4 Strictly speaking, an n-particle state should be labeled by its
n spin states and n particle types as well as the n momenta. For
simplicity I shall consider only spinless particles and assume the
normal connection between spin and statistics; although spin
introduces no essential complications unless one wishes to prove
this connection. I shall not restrict myself to one type of particle-
on the contrary, it is usually simpler to consider all distinct
particles. However, no ambiguity arises from leaving the particle-
type labels implicit.

~ The factor co„arises from the normalization of the momentum
eigenstates; namely, (q ~ p) =co„bs{it—y).' Even if one were to in'sist that the detailed structure implied
by the momentum-space equations is a matter of experience, it
would be necessary to prove that arbitrary phase factors did not
appear in front of each term in each equation. This problem has

The starting point proposed by Wichmann and
Crichton is based on the observed independence of
experiments which are suKciently separated in space
or time. Thus, given two free wave-packet states a and
b, one considers the process (b ~ a), with probability
P(b &—a), leading from the initial asymptotic state u
to the final state b. Since the wave packets are more or
less localized, there are approximately defined intervals
in time and space within which any interactions occur.
Thus one could say, for example, that the experiment
(b~ a) occurs in New York today. One may similarly
consider a second experiment (g&—f) which occurs
either in New York tomorrow or London today. In
either case, the two processes (b~ts) and (g~ f)
could be viewed as a single process (b, g~ a, f) and
experience tells one that the probability for this
composite process is just the product of the separate
probabilities P(b~ a) and P(g &—f); i.e.,

P(b, g~a, f)=P(b+—u)P(g ~ f).
Since the separation necessary to achieve this

factorization obviously depends on the range of forces
and the size of the wave packets, one should expect
such factorization only in the limit of in6nite separation.
Therefore, given wave packets f and g, one defines new
wave packets f, and g, which are obtained from f and
g by rigid translation through the four-vector x= (t,x).
Then the precise formulation of our basic proposition is~

P(b, g* ~, f*) P(&~:o)-P(g ~ f)
) ~/-+oo

for all wave packets a, b, f, g, where

I xI =+ (ts+x')ti'

It should be noted that the rate at which this limit is
approached will obviously depend on the size and shape
of the wave packets considered; also that the second
probability on the right is written as P(g ~ f) rather
than P(g, &—f )since trans'lational invariance ensures
that these two are equal. Finally the class of wave
packets allowed in Eq. (1) must be specified; for defi-
niteness I shall suppose that the states a, b, f, g are
defined by momentum-space wave functions in the-

space K) of testing functions (i.e., wave functions which
are infinitely differentiable and of compact support).

The first task in deriving the momentum-space de-
cornposition equations is to rewrite Eq. (1) in terms of

been discussed by Stapp (footnote 2) on the basis of the postulated
analyticity of the connected parts. In this way he can prove the
connection between spin and statistics. The derivation of the
momentum-space decomposition properties given here is inde-
pendent of any such powerful postulate (which is its raison d' etre)
and naturally does not produce such a result.'It is satisfactory that since this characterization of short
range forces was erst discussed by Wichmann and Crichton the
condition (1) has been proved in 6eld theory by K. Hepp fHelv.
Phys. Acta Bi, 659 {1964) for the case that x is space-like, and
J. Math. Phys. 6, 1762 {1965) for x time-like). In potential
theory the condition has been proved for the case that x is space-
like [W. Hnnziker, J. Math. Phys. 6, 6 (1965)].
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5-matrix elements. To do this, one must, of course,
assume that an 5 matrix exists. Spcci6cally, I shall
assume that the experimental correspondencc between
possible initial and possible 6nal states is represented
by a unitary operator 5, mapping the Hilbert space of
asymptotic free states onto itself, and that 5 is in-
variant under translations. ' My only other general
assumption will be that the superposition principle
applies in the usual way; namely, that the Hilbert
space of asymptotic states is the Pock space of all
stable particles and is divided into disjoint super-
selection subspaces, within which all vectors represent
physically realizable and identi6able states. 9

The unit vector representing the wave packet e is
denoted

I u) and, as already mentioned, is characterized
by its momentum-space wave function

&(P)=~(n~ ",p )

in S. The probability for the process (b &—a) is

o) = l(bi~I~&I'—= l~~. l' say

If the state f is represented by the wave function f(P)
then the wave function for the displaced state f, is

f.(p) =f(P) exp(~ Z P"*)

Q.o= (p 2+~ N)l/2$

and, finally, the composite initial state (a,f,) is repre-
sented by the tensor product"

lo f*&= lo&OXIf.&.

Kith this notation the appropriate restatement of
Eq. (1) is

I (~.I I f ) I ~~„- I ( I I )&K l I f& I
—=

I ~ .f I ()

The next step is to show that the modulus signs can
be removed from this equation. This is done in two
stages. In Sec. III the superposition principle is used

(»a l~l&f.)
) @I-+oo

where o.~,~ is a constant phase factor (lnl =1) de-

pending at Inost on the superselection classes A and E
of the states u and f To .prove this one needs a state-
ment of the independence of well separated experiments
which is slightly more general than that given in Kqs.
(1) and (2) above. This stronger statement is formulated
in Eq. (10).

In Sec. IV it is shown that by adjusting the over-all

phase of the 5 operator on each superselection subspace
all factors a~, ~ in Eq. (3) can be reduced to unity.
Since thc number of factors eg, g is in general greater
than the number of arbitrary phases in the de6nition
of 5, it is necessary to show here that, not all factors

~&,& are independent. This is done by considering thc
separation of a composite process into three separate
pal ts.

Finally the limit (3), with eg, F= 1, is used 'to derive

the usual cluster properties for momentum-space
5-matrix elements. This derivation„which is due to
Kichmann and Crichton, is briefly sketched in Sec. V.
This allows me to introduce a somewhat simplified

notation and to analyze one remaining difhculty. This

difhculty arises when Kichmann and Crichton, in order

to dcrivc thc momentum-space cluster cquatlons~

assume that the phase of the one-particle 5-matrix
elements is zero; i.e., that

(vl~lP&=~.&3(&—»
It is not obvious that the phase of 5 can always be
adjusted to make this true —particularly since it has
already been adjusted to absorb the phase factors a in

Eq. (3). This means that the decomposition equations
cannot in general be written in the simple form shown

in Fig. 1.However, it is possible to rewrite the equations

(i.e., redefine the connected parts) so that the unitarity
equations for the connected parts themselves take their
usual form without spurious phase factors. This is
discussed in the remainder of Sec. V.

s Since I am considering only the Hilbert space X0 of asymptotic
free states, the generator of time translations is the free Hamil-
tonian 110.I shall not commit myself to the existence of a Hilbert
space R of interacting states and therefore make no claim for the
existence of a full Hamiltonian II as generator of time translations
on 3C.

9 In most formulations of analytic 5-matrix theory the language
of Hilbert space is not explicitly used. It can be shown, however,
that such formulations contain suQicient information to recon-
struct the Hilbert space of asymptotic states with all the usual
properties fJ. R. Taylor, Phys. Rev. 140, 3187 (1965)j. Under
these circumstances, it seems foolish not to use the convenient
formalism which Hilbert space provides.I In the event. that some type of particle Is present m both u
and f, the vector a,f,) defined here is not normalized. However,
as x —& ~ it can be shown that its norm approaches one. (See
%ichmann and Crichton, Ref. 3.) Thus, in Kq. (2} below any
normalization factor can be ignored.

III. REDUCTION OF POSSIBLE PHASE
FACTORS TO A CONSTANT

The 6rst step in the proof of the momentum-space
decomposition equations is to apply the superposition
principle in Eq. (2),

I f & I
[ i

I r I

(for any wave packets u, b, f, g) to derive Eq. (3),

g,g, Isla, f.&
—:e~,,s,.s„,

I~I ~

where eg, g is a constant. phase factor depending only
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on the superselection classes A and F of the states a
and f.

Since the superposition principle applies only within
each superselection subspace it is clear that the constant
n~, p will, in general, be diGerent according to the
superselection classes A of a (or b) and F of f (or g).
However, for the remainder of this section, I shall for
convenience suppose that a and b belong to a fixed
superselection class and similarly f and g. No further
mention of superselection rules need then be made.

It follows from Eq. (2) that for any set of wave
packets a, b, f, g one can 6nd a phase factor n(a, b,f,g; x)
such that

&b,g. lSla, f &=n(a»fg x)Ss S.r+r(ab»g *)
where

I
n

I
= 1 and

r(abf g;x)~0, as lxl ~ ~. (4b)

for any two sets of states u ~ and u' . This limit
will be proved by inserting into Eq. (2) an appropriate
superposition of the primed and unprimed states. The
existence of the limit (2) for this superposition of states
will be shown to imply that the factors 0, and 0,' must
approach one another as

I xl ~ ~.
I shall next prove for any given set of states a, b, f, g

that n(a, b,f,g; x) approaches a constant. )It is at this
point that the generalization of Eq. (2) is needed. )
This result combined with Eq. (5) shows that all
factors n(a, b,f,g; x) approach a limit independent of
a, b, f, g; and Eq. (3) follows immediately.

The rather tedious details of the two steps in this
proof are as follows.

Proof of Eq. (5)

It is sufhcient to prove that

Ln(a, b,f,g; *) n(a', b', f,g; *)7~—o (6)

for fixed f and g, since the argument leading to this
result gives the same limit for

fa(a', b', f,g; x) n(a', b', f',g'; —x)7

and from these two results Eq. (5) follows. Accordingly
I shall 6x f and g and assume that S,TWO. (Otherwise
there is nothing to prove, since the factors n are
unde6ned. )

"It is perhaps worth noting that since ~n~ =1 the condition4—n'} —& 0 is equivalent to the condition / ~n1. n

The phase factor e is to some extent arbitrary. For
de6niteness I shall 6x n such that all terms in Eq. (4a)
have the same phase.

In order to prove Eq. (3) one must now show that
n(a, b,f,g; x) approaches a constant limit independent
of a, b, f, g; and to this end I shall 6rst prove that"

[n(a, b,f,g; x) n(a', b', f'—,g'; x)7:0

Now let us consider any four states a, b and a', b'

with Sb,&0/Sb, . It is convenient to assume also
that either Ss, or Ss (the former, say) is nonzero.
(In the event Ss =Ss,=0 the same proof works, but
with one intermediate step using the state la")= la)
+ I

a').) It suffices to prove that

$n (a,b,f,g; x) n(a—',b,f,g; x)7 —+ 0;
then the same argument gives the same result for

[n(a', b,f,g; x) n(a—',b',f,g; x)7

and Eq. (6) follows.
Replacing the state la) in Eq. (2) by the super-

position
I a)—X

I
a'), one 6nds that

I &b, g.lSla —~a' f*&l~l &blSla —) a'&&glSlf&l
=

I (Ss —~Ss )Sgr I (7)

Now by choosing X=Ss,/Ss, one can make this limit
zero. Meanwhile the left-hand side can be rewritten
using the identity

I
a—).a', f.)= I a,f.&

—)il a',f.&.

Substitution of Eq. (4) for both terms on the left-hand
side then brings the limit (I) into the form

I L~(a,b,f g; x) n(a', b,fg; x)7S—s.S,i+» l r'I~ o. (g)—
Now in this equation r and r' tend to zero as x —& ~,
and Ss&,q/0; it follows that

jn (a,b,f,g; x) n(a', b,f,g—; x)7 -+ 0.
Q.E.D.

Proof that n(a, b,f,g; x) Approaches a Constant

In Eq. (5) one can choose a', b', f', g'=a, b, ft g&
where $ is any constant four-vector, and then, since

n(ab Agt;x)=n(a, b, f, g;x+k),
one obtains the result

Ln(x) —n(x+P)7-+ 0 (any fixed ]).
This condition has a superGcial resemblance tp the
Cauchy condition for the convergence of n(x). It is
insufhcient, however, because it holds pn]y fpr any
fixed $; for example,

n(x) =exp(i lnl xl) (9)
would satisfy this condition but obviously has no limit
In fact, since such a behavior for o. is consistent bpth
with the original formulation of the independence pf
well separated experiments LEqs. (1) and (2)7 and with
the superposition principle, an extra assumption is
needed to eliminate it. In an earlier version pf this
paper, " I proved that n(x) has a limit by assuming
that for any direction in which x —+ cc
least some states for which the limit (2) is reached
"J. R. Taylor, University of Wisconsin report, j965 (IIn

published).



1240 JOHN R. TAYLOR

faster than Ixl '. Although this condition is amply
fulfilled in field theory, " it is not particularly satis-
factory in the present context where the aim is to find
a statement of approximate locality which is more
a matter of experimental experience. A more satis-
factory procedure is to exploit the superposition prin-
ciple more strongly as follows. '4

Let x and x' be any two four-vectors. Then if f and
f' are in the same superselection class, so are f, and

f . Thus the superposition principle gives meaning to
initial and final states of the form (f,+f';) and

(g,+g', ). Then if a, b, f, f', g, g' are any given states
and both x and x' are made suKciently large the
processes (b~u) and (g,+g', ~ f,+f';) should be
independent. Thus, precisely the reasoning which led
to Eq. (2) allows one to state that, because interactions
are more or less local,

I&&, g.+g'"Isl~, f.+f'")
I

ls &g
—+g'"Islf*+f"&I

(as lxl and Ix'I~ ~). (10)

Mathematically, Eq. (10) is of course more general
than Eq. (2)—Eq. (2) implies Eq. (10) only in the case
that Ixl —+ ~ with (x'—x) fixed, whereas Eq. (10)
implies some uniformity for this limit —but physically
both are expressions of the same idea, the short range
of particle'interactions.

If we now consider any given states a, b, f, g we can
use Eq. (10) to show that n(a, b,f,g;x)=o.(x), say,
approaches a limit. Let us consider the matrix element

M(x,x')=(b, g,+g, ISla, f, f;)—
Using Eq. (10) we can write

IM(x,x')
I

=
I
Ss &g.+g" I

S
I f.—f"& I+~t(x,x'),

where Et~0 as Ixl and Ix'l~ ~ Expansion of the
matrix element on the right-hand side of this equation
gives four terms, of which two cancel and two vanish
as Ix—x'l~ oo. Therefore,

M(x,x') —+0, (as lxl, Ix'I and lx—x'I-+ ~). (11)

Returning to the original expression for M(x,x') and

expanding, we find that

M(xx')=[n(x) n(x')]S,.—S,r+Rs(xx'), (12)

where our previous results, combined with Eq. (10),
i~ply that E,~0 as lxl lx'I and I*—x'l~ ~ Eqs.
(11) and (12) together show that

In(x) —n(x')j~0, (as lxl, lx'I and lx—x'I —& ~).
This is equivalent to the Cauchy condition and estab-
lishes that each o:(a,b,fg; x) has a limit as

I
x I-+ oo.

~~ Hepp (Ref. 7) has shown that as x —+ cc along any direction
in space-time there are states for which the limit (2) is approached
faster than any power of ) x )

'4 I am indebted to Dr. Van Hove for pointing out how this can
Qe done.

Combining this result with the result (5) that any
two factors rr(a, b,fg; x) and n(a', 5',f',g';x) approach
one another as

I xl~, we conclude that all n(a, b,f,
g; x) have a common finite limit.

IV. ADJUSTMEHT OF THE PHASE FACTORS
e TO UNITY

Our next task is to show that the phase factors o.~,p
in Eq. (3),

&&,g*l S I o,f*)~~x, ~S»ur (3)

can be adjusted to unity by exploiting the arbitrariness
in the over-all phase of S.

Let us brieRy recall the extent of this arbitrariness.
The unitary 5 operator is related to the physical corre-
spondence between initial and final free states by
signer's theorem. " This theorem establishes that, if
the physical correspondence of states is one-to-one,
"onto" and preserves superpositions, then it can be
represented by a unitary. or anti-unitary operator S
on the Hilbert space of free states and that S is unique
up to one phase factor on each superselection subspace.
(That S is actually unitary follows because the relation
between configuration and momentum spaces is the
same for initial and final states. ) Thus if there are m

diferent superselection classes, one has available just
n phases which can be freely adjusted. On the other
hand, there are n' phase factors O.~,p which have to be
absorbed. This means that, except in the case m=1
(where there are no superselection rules), one must
establish some constraints among the factors o.~,y. In
practice, of course, when e is greater than one it is
actually infinite, and it turns out that the procedure for
removing all factors o,z, p depends not only on the
number or superselection classes but on their relation-
ship one to another. It is therefore impossible to give
a general prescription for eliminating the n~, g and
instead I shall consider just three cases:

(A) The simple case where there are no superselection
rules (n= 1).

(8) A world with one superselection rule, such as
charge. (Here there is a single infinity of superselection
classes characterized by their charge number /=0,
ai, a2, " .)

(C) The actual world as it seems to be, with super-
selection classes uniquely defined by three integers—
charge, baryon, and lepton numbers.

A. The Case of No Suyerselection Rules

When no superselection rules operate (e.g. , in a
world made up of chargeless pions) there is one arbi-
trary phase in S and one phase factor u to be absorbed.
Inspection of Eq. (3) shows that replacement of S by
pS (Ipl =1) changes n to np. There is therefore a

"Ihave in mind the theorem originally stated for rotations in
the Appendix to Chap. 20 of E. P. signer, Grolp Theory
(peg, deIn& Press Inc. , New York, 1959).
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unique phase for S, given by P=tr~, such that the factor Thus, Eq. (14) takes the form
rr in Eq. (3) is unity.

&N, M+LCM, L &N+M, L&N, M ~ (15)

B. The Case of One Additive guyerselection Rule

If there were just one additive superselection rule
(e.g., that on charge in a world of charged pions or of
protons and antiprotons), there would be a single
infinity of superselection classes which could be labeled
by their charge number E=O, ~1, &2, Since the
number of phase factors n is the square of the number of
superselection classes, the first task is to find con-
straints among the factors n.

The first such contraint arises from the physical
equivalence of the state vectors la,f)= Ia)Qxl f) and

I f,a)=
I f)flu), which means that the two vectors

differ at most by a phase factor. Substitution in Kq.
(3) shows immediately that

O.'A, P=AP, A,'

i.e., that e is symmetric.
The second constraint arises when one considers the

separation of a composite process into three well
separated parts. Physically, one obviously expects a
result analogous to Eq. (1);namely

P(d„ f, g„~a., b, c„)~
~(d ~)I'(f b)I'(g

(as I*I, lxl, l~-yl

Just as in the case of two separate experiments, this
property implies the existence of a phase factor rr (a
g,y) which relates the corresponding S-matrix elements,
and by arguments analogous to those of Sec. III one
can show that this phase factor has a constant limit as

However, the two special cases where first x —+ ~
(y fixed) and then y~ oo, or vice versa, are already
covered by the results of Sec. III which imply that

(rr*&f g. Isla*&b&c„) ~CA, Bc&B,csda+fsSp. &

(g —+ oo, y —& ao)

+ riAB, CriA, BSd»Sf t&5gc &

(y-+ oo, Z-+ oo),

One can now reduce all of the factors eN M to unity in
the five following steps:

(i) I consider first the vacuum superselection class 0.
(It is not, of course, necessary to insist that experiments
be done with the vacuum state in order to discuss the
vacuum superselection class. States such as x, x+x,
pp all belong to 0 and quite generally a state

I o) is in 0
if the states Ia) and Iu)Qxlo) belong to the same
superselection class for any

I
a).) Substitution of M=O

in Eq. (15) gives

&N, L&0,L &N, L«N, O

and since AN, M is symmetric this implies that o.N, O

=0.0,N is the same" for all S.
Now if 0 and 0' are any two states in 0, a particular

case of Eq. (3) is

(c',c.'ISIS,c.) ~~A, ,(c'ISlti)(c'ISlc)

and from this it is clear that by adjusting the phase of
S on 0 Li.e., ph((o'ISIC))] one can remove nA, s.
Furthermore, since the states a and (a,o) belong to the
same superselection class the adjustment to O.A 0=1
is independent of the phase of 5 on all superselection
classes other than that of the vacuum.

(ii) Next, the factors c&Bt(1V), 0) are adjusted in
succession. A special case of Eq. (3) is (in much simpli-
fied notation)

~22 ~ O'1, 1~11~11~

Thus to set 0,1,1=1 it is only necessary to fix the phase
ph(5») in terms of ph(5»). Similarly,

~N+l, N+ 1~ +N, 1~NN~ll

and adjustment of ph(SB.+t,B+t) relative to ph(Sii)
leads to nB, t= 1, with ph(5») still arbitrary.

By the same process one can arrange that 0, N, 1= 1
(lV)0) leaving ph(5 i, i) free.

(iii) Using Eq. (15) one can now show by induction
that all remaining factors nB. , Ar (Mll&~0) are auto-
matically unity. The first step is

0'2, 2O'1, 1 +3,1O'2, 1 y

where J3C denotes the superselection class of the state whence 0,2,2=1, and so on.

I b,c). It follows that these two limits must be the same
(iv) Another special case of Eq. (3 jstr

and hence that

&A,BC&B,C &AB,MA, B ~ (14)
~00 ~&1,—l~ll~—1,—1 ~

Having obtained the two constraints eA p=n~, A and
Eq. (14), one can return to the problem of absorbing
all the factors n The first tas.k is to rewrite Eq. (14)
in the form appropriate to the superselection rule under
consideration, namely, charge. In this case, if the states
la) and

I b) have charge E and M, respectively, then
the charge number of the state Ia,b) is just X+M.

Thus, by fixing ph(5 i, i) relative to ph(5») one can
arrange that o.l, 1——1.

(v) Finally, all remaining factors nt&r dd (&M(0)
'6 In fact, if one wishes to consider the vacuum state itself-

and the formalism certainly gives it a well-defined meaning —it is
easy to show for any 1V that »»&, o= &vac. IS I vac. &.

'~ written more fully, an example of this equation is

& +, -Isl +,~-& ~,, && + Is I +&& -Is
I

-&.
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are automatically unity, as one can show by induction.
The elements used, i follow from Eq. (15) in the form

The remaining factors follow as in (iii) above.
In conclusion, steps (i)—(v) above establish, for the

case that the only superselection rule is that on charge
(or baryon number or lepton number), that all rr~si,
can be adjusted to unity leaving one arbitrary phase in
the definition of S (that of S on the superselection class
X=+1, say).

C. The Case of Three Additive Suyerselection Rules

At the present time it is generally believed that
there are four superselection rules in all—conservation
of charge, baryon number and lepton number and the
separation of states of integral and half-odd-integral
angular momentum —of which the last is redundant
since the baryons and leptons all have half-odd-integral
spin and appear to be the only such particles. It is
therefore worth considering briefly the extension of
case (3) above to a world where superselection classes
are characterized by three integers —charge number Q,
baryon number j3 and lepton number J. As repre-
sentative states one couM consider states of the form

(Q,B,I.)= (Q positive pions, 8 neutrons, L neutrinos).
The procedure of paragraph (8) can be used to absorb

all factors e which involve only one type of particle.
This still leaves free the phase of S on states of mixed-
particle type and these can be used, much as in (8)
above, to absorb all the remaining factors o.. The
detailed procedure is tedious but straightforward, so
can safely be omitted. The result is that all factors 0,

can be absorbed, leaving three arbitrary phases in S;
namely, those of 5 on the three superselection classes

(Q,B,L)= (1,0,0), (0,1,0), and (0,0,1).

V. PROPERTIES OF MOMENTUM-SPACE
MATRIX ELEMENTS

The 5-matrix elements which have been discussed in
the previous two sections are those for physically
observable processes, i.e., matrix elements between
normalized wave packets. However, since the latter are
de6ned by momentum-space wave functions in S it
follows that one can de6ne S-matrix elements between
momentum eigenstates as distributions'8 in X)'. In Sec.

Qlsl»=&et" v-lslpi" p.)
introduced for these distributions.

The wave-packet matrix elements can be written as
integrals of the appropriate wave functions times

"For &gi
~ .q~ 5 p~. ~ .p, ) to be de6ned as a distribution in

R'P(m+n)j, (b S a) must deGne a continuous linear func-
tional on Sf3(ei+e)g. Using the fact that S is unitary, one can
easily show that this is so.

(QISIP&. In particular,

&b,g.lsl. ,f.&= «(o',o-,P,P-)

xi*(o)g. (o-).(P'&f.(P")&Q',Q" lsl~', P"&,

where

~0(P) =II(&'P/~. ) .
Since

f (P)=f(P) exp(i+P'x)
the factorization derived in the previous two sections

&br ISISf ) —„&f ISING&(glSlf&

can be written

nfl (O' O",P', P")f*(O')g*(O")o(P')f(P")

p KP"— P) *l(Q',Q"I
I

', "&— .-

dfl (O' O"»'»")b*(O')a*(O")~(P')f(P")

&«Q'lsl&'&(Q" lsl~")
It can be shown" that this implies

«pLi(EP" —Zv") zj(Q', Q"
I
S

I
~',~"

&

(Q'I s
I
&'&&0"

I sly" &

the convergence here being convergence in the space
X)' of distributions.

Equation (16} is the essential tool in deriving the
6-function structure of the S-matrix elements. The
procedure is 6rst to use the usual decomposition equa-
tions to define the connected parts (Ql XII') and then
to show that (QITII'& contains no momentum-con-
serving b functions apart from the over-all factor
84(gg —gP). The role of Eq. (16) in this demonstration
may be indicated by the following two obvious facts:
First, if any matrix element contains the factor
54+q—gp), then multiplication by expl i(gp —gq)
xj leaves the matrix element unchanged, whatever

the value of x. Second, if

expj i(QP —gg) xjR-+0 as Iaj-+ ~
then the distribution R contains no factor b4(gp —gq)
nor any of its derivatives.

It will become clear that the decomposition equations
as written in Fig. 1 are not quite correct. A correct
form is shown in Fig. 2. In this figure the straight lines
which denoted the factor oi„bs(q—p) in Fig. 1 have been
replaced by bubbles representing the actual S-matrix
element (q I

S
I p) /for which Lorentz invariance dictates

the form go~„5s (q—p), I y I
= 1j.The form of the general

"See %ichmann and Crichton (Ref. 3}.
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~Ty + ~T~
FIG. 2. The 6rst four cluster equations, which de6ne the con-

nected parts &Q)T)E). The form of these di6ers from that of
Fig. 1 only in the single-line bubbles 5, which denote the 5-matrix
eiement &g(S(p)=~co„sl(q—y). The equations for the processes
(2 particles+ —3 particles), (2~4} and (4&—2) are similar to
that for (3 ~ 2), and are omitted.

decomposltloQ cquatloQ can bc easily %1lttcn down
from inspection of Fig. 2. It is

&QISIP&= 2 (II (O' I TIP' &)+{QITIP& (17)
partitions x

Here the sum is over all partitions Ir of Q and P in the
form

p —(pw. . . p w)

The trivial partition Q= {Q), P= (P) is not included
in the suID but is written explicitly. The one-particle
matrix elements are defined separately as

{plTlp&=(qlSlp)=pm, as(q —y) (same parttcle)
=0 (different particles)

{q~T~PI. . .P„&={qr".q„)T)P)=O (m, e)1).
These equations are used to de6ne the distributions

(Q ~
T

~
P) by induction on the total number of particles.

Clearly as this number increases each (Q j T ~
P) appears

for the Grst time in the equation for the corresponding

(Q 5 P) and is therefore well defrned in terms of
(Q 5 P) and connected parts {Q, ~TIP;~) with a
smaller number of particles. Furthermore, since each

{Qj 5 ~
P) contains a factor b4(gq gP), arising fro—m

conservation of energy momentum, it follows by in-
duction from Eq (17) tha.t {Q~T~P) must also contain
such a factoI'.

The proof that {Q~T~P& contains no further
function factors also proceeds by induction. For each
5-matrix element {Q~S~ P) one considers all nontrivial
partitions Q= (Q',Q"), p= (p',p"). Inspection of Eq.
(17) or Fig. 2 shows that for each such partition one
can write

(O',Q"
I Sl p', p"&= &O'I Sl p'&{Q"

I Sl p"&+&, (18)

where R contains all tciIDs from thc right-4. and side of
Eq (17) not c.ontained in (Q')5)P'&(Q")5)P"), and in

particular, contains {Q',Q"~T~P', P"). Now Eq. (16)
shows that, as ~x~

—+ ~, the left-hand side of Eq. (18)
times expLs(QP" —Pq") xj approaches (Q'

~ 5~ P')
(Q"

~
5

~

p").Since the latter has a factor 84(pq" —pp"),
this is precisely the limit of the 6rst term on the right-
hand side. Therefore, the second term must tend to
zero ~ i.c.~

E exp/i(pp" p—g") xj +-0 as ~x~~ ~,
Tllus, 'tllc tcrnl E 111 Eq. (18) docs llot colltRIII RIly 8
functions or derivatives of f) functions in (gq"—Pp").

Now in the case (2 particles+ —2 particles) the only
110I1'trlvlal pRItltloll ls Q= (grips) Rnd p= (pr)ps) and
in this case R is just {Q~TIP) itself. It follows that
(gr, qs~ T~pr, ps& cannot contain a factor Bs(tfr—yr) nor
any of its derivatives. LIf the two particles are identical
or have the same mass, one must also consider the term
bs(qr —ys).1 This is the desired result for the Process
(2 &—2). Ill tile gcllcl'Rl CRsc tllc remainder R 111 Eq.
(18) may contain other terms besides &Q',Q"

~
T~P'&P"),

but the inductive hypothesis ensures that these do not
contain any 8 functions in (Pq"—Pp"). Thus, since
8 itself does not, nor does (Q',Q"

~

T~P',P").
This completes the proof of the decomposition

pI'opcI'ties foI' IDomcntum-space matI'1x clcIDcnts
{Q~S~p&. As already noted, their anal form LFig. 2
and Eq. (17)j diifers from the usual form shown in
FIg. 1 111 t11at flic fRctol's oIy8s(11 y) of FIg. 1 Rlc
replaced by the matrix elements {NISIp&. Now, Lorents
invariance implies that

{VISIP&=~~A(tf—y), (I V[=1),

but there is no physical principle which ensures that
the phase factor y is actually unity. It is customary to
suppose that the phase of 5 can be adjusted to absorb
it but this can only be justified with some additional
assumptions. '0 Almost all arbitrariness in the definition
of 5 has already been used to remove the phase factors
rr from Eq. (3). In fact, in the case of no superselection
rules the phase of 5 is already uniquely determined by
the requirement e= I, while in more general cases the
number of remaining free phases is certainly much less
than the number of one-particle states. Since there is
no reason to expect the factor y in Eq. (19) to be the
same for all particles one is forced to accept Eq. {19)
as lt stands with p Iiot ncccssallly uIilty.

'0 The physical basis for the supposition that the one-particle
matrix elements have zero phase is as follows: One believes that
the actual time dependence of the one-particle states (and the
vacuum), as determined by the full Hamiltonian H, is identical
to that given by the free Hamiltonian H0, Since in the absence of
interactions the one-particle and vacuum matrix elements all have
the same phase —within each superselection class—one concludes
that the same is true even with interactions. In this case all
phases can be adjusted to unity.

Obviously these ideas go far beyond what is assumed in this
paper and what is usually assumed in 5-matrix theory. In potential
and Beld theories they appear to be valid but their general validity
seems to be an open question.
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= ~"(m~).

where e, m, and n' label the number of particles, then
substitution of Eq. (20) gives as unitarity for the con-
nected parts

..-" r. d~(0)(err(»)(zn(»*)
=b..s(P—P').

Fxo. 3. 'fhe decomposition equations rewritten to ensure that uni-
tarity for the connected parts (Q ( T}I')takes its usual form.

One might hope to restore the decomposition equa-
tions to their traditional form by relaxing the require-
ment that n= 1 in Eq. (3) and adjusting 5 such that
some suitable combination of 0. and p was equal to one,
but this too is easily seen to be impossible. For example,
in the simplest case with no superselection rules the
two factors 0. and y can be seen to enter the decom-

position equations in the combinations 0!p Q p
and obviously these cannot all be absorbed unless one
can guarantee that n= y= j., which one cannot.

Under these circumstances the most one can hope
for is to redeGne the connected parts (Ql T

l
I') so that,

in any particular theory, their properties are inde-

pendent of the factors y. I shaD consider the situation
in analytic 5-matrix theory, whose mathematical
structure is supposed to be determined by the unitarity
equations for the connected parts. These equations
can be cast in their usual form as follows.

One proceeds as in Sec. IV to absorb all factors 0.,
which justi6es the decomposition equations of Fig. 2

and Eq. (17). In the case of a world with only one type
of particle (e.g., rr') one now redefines the connected

parts as shown in Fig. 3. The general form for the de-

composition of the process (m particles+ —I particles)
becomes

(QI5l»=. - - (Z.II. (Q,-ITI~,-)
+(Ql2 I»), (2o)

where now one de6nes

(cl2'lP) =~.4(q—p).

It is easy to see that this new decomposition equation
arises from the consistent redeGnition of (Ql Tlr') by

(Q l 2
l p) ~ +(m+s}ls(Q

l
T l »

~bile the content of Eq. (20) is exactly the same as
that of Fq, (17), the uilitsrity eqllatlons fol' tile llewly

delned connected parts are free of all factors 7. If one

writes unitarity for 5, somewhat symbolically, as

Since the right-hand side of this equation is zero unless
e=e' the factor y(" "')~' can simply be omitted; i,e.,
unitarity for the newly defined connected parts tak.es
the traditional form without any spurious phase factors.

The generalization to a theory with many particles
is perfectly straightforward. The factor y& +"~" in Eq.
(20) is replaced by a product with one factor q P's for
each particle of type t. This is easily seen to produce the
required result.

Since the mathematical structure of analytic 5-
matrix theory is based on the analytic properties of the
connected parts and their unitarity equations, our result
means that this structure is quite independent of the
existence of the factors y. In fact, since aD observable
probabilities have the form l(bl5la)l, it is clear that,
so long as experiments detect only one set of particles
at a time, the presence of the factors y will have no
observable consequences whatever. On the other hand,
it can be seen from Eq. (20) that, as soon as experiments
measure interference between states of diferent types
or numbers of particles, the phase factors y will become
observable numbers.

VI. CONCLUSIog

The principal goal of this paper has been the deri-
vation of the momentum-space decomposition proper-
ties. Since these properties are supposed to be linked
with the short range of interactions, the aim was to start
with a physically reasonable statement of the short
range of particle ~n~eractions. And since the decom-
position properties appear to be valid in all scattering
theories, the derivation given was independent of any
particular theory (such as potential theory, Geld theory
or analytic 5-matrix theory).

The assumptions used were:

General Assumptions

(1) The existence of a unitary 5 operator which
maps the Hilbert space of asymptotic free states onto
itself and which is invariant under translations. "

(2) The superposition principle; namely, that the
Hilbert space of asymptotic states is divided into dis-
joint superselection subspaces, within which all vectors
represent physically realizable states.

dn(())(z, ~l5lQ, ~)P",~'l5lQ, ~)* » Inyariance under the Lorentz group has also been used in
writing Eq. (19) for (q [8( P). This is inessential to the main result,=$»~8(P—P'), which holds equally well in a Galilean theory.
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Statement of Apyroximate Locality

(3) The factorization of the probability for two
separate events Eq. (1)

This was strengthened in Eq. (10) by replacing the
state f, by (f,+f' ) and g, by (g,+g', ), and requiring
that the corresponding limit hold as

(
x

~

and
~

x'
~

-+ ~
)uniformly with respect to (x—x') of course).

(4) The analogous factorization for three separate
experiments as in Eq. (13).

Suyerselection Rules

(5) Superselection rules dered by discrete additive
quantum numbers; namely, charge, baryon, and lepton
numbers. "

"In fact the method of Sec. IV can accommodate any number
of quantum numbers of this kind, including those with infinitely
many eigenvalues, such as charge, and those with a 6nite number

These assumptions led 6rst to factorization of S-
matrix elements and thence, using the argument of
Wichmann and Crichton, to the momentum-space
equations, whose 6nal form is shown in Fig. 3 and Eq.
(20). While this form may differ from the usual one
shown in Fig. 1—a difference which would show up in
interference experiments between states of di6erent
particle typ" nonetheless the unitarity equations for
the connected parts take precisely the usual form as-
sumed in analytic S-matrix theory.
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of eigenvalues, such as the separation of integral and half-odd-
integral angular momenta.
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Application of the Pade Approximant to Scattering Theoryt
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The pad& approximant is shown to yield exactly unitary S matrices in scattering theory. The method is
used to construct a unitary S matrix for n-d scattering above the threshold for inelastic scattering. Thus the
effect of inelastic scattering on elastic-scattering total cross sections and angular distributions is calculated.
No cusps are found at the threshold.

I. INTRODUCTION

'HE Pade approximant' has been applied to
summing series which occur in calculations based.

on the Ising and Heisenberg models of various types of
critical phenomena. ' The Pade approximant may also
be applied to the Born series which occur in scattering
theory; recently Tani' has made a study of this
application.

In this paper we show that the Pade approximant
method may be used to construct exactly unitary S
matrices. In problems in which states with more than

t' Supported by the U. S. Air Force Ofhce of Scienti6c Research.
+ Summer Employee at Lawrence Radiation Laboratory,

Livermore, California.' For a review, see G. A. Baker, Jr., in Advancesin Theoretical
Physics, edited by K. A. Brueckner (Academic Press Inc. , New
York, 1965), Vol. 1.' See the surveys of M. Fisher and C, Domb in the Proceedings
of the Conference on Phenomena in the Neighborhood of Critical
Points, Washington, D. C., 1965 (unpublished).' S. Tani, Phys. Rev. 139, 31011 (1965).

two free particles are energetically possible (the exs,mple
we are concerned with is e-d scattering above the thresh-
old for inelastic scattering; however, there are many
others of great interest, for example, nucleon-nucleon
or pion-nucleon scattering above the threshold for pion
production) the problem of constructing unitary 5
matrices has not been satisfactorily solved previously.

In calculations of e-d elastic scattering based on the
no-distortion approximation, ' inelastic scattering is
ignored even above the threshold for inelastic scat-
tering. Because of this neglect of inelastic scattering,
the matrix elements for transitions between states in
which three particles are free are not required because
in the no-distortion approximation three-body states
are precisely what are left out. Our work represents an
attempt to go beyond the no-distortion approximation.
In calculations of n-d inelastic cross sections based on

4See, for example, R. S. Christian and J. L. Gammel, Phys.Rev. 91, 100 (1953).


